
ARTICLE IN PRESS
0097-8493/$ - se

doi:10.1016/j.ca

�Correspond
E-mail addr
Computers & Graphics 31 (2007) 175–189

www.elsevier.com/locate/cag
Deferred blending: Image composition for single-pass point rendering

Yanci Zhang, Renato Pajarola�

Visualization and MultiMedia Lab, Department of Informatics, University of Zürich, Switzerland
Abstract

In this paper, we propose novel GPU accelerated algorithms for interactive point-based rendering (PBR) and high-quality shading of

transparent point surfaces. By introducing the concept of deferred blending we are able to formulate the smooth point interpolation

problem as an image compositing post-processing task. Consequently, our new PBR algorithm does not suffer from an extra visibility-

splatting pre-render pass, for conservative e–z-buffer visibility culling, as this is eventually performed together with the smooth point

interpolation during image compositing. Moreover, this new deferred blending concept enables hardware accelerated transparent PBR

with combined effects of multi-layer transparency, refraction, specular reflection, and per-fragment shading. Deferred blending is based

on a separation of the point data into not self-overlapping minimal independent groups, a multi-target rendering pass and an image

compositing post-processing stage. We present different grouping algorithms for off-line and on-line processing. For basic opaque

surface rendering and simple transparency effects, our novel algorithm only needs a single geometry rendering pass. For high-quality

transparent image synthesis one extra rendering pass is sufficient. Besides transparency, per-fragment reflective and refractive multi-layer

effects (e.g. environment mapping) are supported in our algorithm.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Point based rendering; Transparency; Alpha blending; Hardware acceleration; GPU processing
1. Introduction

Point-based rendering (PBR) has attracted growing
interest in the last few years as points as geometric
modeling and rendering primitives have shown to be an
interesting alternative to triangle meshes [1–4]. Points are
the basic geometry defining elements of 3D objects and
surfaces. Moreover, most geometric modeling tasks can be
performed directly on point sets as demonstrated in [5–7].

As the significance and adoption of point-based object
representation increases [1–4], the illumination and shading
feature set has to be fully developed. Basic PBR on the
GPU has received much attention with many algorithms
for real-time rendering of opaque surfaces. Also smooth
shading of points has been addressed (see also Section 2).
However, most GPU-based PBR algorithms [3,4,8]
generally suffer from 2þ 1 rendering passes; two passes
over the geometry and one image processing pass. To
achieve smooth interpolation and resolve correct visibility
e front matter r 2006 Elsevier Ltd. All rights reserved.

g.2006.11.012

ing author. Tel.: +4144 635 4370; fax: +41 44 6356809.

ess: pajarola@ifi.unizh.ch (R. Pajarola).
of overlapping point splats, a separate visibility-splatting

rendering pass is needed. In a second point-blending

rendering pass the smooth interpolation between visible
overlapping points is performed. This separation into
visibility splatting and blending is a fundamental problem
of PBR.
Moreover, GPU-based interactive rendering of trans-

parent point has been a daunting task. This is mainly due
to the difficulty of integrating the following two different
blending operations simultaneously on the GPU:
1.
 Transparency-blending is used to a-composite transpar-
ent surface layers in a back-to-front order to generate
the effect of transparency. For this the z-buffer must be
turned off to include all fragments from all transparent
layers.
2.
 PBR-blending is used to interpolate between overlapping
point splats within the same surface layer to achieve
smooth rendering results. To interpolate between over-
lapping splats in one layer, the z-buffer is turned on to
cull fragments farther than some e in depth from the
visible surface, and pass all others.

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2006.11.012
mailto:pajarola@ifi.unizh.ch

ARTICLE IN PRESS
Y. Zhang, R. Pajarola / Computers & Graphics 31 (2007) 175–189176
Our solution to the above problems is the separation of
the input point data into multiple not self-overlapping
minimal independent groups, and formulating the PBR-
blending as an image compositing post-processing task.

The contributions of this paper include the definition of
the new deferred blending concept and GPU-based PBR
framework, which implements the e–z-buffer visibility
culling in the image compositing stage, and algorithms
for point grouping as required to perform deferred

blending. This paper is an extended version of [9,10] and
includes the following major additions:
�
 weighted-graph coloring based off-line point grouping
for high-quality transparent shading,

�
 dynamic on-line point grouping algorithm for deform-

able objects,

�
 experimental results of different grouping algorithms,

�
 in-depth comparison to depth-peeling and [11].

The paper is organized as follows: Section 2 briefly
reviews related work and in Section 3 we review the basic
deferred blending concept. Section 4 describes off-line as
well as on-line point grouping algorithms. The deferred

blending rendering algorithms for opaque and transparent
point objects are given in Section 5. Following the
experimental results in Section 6, Section 7 concludes
the paper.
si

f f

si

si+1 si+1

viewpoint
pi

pi+1

fi

Fig. 1. Each fragment f receives contributions from multiple overlapping

splats si which are smoothly interpolated.
2. Related work

Splatting-based techniques are the most widely adopted
approach in PBR because of the good tradeoff between
performance and rendering quality. Most of the PBR
algorithms are derived in some way from a software
algorithm for surface splatting [12,13].

Hardware accelerated point rendering techniques for
high-quality shading include antialiasing filters [14–16],
point-splat normal fields [17] and per-fragment smooth
shading [16–18]. Also the combination of point and
triangle primitives have been proposed [19–22] to improve
rendering quality and performance.

A common feature of GPU-accelerated PBR algorithms
[3,4,8] is a 2þ 1-pass rendering concept: two passes over
the geometry data for visibility and smooth blending
between points, and one image pass for normalization (and
shading) of smoothly blended point attributes. As splatting
primitive for rasterization, either quads [14] and triangles
[14,23] with blending textures or depth-corrected point-
sprites [24] are typically employed.

However, the two rendering passes over the point
geometry data in GPU-accelerated PBR algorithms are
highly undesirable. The two passes are expensive iterations
over the point geometry data not only due to the transform
and lighting cost, but also in particular due to the complex
vertex and fragment shaders required to rasterize depth-
corrected elliptical splats in image-space [15,16,18].
With respect to PBR of transparency, only a software
algorithm has been proposed to date [13]. It uses a software
frame buffer with multiple depth layers per fragment.
Unfortunately, this solution cannot be mapped onto GPUs
as they do not support multiple depths per fragment nor
the simultaneous read and write of the target buffer as
required by this solution.
In principle, depth-peeling [25,26] can be applied to PBR

of transparent surfaces [11]. Its idea is to render the k-nearest
layers in k geometry passes to different target a-images and
then a-blend these images together back-to-front. However,
as it requires several iterations over the geometry—each
itself a multi-pass PBR algorithm—it is impractical for
interactive PBR.

3. Visibility splatting

In this section we review and establish the basic
framework for deferred blending as it has been introduced
in [9,10].

3.1. Smooth point interpolation

A point setS covers a 3D surface by a set of overlapping
point splats s0...n�1. The projection of S in image-space
must interpolate for each fragment f the contribution of
multiple overlapping splats si as illustrated in Fig. 1. For
smooth interpolation, the contribution of each splat si to
the fragment f depends on the distance jf i � pij of its
projection f i onto the plane of splat si in object-space,
where pi is the center of splat si.
The fragment color cðf Þ is eventually computed from all

overlapping splats si as the weighted sum of colors

cðf Þ ¼

P
i wiðf iÞ � ciP

i wiðf iÞ
, (1)

where wi defines a smooth blending kernel centered on pi.
For the remainder we will limit ourselves to circular disks,
but elliptical splats can be handled analogously.
To avoid contribution from occluded splats sj to Eq. (1),

an e–z-buffer visibility test [14,15,18,23,24] is used as
illustrated in Fig. 2. It discards any fragments from
occluded splats sj farther back than e from the nearest
visible splat si.
Since GPUs do not offer such a weak visibility z-test,

hardware accelerated implementations of Eq. (1) resort to a
2þ 1-pass rendering algorithm. First, all point samples in

ARTICLE IN PRESS
Y. Zhang, R. Pajarola / Computers & Graphics 31 (2007) 175–189 177
S are rendered at e-offset to initialize the depth-buffer of
the point surface S. Second, with lighting and a-blending
enabled but z-buffer writing disabled, the terms

P
i wiðf iÞ �

ci and
P

i wiðf iÞ of Eq. (1) are accumulated into color
crgbðf Þ and a caðf Þ channels for each fragment f ,
respectively. The e-offset in the first, together with disabled
z-buffer writing in the second pass, achieves the desired
e–z-visibility. In an image normalization post-processing
pass, the final fragment color crgbðf Þ=caðf Þ is generated as
indicated by Eq. (1).

3.2. Deferred blending

To avoid multiple passes over the point geometry data
we introduce a deferred blending concept that delays the
e–z-buffer visibility test as well as smooth point interpola-
tion according to Eq. (1) to an image post-processing pass.

As illustrated in Fig. 3, we note that if a point set S is
sufficiently split into multiple groupsSk, withS ¼

S
k Sk,

overlapping splats in image-space can be avoided. Let us
focus for now on the splats of S which are part of the
nearest visible surface layer and ignore all others. Assum-
ing non-overlapping point groups Sk, the accumulation in
Eq. (1) can be separated into summations over the
individual groups as follows:

cðf Þ ¼

P
si2S

wiðf iÞ � ciP
si2S

wiðf iÞ
¼

P
k

P
si2Sk

wiðf iÞ � ciP
k

P
si2Sk

wiðf iÞ
. (2)

Based on Eq. (2), for each groupSk we can form a partial
image Ik with fragment colors crgbðf Þk ¼

P
si2Sk

wiðf iÞ � ci

and fragment weights caðf Þk ¼
P

si2Sk
wiðf iÞ. The final image

can then be formed by an image compositing step over all
partial images Ik,

crgbðf Þ ¼

P
k crgbðf ÞkP
k caðf Þk

. (3)
pj
f

si

viewpoint

occluded

visible

sj
pi

�

�

Fig. 2. Each fragment f receives contributions from multiple overlapping

splats si which are smoothly interpolated.

point set S group S1 group

Fig. 3. Separation of the input point set
Moreover, as there is no overlap in image-space between
splats of one group Sk, the fragment color and weight of
Ik can in fact simply be set to

crgbðf Þk ¼ wiðf iÞ � ci and caðf Þk ¼ wiðf iÞ, (4)

for the only visible splat si 2Sk that covers the fragment f .
Therefore, no a-blending nor e–z-buffer visibility culling
is required to generate the image Ik of a single point
group Sk.
If Sk only contains splats si of the nearest visible layer

not overlapping in image-space, then Eq. (4) indicates that
splats si 2Sk simply have to be rasterized into image Ik. A
single rendering pass over Sk can write the per-fragment
weighted color and weight itself into the RGB a-channels.
For all groups this amounts to one full data traversal since
S ¼

S
k Sk. Post-process image composition and normal-

ization of all Ik according to Eq. (3) yields the final smooth
point interpolation.
In practice, however, a group Sk contains not only

points from the nearest visible surface layer. On the other
hand, if all splats si;j 2Sk have no overlap in object-space,
that is jpi � pjjXri þ rj, where ri is the radius of the splat si,
and jpi � pjj is the Euclidean distance between splats si and
sj, then simple z-buffer visibility determination guarantees
that all visible fragments from splats si in the nearest
surface layer of Sk are included in the image Ik as shown
in Fig. 4. Additionally, fragments from splats sj 2Sk, but
occluded by SnSk, may also occur in Ik. However, the
complementary images I lak will contain the data of the
visible splat fragments to perform e2z-buffer visibility
culling as will be described below. In addition to the
fragment color, the images Ik include per-fragment depth
information cdðf Þk as well.
 S2 group S3 group S4

S into non-overlapping sub-sets Sk.

si
viewpoint

occluded layer

near layer

pi

sj

pj

Fig. 4. For each point group Sk, any fragments generated by splats si

from the nearest visible surface layer will win the z-buffer visibility

determination over any occluded splats sj and will be kept in the image Ik.

ARTICLE IN PRESS
Y. Zhang, R. Pajarola / Computers & Graphics 31 (2007) 175–189178
The color-and-depth images Ik of all groupsSk can then
be combined, as suggested in Fig. 5, using the depth
information to perform the e2z-buffer visibility culling as
outlined in the previous section. We can now outline the
image compositing operation � over all K depth-images Ik

to compute Eq. (3) under the e2z-visibility constraint
(given in Fig. 6).

The conservative e–z-buffer visibility test is implemented
in Fig. 6 by line 4 and the if statement on line 6. Due to the
weighted color as from Eq. (4), lines 7 and 8 implement the
summation, while line 11 performs the division of Eq. (3).
Therefore, unlike in prior methods, e–z-buffering, smooth
point interpolation as well as color normalization are all
formulated as an image compositing post-process.

Additional features such as deferred shading [13,16,18]
or Voronoi rasterization [27] are integrated into the basic
approach outlined here, see also Section 5.
3.3. Transparent points

As mentioned in the introduction, the main difficulty of
rendering transparent points is the conflict of z-buffer
usage. The introduced concept of deferred blending can be
extended to solve this problem by separating the two
blending operations into separate rendering passes. As
illustrated in Fig. 7(a), transparency blending between
viewpoint

occluded layervisible layer

group Si

group Sjim
a
g
e
 Ii ⊕

 Ij

Fig. 5. Contributions from multiple depth-images Ik can be visibility

culled and blended into the final result I ¼
L

k Ik, taking the z-depth and e
tolerance into account.

Fig. 6. Post-process image compositing performing smooth point inter-

polation as well as e–z-visibility testing.
surface layers and smooth point interpolation within a
surface layer cannot be told apart while performing back-
to-front a-blending of fragments. Our solution is illustrated
in Fig. 7(b) where the competing splats overlapping within
a layer are separated into different groups A and
B. Rendering group A into one target image IA, using
per-fragment material opaqueness a, yields the re-
sulting fragment color a2 � a2 þ ð1� a2Þða1 � a1 þ ð1� a1Þ�
backgroundÞ. The same proper back-to-front transparency
a-blending is accomplished in image IB for group B.
Finally, smooth point interpolation is achieved by aver-
aging the two results into the final image I ¼ 1

2 � ðIA þ IBÞ.
Note that smooth blending kernels cannot be supported

that way as the interpolation weights interfere with the
transparent a-blending. Hence, each fragment contributes
equally to the final point interpolation. However, the visual
artifacts introduced by this are largely suppressed due to
the following two observations: (1) Artifacts are reduced
dramatically by multiple transparent surface layers. (2)
With current 8-bit color and a resolutions any errors below
a value of 1

256
have no effect. Moreover, the artifacts can be

made virtually unnoticeable by considering the nearest

transparent layer and render it separately in high quality
using smooth point blending kernels.
Furthermore, we observe that the above concept works

well if points within a group have no or only minimal
overlap, but each group must cover the object’s surface
such that no holes exist within a transparent layer. These
aspects are addressed by an extended grouping algorithm
discussed in the following sections.
4. Grouping algorithm

The division of S into K groups Sk¼0...K�1 as discussed
above can be formulated as a graph coloring problem which
is conducted in a pre-process prior to rendering. Depending
on the definition of graph, two different grouping
algorithms are introduced. The first algorithm is called
minimal graph coloring which only considers whether two
a1
layer i

layer i+1

group A group B

b2

b1

a2

b2

b1

a2

a1

all points

a b

Fig. 7. (a) Traditional PBR cannot distinguish between point interpola-

tion and transparency a-compositing during per-fragment blending; (b)

dividing points into groups A and B: a1, b1 are transparency a-blended
with a2, b2, respectively, and then PBR-interpolated in an image

compositing post-process.

ARTICLE IN PRESS
Y. Zhang, R. Pajarola / Computers & Graphics 31 (2007) 175–189 179
splats have overlaped or not, and the number of groups is
unknown before grouping. The second algorithm is called
weighted graph coloring which considers the amount of
overlap between two splats, and the number of groups
which is a user-defined parameter. Since these two group-
ing algorithms based on graph coloring are conducted in a
pre-process stage, they cannot be applied for deformable
point-based objects whose geometry may be changed
dynamically. A third dynamic grouping algorithm, which
offers better performance than the graph-coloring-based
approach, is designed to handle grouping of dynamically
changing points.

4.1. Minimal graph coloring

For deferred blending to work, it is sufficient that the
point sets Sk must be independent groups in the sense that
8si;j 2Sk it holds that jpi � pjjXri þ rj. Hence we can
formulate a graph GðV;EÞ with nodes V ¼ fpig from all
si 2S and edges

E ¼ fei;jjjpi � pjjori þ rjg. (5)

Other pairs of points need not define edges in E as they
do not conflict in group assignment.

The required partitioning of S is thus defined as the
solution to the minimal graph coloring (MGC) of G [28],
and the number K of groups is G’s chromatic number XðGÞ.
Since MGC is an NP-hard problem we apply an
approximate solution as described below. Nevertheless,
since XðGÞpDðGÞ, the maximal degree of G, we know an
upper bound on K for any given point sample set S.

We use the largest first (LF) graph coloring algorithm
[29] to solve our point grouping problem. Given an ordered
set of nodes O ¼ ½v0; . . . ; vn�1� (vi 2V) of the graph
GðV;EÞ according to non-increasing degrees, assign color
0 to the first node v0. If nodes v0; . . . ; vi (with iX0) have
already received colors then viþ1 will be assigned the
smallest color not yet assigned to any of its neighbors vj

(with ei;j 2 E). Despite the fact that the LF algorithm is a
simple algorithm to approximate the minimum graph
coloring problem, it is very efficient and achieves almost
the same results as the other more complex algorithms in
the case of low edge-density.

Since each point group Sk is rendered to an individual
target image Ik, which are later composited together, we
prefer a small number K in practice. A smaller K means
less memory overhead and fewer texture lookups during
image compositing. Therefore, we apply the following
modifications to the definition of edges E of graph G as
given in Eq. (5) to reduce the number K of groups:
1.
 If two overlapping splats si and sj are virtually co-
planar, resulting in almost the same shading result, we
exclude edge ei;j from E. This allows to put si and sj in
the same group Sk.
2.
 Ignore overlap condition in Eq. (5) if splat normals ni

and nj point into opposite directions, that is if ni � njo0.
3.
 Relax the overlap condition in Eq. (5) to jpi � pjjoc�

ðri þ rjÞ, where c 2 ½0; 1� is a user-defined parameter.

The side effect of the above modifications is that splats si

and sj in one group Sk may have a small overlap.
However, for (1) as long as si and sj are basically co-planar
and have the same material color no rendering artifacts will
result from this modification. Modification (2) allows
points from different but close together surface layers to
be in the same group which also causes no rendering
artifacts. While (3) may introduce some rendering artifacts,
these will be fairly small as the splats si and sj will primarily
overlap in the peripheral area of their disks which due to
the smooth point blending kernels wi;j have less effect on
the overall image generation. Furthermore, in the context
of rendering opaque point surfaces, the artifacts caused by
overlapping splats within the same group are further
reduced by the Voronoi splat rasterization as described in
Section 5.

4.2. Weighted graph coloring

As we mentioned above, a small K is preferred in
practice which introduces some overlap between splats. In
the MGC algorithm, the overlap is restricted by relaxing
the overlap condition. Though it would be optimal if the
overlap is minimized. Another drawback of MGC is that K

is unknown before grouping and we need to write different
shader programs for different K .
In order to address the above issues, we introduce

another grouping algorithm called weighted graph coloring

(WGC) which has the following two features: (1) the
overlap between splats is minimized; (2) K is a user-defined
parameter.
For the K-colors WGC problem, let us start with

defining the weighted graph GðS;EÞ over the points S ¼
fp1...ng with edges E ¼ feijjjpi � pjjori þ rjg and weights
W ¼ fwijjoverlap between pi and pjg. The goal of K-colors
WGC is to assign one of K colors to each node in G while
minimizing the cost:

LðG;KÞ ¼
XK

k¼1

X
8eij2Ek

wij, (6)

where Gk ¼ ðSk;EkÞ is a sub-graph of G of points Sk with
color k and all edges Ek connecting points within Sk.
The overlap weights W are given by

wij ¼ ðAij þ AjiÞ � ð1� ni � njÞ, (7)

with normal vectors ni, and area Aij of region R on splat pi

overlapped by pj as shown in Fig. 8 given by

R ¼ fxjd1oe ^ d2org, (8)

where d1 ¼ jðx� pjÞ � njj and d2 ¼ jðxþ d1njÞ � pjj; e is the
constant used in the visibility-splatting pass.

ARTICLE IN PRESS
Y. Zhang, R. Pajarola / Computers & Graphics 31 (2007) 175–189180
We use a two-step greedy WGC strategy as follows:
1.
n

ε-o
Initialization step

(a) Create a priority queue Q containing all edges eij 2 E
with priorities wij .

(b) Process edges in Q in descending order. For edge eij ,
if vertex pj has no color yet, call function Mini-

mizeOverlap (pj) to assign one.
j

ffset
2.
 Optimization step

(a) Create a priority queue Q1 containing all vertices

pi 2S in graph with the priority
P

wij, with points
pj having the same color as pi.

(b) Process vertices in Q1 in descending order. For
vertex pi, call function MinimizeOverlap(pi) to
assign new color to decrease cost function LðG;KÞ
of Eq. (6). If

P
wij is below some user-defined

threshold, remove pi from Q1, otherwise put it to Q1

again with the new priority value.
Function MinimizeOverlap(pi) evaluates the best color k

for pi, for which the sum
P

Aij of overlap between pi and
all pj 2 Ek, given by k, is smallest.

4.3. Dynamic grouping

One big drawback of graph-coloring-based grouping
algorithms is that their performance is not fast enough to
be applied on-line for dynamic point sets. In order to
handle the rendering of dynamic points or deformable
objects, a hash-based grouping algorithm is designed to
achieve on-line performance and acceptable grouping
results.

The basic idea of dynamic grouping is simple. A 2D hash
table containing group indices is defined according to the
number of groups defined by user. Then a 2D coordinate
ðx; yÞ calculated for each splat si based on its position in 3D
space is used as an index into the hash table. The returned
hash value is used as the group index for si.

In our hash-based grouping algorithm, we have to solve
two basic problems: how to define the hash function for
hash table lookup and how to handle the collisions. In the
remainder of this section, we will show our strategy to solve
the two problems.

For instance, suppose we want to divide all splats into 8
groups. A 2D hash table hashTableð8; 8Þ is shown in Fig. 9.
pi

pj

ni

x

d1

d2

Fig. 8. Definition of overlap between two splats.
Our hash function is built in the following way: We use the
average normal vector ~n of leaf node of the BSP-tree, which
is used for efficient back-to-front traversal (Section 5.2).
Given the largest dimension d of ~n we map si to the 2D
coordinates

xi ¼
si½ðd þ 1Þ%3�

ri

� �
; yi ¼

si½ðd þ 2Þ%3�

ri

� �
. (9)

A hash function is then defined by hashðsiÞ ¼

hashTable½xi%8�½yi%8�.
Note that the above algorithm does not handle

collisions, which means that different splats may be hashed
to the same group index. In fact, if two different splats si

and sj are mapped to the same hash entry, but xiaxj or
yiayj, then the distance jpi � pjj is large enough to
guarantee that there is no overlap between them, hence it
is safe to put them in the same group. Consequently, the
only collision problem we have to deal with is if si and sj

satisfy xi ¼ xj and yi ¼ yj. We adopt the following strategy
to handle this collision:
1.
 Clear buffer Q.

2.
 Calculate ðxi; yiÞ for each splat si. If ðxi; yiÞ has not been

tagged, si is put to group hashTable½xi%8�½yi%8� and
ðxi; yiÞ is tagged, otherwise si is pushed to Q.
3.
 For each splat si in Q, calculate its total overlap between
its neighbors belonging to group k ðk ¼ 0; 1; . . . ; 7Þ and
assign it to group kmin with the minimal overlap value.

Even without dealing with the collision problem, the
hash-based algorithm can generate fairly good grouping
results for splats which are not very close to the eye point.
Based on this fact, the performance of the hash-based
grouping algorithm can be improved by only dealing with
the collisions for the splats which are sufficiently close to
the current eye point.

4.4. Extended grouping

The above grouping algorithms may not directly result in
point groups suitable for transparent point rendering for
the following two reasons, which will be addressed next:
1.
 Too many fragments per pixel: Despite overlap mini-
mization, significant overlap may still exist within a
Fig. 9. Hash table for 8 groups.

ARTICLE IN PRESS
Y. Zhang, R. Pajarola / Computers & Graphics 31 (2007) 175–189 181
single group Sk. The overlapping splats will be
transparency-blended back-to-front into image Ik which
may result in excessive attenuation of other surface
layers.
2.
 Too few fragments per pixel: The basic grouping algorithm
does not guarantee that splats in a single group Sk cover
the object’s surface. This may result in holes within layers in
some images Ik, and these missing fragments will introduce
incorrect transparency-blending results.
4.4.1. Fragment culling

Optimally, in each transparent surface layer there is
exactly one fragment that contributes to a-blending per
pixel. We achieve this goal by reducing the precision of the
per-fragment depth value. Let us assume that the z-test is
on and set to pass fragments with smaller depth, and splats
are rendered back-to-front. Now consider three fragments
for the same pixel: f 1 with depth d1 on a far surface layer,
and f 2 and f 3 with depths d2 and d3, respectively, in the
same near layer. Hence, d14d2 � d3.

As f 1 is the first fragment in the pipeline it passes the
z-test. Second is f 2 which also passes since d2od1, and
colors are a-blended ac2 þ ð1� aÞc1. Last f 3 enters the
pipeline and should be rejected to avoid causing extra
attenuation as it is in the same layer as f 2. This can be
achieved by lowering depth precision to make ~d2 ¼

~d3, so
that f 3 can be culled by z-test. Thus we can set the low
precision fragment depth to

~df ¼ floor
df � dmin

dmax � dmin
� n

� �
� n�1, (10)

where dmin and dmax are the nearest and farthest depths
from the object to the eye, the fragment depth df is given
from the hardware rasterization, and n is a constant that
can be set to a value larger or equal to ðdmax � dminÞ=e
based on the e–z-buffer offset.

4.4.2. Surface coverage

The solution to covering the object surface is to change
splats in each group Sk so as to cover more surface while
keeping the overlap as small as possible. We propose two
methods to do this: (1) adding splats and (2) enlarging splat
radii.

(1) To better cover the object by group Sk, points from
other groups are duplicated and added to Sk as follows,
where Clipped(pi; r; k) is the area of pi overlapped by splats
in Sk:
1.
 Create a priority queue Q containing all splats SnSk,
with priority pi being Clippedðpi; r; kÞ.
2.
 Process splats in Q in descending order. For each pi,
update its priority pnew

i ¼ Clippedðpi; r; kÞ as Sk may
have changed (with pnew

i Xpi).
(a) If pnew

i is too big, pi is removed from Q and the next
splat of Q is considered, otherwise proceed.

(b) If pnew
i equals to the old pi, pi is added to Sk,

otherwise assign pi ¼ pnew
i and keep it in Q.
(2) Though a better surface coverage can be achieved by
duplicating splats in multiple groups as above, the number
of processed points and amount of overlap is also
increased. Alternatively, we can cover more object surface
by Sk by enlarging its splat radius.
The surface area covered by Sk can be calculated by

CoveredArea ¼ n � pr2 �
X
8pi2Sk

Clippedðpi; r; kÞ, (11)

where n ¼ jSkj and r the (uniform) radius of splats.
Suppose the object’s surface area is A, which can be

calculated similarly to Eq. (11) for all points in S.
Enlarging the splat radii to ~r should achieve

A � n � p~r2 �
X
8pi2Sk

Clippedðpi; ~r; kÞ. (12)

Notice that an enlarged radius ~r4r also causes increased
clipping Clippedðpi; ~r; kÞ4Clippedðpi; r; kÞ. Based on this
observation, a simple iterative solution of Eq. (13) for ~rsþ1

is applied until the difference between ~rs and ~rsþ1 is small
enough (with ~r0 ¼ r),

n � p~r2sþ1 ¼ Aþ
X
8pi2Sk

Clippedðpi; ~rs; kÞ. (13)

Note that the above calculation is quite time consuming
so that it is hard to be used for dynamic points. An
approximation for the enlarged radius can be calculated in
the following way based on the hash-based algorithm.
According to the hash table, we can get a rough estimate
about the distribution of splats in a single group. As shown
in Fig. 10, the light blue disks show the ideal distribution of
splats in group 3. Considering isosceles triangle nabc

where jabj ¼ jacj ¼
ffiffiffiffiffi
10
p
� r and jbcj ¼ 2

ffiffiffi
2
p
� r, the enlarged

splat radius should be the radius of the circumcircle of
nabc, which is

ffiffiffiffi
50
p

4
� r. In practice, we can adopt a slightly

bigger value than the ideal one to guarantee the surface
coverage.

5. Rendering algorithm

5.1. Rendering opaque point surfaces

Based on the deferred blending concept and the grouping
solution, we can now describe our basic rendering
algorithm as illustrated in Fig. 11. The 1+1-pass rendering
algorithm includes one pass over the point splat geometry
S ¼

S
k Sk defined by the grouping process, and a second

image compositing pass over the corresponding partial
depth-images Ik.
As discussed in Section 4, if we want to improve

rendering efficiency by reducing the number K of groups,
we may suffer minor artifacts caused by small overlap
between splats si and sj belonging to the same groupSk. In
fact, the rendering algorithm in Fig. 11 guarantees that
only one point splat will contribute its color and weight to
the fragment f in the overlap region between splats si and
sj. This is because the z-visibility test is activated and hence

ARTICLE IN PRESS

Fig. 10. Calculating the approximated enlarged splat radius using the

hash-table.

Fig. 11. Overview of 1þ 1-pass point rendering algorithm.

Y. Zhang, R. Pajarola / Computers & Graphics 31 (2007) 175–189182
only one fragment, the nearest with smallest depth, from
either si or sj will survive.

To avoid disturbing artifacts from extended flaps
of overlapping splats resulting from the above simple
z-visibility culling, Voronoi point rasterization can be used
[27]. In the overlap between splats si and sj, this technique
assigns the color cj and weight wjðf jÞ values of the splat sj

with wjðf jÞpwiðf iÞ to the fragment f . Thus in the overlap
region, not the fragments with larger depth but with lower
kernel weights will be culled.

However, in contrast to [27] we do not introduce an
extra rendering pass to implement Voronoi rasterization
but realize it by outputting a Voronoi enhanced depth
value in addition to the regular z-depth on line 9 of the
Geometry Pass in Fig. 11. Given the current fragment’s
depth df ¼ cdðf Þk as z-distance of f i to the eye point and
the distance di ¼ jf i � pij of the fragment-splat intersection
f i from the splat center, we define this modified z-depth
value as

z ¼ zlowres þ zvoronoi ¼ ~df þ
di

ri

� n�1, (14)

where ~df is defined in Eq. (10), ri is the splats disk radius
and n is an integer constant. The constant n is defined in
Section 4.4.1.

The first term zlow is a low-precision depth which limits
the depth values of all fragments to the range
½0; 1=n; 2=n; . . . ; 1�. It is used to distinguish and separate
fragments coming from different surface layers. The second
part zvoronoi is a fragment-point distance ratio scaled to
½0; 1=n�. Overlapping splats in the same surface layer should
have the same zlowres depth value and only distinguish in
zvoronoi. Hence, in the nearest visible surface layer,
fragments from si with the smallest zvoronoi value win the
hardware z-visibility test against any fragments from other
overlapping splats sj. On the other hand, fragments of
splats from different occluded surface layers will have a
larger zlow, with the minimum difference of 1=n being larger
than the maximum zvoronoi, and thus be culled.

In fact, the enhanced depth value of Eq. (14) is used for
hardware z-buffering while the standard depth df is
additionally stored for the fragment in the current target
buffer Ik. This df is used in the compositing step for e–z-
visibility determination and blending.

5.2. Rendering transparent point surfaces

5.2.1. Basic transparency

For efficient back-to-front ordering of the point data we
use a BSP-tree data organization and traversal [30]. Based
on this and the outlined extended grouping of splats, we
can now define the following 1þ 1-pass PBR algorithm for
transparent point objects:

Algorithm 1.
1.
 Geometry pass (Transparency-blending): Turn on z-test
and a-blending. Render all splats si of each group Sk

using modified radii ~ri into separate target images Ik.
Perform back-to-front a-blending (using the material
opacity for ai and 1� ai). Adjust the fragment depth
according to Eq. (10).

ARTICLE IN PRESS
Y. Zhang, R. Pajarola / Computers & Graphics 31 (2007) 175–189 183
2.
 Compositing pass (PBR-blending): Combine (average) all
K images Ik into final frame buffer.

Algorithm-1 implements a basic transparent point render-
ing solution. As such it suffers from the fact that each image
Ik contributes equally to the final interpolation between
point splats since no smooth interpolation blending kernels
are supported. As demonstrated by our experiments,
however, the artifacts introduced by this omission are
hardly noticeable as shown in Figs. 18(a)) or 19(a)).
5.2.2. High-quality transparency

The point interpolation artifacts of Algorithm-1 can
further be reduced by rendering the closest transparent
surface layer separately and in higher quality (see
Fig. 18(b)). This, however, will require a separate geometry
pass for this first visible layer.

Therefore, we achieve high-quality transparency by
rendering the nearest transparent layer in a separate pass
to perform smooth point interpolation, and all other layers
using the geometry pass of Algorithm-1. The two sets of
images are then combined into a high-quality blended final
result. In fact, this compositing pass performs three
blending operations simultaneously: (i) smooth PBR
interpolation of the nearest layer (including per-fragment
color normalization); (ii) simple PBR interpolation of the
other layers, and (iii) transparent a-blending of the nearest
with the other layers.

Algorithm 2.
1.
 Geometry pass for nearest layer: Use the geometry pass
of Algorithm-1 to render the point groups Sk to K

target images Ik, including the depth information of the
nearest fragments df and interpolation-kernel weight hf .
2.
 Geometry pass for other layers: Use the geometry pass of
Algorithm-1 to render the point groups Sk to K target
images Ok, but culling all fragments from the nearest
layer using the depth-mask Z from the first pass.
3.
 Compositing pass: Combine images Ik together where
fragments f k with depth df k

�minkðdf k
Þ4e are oc-

cluded and discarded. All others, bf k, are composited
together for a smoothly interpolated image CF of the
nearest visible layer with colors

P
hbf k

� cbf k

=
P

hbf k

. Then

average the images Ok into CO for the other layers.
Finally high-quality transparency is achieved given the
opacity a by I ¼ a � CF þ ð1� aÞ � CO.

Note that our transparency algorithms support varying
material opacities, possibly different for each individual
point splat, as the ai values can be specified for each splat si

and are processed on the fragment level.
5.2.3. Reflections and refractions

Besides basic transparency, refraction effects and spec-
ular reflections of the environment dramatically improve
the rendering realism. Both effects are derived from the
incident viewing vector and surface normal, and include a
reflective and refractive environment map lookup which
can all be added to the first geometry pass of Algorithm-2.
Note, however, that this way refraction and reflection

can only be incorporated for the nearest visible layer. But
visual realism can further be increased by adding multi-
layer transparency effects such as multiple ray refraction
and light absorption through semi-transparent material.
We can approximate visual multi-layer effects exploiting

the GPU feature of associating different a-blending modes
to the color and opacity (a-) channels, respectively. Setting
the mode of the a-channel for both SRC_ALPHA and
DST_ALPHA to 1.0 in the second geometry pass of
Algorithm-2 causes accumulation of opacity over all layers
atotal ¼

P
layers ai, that is in each image Ok separately for

each group Sk. Assuming a constant material opacity a we
derive the number of layers from l ¼ atotal=a.
We extend our PBR algorithm using the layer number l

to approximate the distance that light travels through semi-
transparent material. Our approximation defines the light
absorption ratio as

AbsorptionRatio ¼ ð1� aÞl . (15)

For multi-layer refraction effects, we simulate a trans-
mitted total refraction angle yT by Eq. (16) which assumes
equal refraction ratios at all layer interfaces. This is clearly
a heuristic, but it provides good multiple layer transpar-
ency cues. Given the refraction ratio Z and incidence angle
yI we get

sinyT ¼ Zl � sinyI . (16)

Although Eqs. (15) and (16) are not physically correct,
they produce appealing visual multi-layer transparency
effects (see also Section 6).
Additional lighting phenomena, also shown in Figs. 18(c)

and (d), that can be simulated based on refractive and
reflective environment mapping including Fresnel effect and
chromatic dispersion.

5.2.4. Per-fragment shading

To achieve smooth illumination and shading effects,
lighting, refraction and reflection are computed per
fragment using a deferred shading approach as outlined in
[13,16]. Deferred shading not only interpolates per-point
colors, but in fact any attributes that are needed for
shading. Thus per-point surface normal, and position if
necessary, are interpolated for each fragment and rendered
into separate attribute buffers as done for color. In the
compositing pass, each set of attribute buffers (for the K

groups) is handled the same way as color in Algorithm-2.
Then Phong lighting, environment map reflection, (multi-
layer) refraction and attenuation are calculated using
the composited per-fragment attributes. If the number
of textures exceeds the multi-texturing limit of a
graphics card, the work can be split into multiple com-
positing passes.

ARTICLE IN PRESS

Table 2

Average overlap factor for our grouping algorithms

WGC MGC Dynamic grouping

(1) (2) (3)

0.08 0.11 1.24 0.19 1.03

Y. Zhang, R. Pajarola / Computers & Graphics 31 (2007) 175–189184
While single-layer transparency effects could be achieved
without deferred shading, the multi-layer effects introduced
above depend on the number of layers l which is only
available after all geometry has been processed. Hence,
attenuation and refraction are done after geometry
processing in the compositing pass. Additionally, deferred
shading can support further effects such as bump-mapping.

6. Experimental results

We have implemented our point rendering algorithm
in DirectX on a PC with a 2.8GHz CPU and NVidia
GeForce 7800GTX GPU.

6.1. Grouping algorithm

The first experiments are with respect to the MGC
algorithm described in Section 4.1. As point-based surface
models inherently depend on a significant overlap ratio
between neighboring splats to generate a smoothly blended
surface rendering, it comes as no surprise that a basic graph
coloring solution with edges defined as in Eq. (5) may result
in a fairly high number of colors K . In Table 1 we show the
graph coloring results for different overlap relaxation
parameters c used in the proposed extension (3). With
decreasing c also the chromatic number XðGÞ drops
rapidly.

We use overlap factor OverlapðpiÞ ¼
P

kð2r� jpi �

pkjÞ=r to measure the overlap for splat si with its
overlapping neighbors sk. We show the average overlap
factor of the dragon model for the three grouping
algorithms mentioned in this paper in Table 2 where
K ¼ 8. WGC algorithm provides the best grouping results
because it exactly calculates the overlap between splats and
aims at minimizing the overall overlap. On the other hand,
it is the most time-consuming method and it takes about
4.6 s to finish the basic grouping. For the hash-based
grouping algorithm, we have three different cases: (1)
without and (2) with handling collisions in the third and
fourth column, respectively, and (3) the mixed case in the
fifth column. In practice, we prefer a fixed number of
groups defined by the user so that a fixed shader program
can be used. Both WGC and hash-based grouping can
support this feature.

In Table 3 we show the performance of hash-based
grouping algorithm in three different cases as Table 2 has.
Table 1

MGC point grouping results for different overlap relaxation parameters c

Model Points K ¼ XðGÞ/maxdegree/avgdegree

jSj c ¼ 1:0 c ¼ 0:8 c ¼ 0:6 c ¼ 0:4

Dhead 2000K 18/37/17.2 14/31/11.6 11/24/9.4 7/8/3.9

Dragon 1100K 14/34/8.8 12/29/6.3 8/15/3.0 5/7/0.8

Female 303K 19/49/18.9 15/32/13.2 10/18/6.9 8/9/2.3

Balljoint 137K 17/31/18.6 12/23/13.6 9/14/7.1 5/7/2.3
Notice that the data listed here is measured for the worst
case, which means that we performed the dynamic group-
ing for all point splats and refreshed the whole index buffer
for each rendered frame. In practice, however, regrouping
all points for every frame is not necessary if only some
parts of the deformable object are changed.
In Fig. 12, we compare the hash-based grouping

algorithm to WGC algorithm. In the first row we
show three grouping results from WGC and hash-based
grouping algorithm ðK ¼ 8Þ. It is clear that the WGC
algorithm produces the best grouping results. There is
almost no overlaps between splats. For the hash-based
algorithm, some overlap appears especially in the case of
ignoring the collisions problem. In the second row we show
the corresponding rendering results, and we can see that
the hash-based algorithm produces comparable image
quality to the WGC algorithm if collisions are handled.
Some artifacts appear in the high-curvature part if
collisions are ignored in the hash-based algorithm. Note
that the artifacts are visible only if the object is very close
to the eye point.

6.2. Rendering opaque point surfaces

In Fig. 13 we show different rendering results for
different overlap relaxation parameters c used by the
MGC algorithm. We can see that in comparison to the
standard PBR blending result, there are hardly any visible
artifacts introduced even if the parameter c is set as low as
0.4, which has shown to be an acceptable value with respect
to the group number K ¼ XðGÞ from graph coloring and
rendering image quality.
Our Voronoi rasterization implementation using the

z-visibility test defined by the modified z-depth value in
Eq. (14) is demonstrated in Fig. 14. It shows the effective
removal of flaps between overlapping splats and the
resulting faceted surface similar to [27]. This surface model
is basically the depth-map, combined from all Ik, for the
e–z-buffer visibility test in conventional PBR.
Table 3

Performance for dynamic grouping algorithm

Model Points jSj Dynamic grouping (s)

(1) (2) (3)

Dragon 1100K 0.19 0.58 0.33

Female 303K 0.06 0.19 0.12

Balljoint 137K 0.02 0.07 0.04

ARTICLE IN PRESS

Fig. 12. Comparison of dynamic grouping algorithms: (a) WGC algorithm; (b) hash-based grouping algorithm without dealing with collisions;

(c) hash-based grouping algorithm resolving collisions.

Fig. 13. Comparison of smooth point blending results for different overlap relaxation parameters c with respect to standard PBR blending.

Fig. 14. Voronoi rasterization. In (a) and (b) we show the rasterization and shading examples without Voronoi rasterization enabled, hence fragments

with smaller z-depth simply override any other. In (c) and (d), fragments with smaller Voronoi-depth as defined in Eq. (14) win the z-buffer visibility test.

Y. Zhang, R. Pajarola / Computers & Graphics 31 (2007) 175–189 185
Rendering performance is demonstrated in Table 4. We
can see that for large point models, our algorithm can
improve the rendering efficiency up to 50%, depending on
the parameter c, and hence on the achieved grouping value
K . For very small models where geometry processing is
negligible, our 1þ 1-pass algorithm may in fact be slower
than a standard 2þ 1-pass point rendering implementa-
tion. This can be expected for small enough models where
the geometry rendering pass is less costly than image
compositing. The Image Compositing Pass in Figs. 11 and 6
requires K texture lookups, and it accesses color, blending
weight and fragment depth values from two color channels
to avoid expensive pack and unpack operations. For c ¼

0:8 in Table 4, Voronoi rasterization is disabled as the

ARTICLE IN PRESS
Y. Zhang, R. Pajarola / Computers & Graphics 31 (2007) 175–189186
grouping of points is so effective that no significant point
overlap is noticeable. Voronoi rasterization is only enabled
for c ¼ 0:4 which results in low grouping numbers K . Note
also that for the models with around 1M points or less, the
point geometry data can easily be cached in GPU memory
which results in significantly better frame rates than for
larger models which are kept in CPU main memory (i.e. the
David head model).

Additional 1þ 1-pass solid point surface rendering
results are presented in Fig. 15, demonstrating smooth
images at improved frame rates for large models.

6.3. Rendering transparent point surfaces

With respect to the graph coloring algorithm, the choice
of K can make a difference. From experiments using
different values for K, we have found that it is sufficient to
set K ¼ 4 to achieve a good separation of points into
groups. Fig. 16 shows a good sampling of the surface for
K ¼ 4 compared to a larger value. Using a small K and to
achieve good surface coverage for our transparent point
rendering algorithms, it is feasible to use the group
extension (1) proposed in Section 4.4.2. At the expense of
points duplicated in multiple groups a good surface
coverage can be achieved. For the dragon model, the sum
of points in all groups increased the base data set by 45%.
While this is not a negligible ratio, the results presented
show that good display quality at good rendering
performance can be achieved.
Table 4

Frame rate performance of our novel 1þ 1-pass point rendering algorithm

compared to a standard 2þ 1-pass PBR implementation

Model Points jSj FPS

2þ 1-pass c ¼ 0:8 c ¼ 0:4

Dhead 2000K 0.96 1.2 1.4

Dragon 1100K 15.04 19.70 22.62

Female 303K 32.65 32.11 37.76

Balljoint 137K 65.68 52.96 70.37

Fig. 15. Rendering results for various point models: (a) David head model re

model displayed at 37 FPS, using c ¼ 0:4 and Voronoi rasterization.
If a larger K is required, the radius enlargement method
(2) described in Section 4.4.2 is a better choice to achieve
good surface coverage and to avoid a large point
duplication ratio. At the expense of increased texture
lookups and image compositing cost, method (2) can in
fact avoid any point duplication at all.
In Fig. 17, our transparent PBR algorithms are

compared to two depth-peeling methods, one is the
standard depth-peeling method which generates the correct
back-to-front a-blending result, and the other is the
recently proposed method in [11] whose basic idea is only
to use several front-most layers in rendering to improve the
performance of depth-peeling. In contrast to depth-peeling,
which conducts smooth point interpolation on each surface
layer by a standard opaque rendering method, our
algorithms perform the approximated point interpolation
for all layers in Algorithm-1. We can observe that any so
introduced visual artifacts are masked by the transparency
attenuation and are hardly visible using Algorithm-1, and
virtually no visual difference can be observed using
Algorithm-2.
Furthermore, an error measurement � ¼

P
ðjRði; jÞ �

Rdði; jÞj þ jGði; jÞ � Gdði; jÞj þ jBði; jÞ � Bdði; jÞjÞ=numPixel

is employed to measure the error of the transparent
rendering algorithm with respect to the standard depth-
peeling, where Rði; jÞ;Gði; jÞ;Bði; jÞ and Rdði; jÞ;Gdði; jÞ;
ndered at 1.4 FPS; (b) balljoint model rendered at 70 FPS and (c) female

Fig. 16. Grouping results: (a) Splats have smaller overlaps but less surface

coverage for K ¼ 8; (b) splats have bigger overlaps but better surface

cover for K ¼ 4.

ARTICLE IN PRESS
Y. Zhang, R. Pajarola / Computers & Graphics 31 (2007) 175–189 187
Bd ði; jÞ are color values of pixel ði; jÞ of the image generated
by a transparent rendering and the standard depth-peeling
algorithm, respectively, and numPixel is the total number
of pixels in the image. The � values of our 1þ 1-pass
Algorithm-1, 2þ 1-pass Algorithm-2 and depth-peeling
[11] method are 4.71, 3.42, 5.82, respectively.

The basic frame rate for the different transparent point
rendering algorithms are: our 1þ 1-pass transparent point
rendering Algorithm-1 achieves 9 FPS, on the other hand
our high-quality 2þ 1-pass Algorithm-2 reaches 5 FPS. This
compares very well to depth-peeling, which attains only less
than 2 FPS for an upper limit of 8 layers. And for depth-
peeling with 3 layers [11] the frame rate is about 4.5 FPS.

The above experimental data shows that our method
produces more accurate blending results than [11]. And the
performance of our methods, even with the 2þ 1-pass high
quality transparent algorithm, is also better than [11]
because even if only using three front-most layers, their
method requires to process the entire point data three
times, while our high quality transparent algorithm only
needs two passes for arbitrary number of transparent layers
at the cost of some precomputing and BSP-tree traversal to
provide back-to-front rendering order.

Several small bouncing opaque balls are added to the
scene in Figs. 18(a), (b) and 19 to demonstrate that our
algorithms generate the correct a-blending results when
combining opaque and transparent objects. We demon-
strate in Fig. 19 that our 1þ 1-pass transparent PBR
algorithm achieves high visual rendering quality for view-
ing configurations which do not exhibit extreme close-up
views.
Fig. 17. Transparent image rendering quality for: (a) depth-peeling with 8 lay

layers (� ¼ 5:82); (c) 2þ 1-pass Algorithm-2 (� ¼ 3:42); (d) 1þ 1-pass Algorith

Fig. 18. Rendering transparent point objects on the GPU. Transparent and o

Reflective and refractive environment mapping with: (c) single and (d) multi-l
Figs. 18(c), (d) and 20 show rendering results of
combining high-quality transparency and environment
mapping. Note that both the Fresnel effect and chromatic
dispersion are simulated in these images. In the close-up
views of Fig. 20 we can also see the subtle differences
between single- and multi-layer transparency effects such
as the approximated multiple refractions and increased
attenuation. All of these effects provide important visual
clues about the existence of multiple transparent surface
layers.

7. Summary

In this paper we present a new framework for GPU
accelerated PBR algorithms based on the new concept of
deferred blending. The basic idea is the division of the point
splats into non-overlapping subsets such that smooth point
interpolation can be deferred to a final image compositing
pass. This concept allows us to perform only a single
rendering pass over the point geometry data. Our new
framework provides two solutions for the rendering of
opaque and transparent point surfaces, respectively. With
respect to the rendering of opaque surfaces, we only need
one pass over the geometry data. The rendered images
show that our algorithm can provide a very good rendering
quality. The experimental data also shows that our
algorithm is more efficient than a standard 2þ 1-pass
algorithm, in particular for the larger point data sets.
With respect to transparency, we present two novel

GPU-based algorithms for high-quality rendering
of transparent point surfaces. The major challenge of
ers; (b) depth-peeling as proposed in [11], rendering only the front-most 3

m-1 (� ¼ 4:71).

paque objects with: (a) single-pass algorithm and (b) two-pass algorithm.

ayer effects.

ARTICLE IN PRESS

Fig. 20. (a) Single-layer, (b) multi-layer transparent refraction and

specular reflection environment mapping effects.

Fig. 19. Opaque and transparent objects, (a) 1þ 1-pass Algorithm-1 and

(b) 2þ 1-pass Algorithm-2.

Y. Zhang, R. Pajarola / Computers & Graphics 31 (2007) 175–189188
handling the conflicting smooth point interpolation and
transparent a-blending simultaneously is solved by separ-
ating them to different rendering passes, again exploiting
the concept of deferred blending. We not only introduce the
first GPU accelerated approaches to render multi-layer
transparent point surfaces, but in fact provide a basic
transparency a-blending of multiple transparent point
layers in a single geometry processing pass over the point
data. The more advanced 2þ 1-pass algorithm achieves
very high-quality transparency blending and incorporates
effective simulations of multi-layer refraction and reflection
effects.

With respect to the involved point grouping problem, we
have presented different practical solutions to perform the
grouping as an off-line pre-process or even dynamically on-
line. The off-line grouping methods are based on two
different graph coloring algorithms and provide excellent
results for the deferred blending rendering approach. For
dynamic points or deformable surfaces we also presented
an efficient hash-based grouping algorithm that can be
used on-line for interactive rendering results.
Acknowledgments

We would like to thank the Stanford 3D Scanning
Repository and Digital Michelangelo projects as well as
Cyberware for providing the 3D geometry test data sets.
This work was partially supported by the Swiss National
Science Foundation Grant 200021-111746/1.
References

[1] Gross MH. Are points the better graphics primitives? Computer

Graphics Forum 2001;20(3) Plenary Talk Eurographics 2001.

[2] Pfister H, Gross M. Point-based computer graphics. IEEE Computer

Graphics and Applications 2004;24(4):22–3.

[3] Sainz M, Pajarola R. Point-based rendering techniques. Computers &

Graphics 2004;28(6):869–79.

[4] Kobbelt L, Botsch M. A survey of point-based techniques in

computer graphics. Computers & Graphics 2004;28(6):801–14.

[5] Zwicker M, Pauly M, Knoll O, Gross M. Pointshop 3D: an

interactive system for point-based surface editing. In: Proceedings

ACM SIGGRAPH. ACM Press; 2002. p. 322–9.

[6] Pauly M, Keiser R, Kobbelt L, Gross M. Shape modeling with

point-sampled geometry. ACM transactions on graphics 2003;22(3):

641–50.

[7] Botsch M, Kobbelt L. Real-time shape editing using radial basis

functions. Computer graphics forum 2005;24(3):611–21 Eurographics

2005 Proceedings.

[8] Sainz M, Pajarola R, Lario R. Points reloaded: point-based rendering

revisited. In: Proceedings symposium on point-based graphics.

Eurographics Association; 2004. p. 121–8.

[9] Zhang Y, Pajarola R. Single-pass point rendering and transparent

shading. In: Proceedings symposium on point-based graphics.

Eurographics Association; 2006. p. 37–48.

[10] Zhang Y, Pajarola R. GPU-accelerated transparent point-based

rendering. In: ACM SIGGRAPH sketches & applications catalogue;

2006.

[11] Guennebaud G, Barthe L, Paulin M. A full-featured hard-

ware-oriented splatting frame-work. In: Proceedings symposium

on point-based graphics. Eurographics Association; 2006.

p. 49–56.

[12] Pfister H, Zwicker M, van Baar J, Gross M. Surfels: surface elements

as rendering primitives. In: Proceedings ACM SIGGRAPH. ACM

SIGGRAPH; 2000. p. 335–42.

[13] Zwicker M, Pfister H, vanBaar J, Gross M. Surface splatting. In:

Proceedings ACM SIGGRAPH. ACM SIGGRAPH; 2001. p. 371–8.

[14] Ren L, Pfister H, Zwicker M. Object space EWA surface splatting: a

hardware accelerated approach to high quality point rendering. In:

Proceedings EUROGRAPHICS 2002, p. 461–70, also in Computer

Graphics Forum 21(3).

[15] Zwicker M, Ranen J, Botsch M, Dachsbacher C, Pauly M.

Perspective accurate splatting. In: Proceedings of graphics interface;

2004. p. 247–54.

[16] Botsch M, Hornung A, Zwicker M, Kobbelt L. High-quality surface

splatting on today’s GPUs. In: Proceedings symposium on point-

based graphics. Eurographics Association; 2005.

[17] Kalaiah A, Varshney A. Differential point rendering. In: Proceedings

eurographics workshop on rendering techniques. Springer; 2001.

p. 139–50.

ARTICLE IN PRESS
Y. Zhang, R. Pajarola / Computers & Graphics 31 (2007) 175–189 189
[18] Botsch M, Spernat M, Kobbelt L. Phong splatting. In: Proceed-

ings symposium on point-based graphics. Eurographics; 2004.

p. 25–32.

[19] Chen B, Nguyen MX. POP: a hybrid point and polygon rendering

system for large data. In: Proceedings IEEE Visualization; 2001.

p. 45–52.

[20] Cohen JD, Aliaga DG, Zhang W. Hybrid simplification: combining

multiresolution polygon and point rendering. In: Proceedings IEEE

Visualization; 2001. p. 37–44.

[21] Coconu L, Hege H-C. Hardware-oriented point-based rendering of

complex scenes. In: Proceedings Eurographics Workshop on Render-

ing; 2002. p. 43–52.

[22] Dey TK, Hudson J. PMR: point to mesh rendering, a feature-based

approach. In: Proceedings IEEE visualization. Computer Society

Press; 2002. p. 155–62.

[23] Pajarola R, Sainz M, Guidotti P. Confetti: Object-space point

blending and splatting. IEEE Transactions on Visualization and

Computer Graphics 2004;10(5):598–608.
[24] Botsch M, Kobbelt L. High-quality point-based rendering on modern

GPUs. In: Proceedings Pacific graphics 2003. IEEE Computer

Society Press; 2003. p. 335–43.

[25] Mammen A. Transparency and antialiasing algorithms implemented

with the virtual pixel maps technique. IEEE Computer Graphics &

Applications 1989;9(4):43–55.

[26] Everitt C. Interactive order-independent transparency. Technical

Report, available at hhttp://www.nvidia.com.i; 2002.

[27] Talton JO, Carr NA, Hart JC. Voronoi rasterization of sparse point

sets. In: Proceedings symposium on point-based graphics. Euro-

graphics Association; 2005. p. 33–7.

[28] Jensen TR, Toft B. Graph coloring problems. New York: Wiley-

Interscience; 1994.

[29] Leighton FT. A graph coloring algorithm for large scheduling

problems. Journal of Research of the National Bureau of Standards

1979;84:489–506.

[30] Samet H. The design and analysis of spatial data structures. Reading,

Massachusetts: Addison Wesley; 1989.

http://www.nvidia.com.

	Deferred blending: Image composition for single-pass point rendering
	Introduction
	Related work
	Visibility splatting
	Smooth point interpolation
	Deferred blending
	Transparent points

	Grouping algorithm
	Minimal graph coloring
	Weighted graph coloring
	Dynamic grouping
	Extended grouping
	Fragment culling
	Surface coverage

	Rendering algorithm
	Rendering opaque point surfaces
	Rendering transparent point surfaces
	Basic transparency
	High-quality transparency
	Reflections and refractions
	Per-fragment shading

	Experimental results
	Grouping algorithm
	Rendering opaque point surfaces
	Rendering transparent point surfaces

	Summary
	Acknowledgments
	References

