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SUMMARY

Today, compact and reduced data representations using low rank data approximation are common to
represent high-dimensional data sets in many application areas as for example genomics, multimedia,
quantum chemistry, social networks or visualization. In order to produce such low rank data representations,
the input data is typically approximated by so-called alternating least squares (ALS) algorithms. However,
not all of these ALS algorithms are guaranteed to converge. To address this issue, we suggest a new
algorithm for the computation of a best rank one approximation of tensors, called alternating singular value
decomposition. This method is based on the computation of maximal singular values and the corresponding
singular vectors of matrices. We also introduce a modification for this method and the alternating least
squares method, which ensures that alternating iterations will always converge to a semi-maximal point.
(A critical point in several vector variables is semi-maximal if it is maximal with respect to each vector
variable, while other vector variables are kept fixed.) We present several numerical examples that illustrate
the computational performance of the new method in comparison to the alternating least square method.
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1. INTRODUCTION

In this paper we consider the best rank one approximation to real d-mode tensors T = [ti1,...,id ] ∈
Rm1×...×md , i. e., d-dimensional arrays with real entries.

As usual when studying tensors, it is necessary to introduce some notation. Setting [m] =
{1, . . . ,m} for a positive integer m, for two d-mode tensors T ,S ∈ Rm1×...×md we denote by

〈T ,S〉 :=
∑

ij∈[mj ],j∈[d]

ti1,...,idsi1,...,id
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2 FRIEDLAND ET AL.

the standard inner product of T ,S, viewed as vectors in Rm1·m2·...·md . For an integer p ≤ d, r ∈ [p]
and for xjr = [x1,jr , . . . , xmjr ,jr

]> ∈ Rmjr , we use the standard mathematical notation

⊗jr,r∈[p]xjr := xj1 ⊗ . . .⊗ xjp = [ti1,...,ip ] ∈ Rmj1
×...×mjp , ti1,...,ip = xi1,j1 . . . xip,jp .

(See for example [1, Chapter 5]. In [2] x⊗ y is denoted as x ◦ y and is called vector outer product.)
For a subset P = {j1, . . . , jp} ⊆ [d] of cardinality p = |P |, consider a p-mode ten-

sor X = [xij1 ,...,ijp ] ∈ Rmj1
×...×mjp , where j1 < . . . < jp. Then we have that T × X :=∑

ijr∈[mjr ],r∈[p]
ti1,...,idxij1 ,...,ijp is a (d− p)-mode tensor obtained by contraction on the

indices ij1 , . . . , ijp . For example, if T = [ti,j,k] ∈ Rm×n×l and x = [x1, . . . , xm]> ∈ Rm, z =
[z1, . . . , zl]

> ∈ Rl, then T × (x⊗ z) :=
∑

i∈[m],k∈[l] ti,j,kxizk, and it is viewed as a column vector
in Rn. Note that for T ,S ∈ Rm1×...×md , we have 〈T ,S〉 = T × S.

For x ∈ Rn we denote by ‖x‖ the Euclidian norm and for A ∈ Rm×n by ‖A‖ = max‖x‖=1 ‖Ax‖
the associated operator norm. Then it is well-known, see e. g. [3], that the best rank one
approximation of A is given by σ1u1v

T
1 , where σ1 = ‖A‖ is the largest singular value of A, and

u1,v1 are the associated left and right singular vectors. Since the singular vectors have Euclidian
norm 1, we have that the spectral norm of the best rank one approximation is equal to σ1 = ‖A‖.

To extend this property to tensors, let us for simplicity of exposition restrict ourselves
in this introduction to the case of 3-mode tensors T ∈ Rm×n×l. Denote by Sm−1 := {x ∈
Rm, ‖x‖ = 1} the unit sphere in Rm, by S(m,n, l) the set Sm−1 × Sn−1 × Sl−1, and introduce
for (x,y, z) ∈ S(m,n, l) the function f(x,y, z) := 〈T ,x⊗ y ⊗ z〉. Then computing the best rank
one approximation to T is equivalent to finding

max
(x,y,z)∈S(m,n,l)

f(x,y, z) = f(x?,y?, z?). (1.1)

The tensor version of the singular value relationship takes the form, see [4],

T × (y ⊗ z) = λx, T × (x⊗ z) = λy, T × (x⊗ y) = λz, (1.2)

where ‖x‖ = ‖y‖ = ‖z‖ = 1 and λ is a singular value of T .
Let us introduce for p ∈ {1, 2} the concept of a p-semi-maximum of f restricted to S(m,n, l).

For p = 1, the p-semi-maximal points x∗,y∗, z∗ of f are the global maxima for the three functions
f(x,y∗, z∗), f(x∗,y, z∗), f(x∗,y∗, z) restricted to Sm−1, Sn−1, Sl−1, respectively. For p = 2, the p-
semi maximal points are the pairs (y∗, z∗), (x∗, z∗), (x∗,y∗) that are global maxima of the functions
f(x∗,y, z), f(x,y∗, z), f(x,y, z∗) on Sn−1 × Sl−1, Sm−1 × Sl−1, Sm−1 × Sn−1, respectively. We
call (x∗,y∗, z∗) a semi-maximum if it is a p-semi-maximum for p = 1 or p = 2, and it is clear how
this concept of p-semi-maxima extends to arbitrary d-mode tensors with p = 1, 2, . . . , d− 1. In the
Appendix we discuss in detail 1-local semi-maximal points of functions.

Many approaches for finding the maximum in (1.1) have been studied in the literature, see e.
g. [2]. An important method, the standard alternating least square (ALS) method, is an iterative
procedure that starts with x0 ∈ Sm−1,y0 ∈ Sn−1, z0 ∈ Sl−1, where f(x0,y0, z0) 6= 0 and then
defines the iterates xi,yi, zi via

xi =
T × (yi−1 ⊗ zi−1)

‖T × (yi−1 ⊗ zi−1)‖
, yi =

T × (xi ⊗ zi−1)

‖T × (xi ⊗ zi−1)‖
, zi =

T × (xi ⊗ yi)

‖T × (xi ⊗ yi)‖
, (1.3)

for i = 1, 2, . . . , .
Note that for all i ∈ N we have

f(xi−1,yi−1, zi−1) ≤ f(xi,yi−1, zi−1) ≤ f(xi,yi, zi−1) ≤ f(xi,yi, zi),

i. e., f(xi,yi, zi) is monotonically increasing and thus converges to a limit, since f is bounded.
Typically, (xi,yi, zi) will converge to a semi-maximum (x,y, z) that satisfies (1.2), however this is
not clear in general [2]. To overcome this deficiency of the ALS and related methods is one of the
results of this paper.
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ON BEST RANK ONE APPROXIMATION OF TENSORS 3

We first discuss an alternative to the ALS algorithm for finding the maximum (1.1), where each
time we fix only one variable and maximize on the other two. Such a maximization is equivalent
to finding the maximal singular value and the corresponding left and right singular vectors of a
suitable matrix, which is a well-established computational procedure, [3]. We call this method the
alternating singular value decomposition (ASVD). Next we introduce modifications of both ALS
and ASVD, that are computationally more expensive, but for which it is guaranteed that they will
always converge to a semi-maximum of f .

Our numerical experimentation do not show clearly that ASVD is always better than ALS. Since
the standard algorithm for computing the maximal singular value of a matrix is a truncated SVD
algorithm [3], and not ALS, we believe that ASVD is a very valid option in finding best rank one
approximations of tensors.

The content of the paper is as follows. In section 2 we recall some basic facts about tensors and
best rank one approximations. In section 3 we recall the ALS method and introduce the ASVD
procedure. The modification of these methods to guarantee convergence to a semi-maximum is
introduced in section 4 and the performance of the new methods is illustrated in section 5. In
section 6 we state the conclusions of the paper. In an Appendix we discuss the notion of local
semi-maximality, give examples and discuss conditions for which ALS converges to a local semi-
maximal point.

2. BASIC FACTS ON BEST RANK ONE APPROXIMATIONS OF d-MODE TENSORS

In this section we present further notation and recall some known results about best rank one
approximations.

For a d-mode tensor T = [ti1,...,id ] ∈ Rm1×...×md , denote by ‖T ‖ :=
√
〈T , T 〉 the Hilbert-

Schmidt norm. Denote by S(m) the d-product of the sub-spheres Sm1−1 × . . .× Smd−1, let
(x1, . . . ,xd) ∈ S(m) and associate with (x1, . . . ,xd) the d one dimensional subspaces Ui =
span(xi), i ∈ [d]. Note that

‖ ⊗i∈[d] xi‖ =
∏
i∈[d]

‖xi‖ = 1.

The projection P⊗i∈[d]Ui
(T ) of T onto the one dimensional subspace U := ⊗i∈[d]Ui ⊂ ⊗i∈[d]Rmi ,

is given by

f(x1, . . . ,xd)⊗i∈[d] xi, f(x1, . . . ,xd) := 〈T ,⊗i∈[d]xi〉, (x1, . . . ,xd) ∈ S(m). (2.1)

Denoting by P(⊗i∈[d]Ui)⊥(T ) the orthogonal projection of T onto the orthogonal complement of
⊗i∈[d]Ui, the Pythagoras identity yields that

‖T ‖2 = ‖P⊗i∈[d]Ui
(T )‖2 + ‖P(⊗i∈[d]Ui)⊥(T )‖

2. (2.2)

With this notation, the best rank one approximation of T from S(m) is given by

min
(x1,...,xd)∈S(m)

min
a∈R
‖T − a⊗i∈[d] xi‖.

Observing that

min
a∈R
‖T − a⊗i∈[d] xi‖ = ‖T − P⊗i∈[d]Ui

(T )‖ = ‖P(⊗i∈[d]Ui)⊥(T )‖,

it follows that the best rank one approximation is obtained by the minimization of
‖P(⊗i∈[d]Ui)⊥(T )‖. In view of (2.2) we deduce that best rank one approximation is obtained by
the maximization of ‖P⊗i∈[d]Ui

(T )‖ and finally, using (2.1), it follows that the best rank one
approximation is given by

σ1(T ) := max
(x1,...,xd)∈S(m)

f(x1, . . . ,xd). (2.3)
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Following the matrix case, in [5] σ1(T ) is called the spectral norm and it is also shown that the
computation of σ1(T ) in general is NP-hard for d > 2.

We will make use of the following result of [4], where we present the proof for completeness.

Lemma 1
For T ∈ Rm1×...×md , the critical points of f |S(m), defined in (2.1), satisfy the equations

T × (⊗j∈[d]\{i}xj) = λxi for all i ∈ [d], (x1, . . . ,xd) ∈ S(m), (2.4)

for some real λ.

Proof
We need to find the critical points of 〈T ,⊗j∈[d]xj〉 where (x1, . . . ,xd) ∈ S(m). Using Lagrange
multipliers we consider the auxiliary function

g(x1, . . . ,xd) := 〈T ,⊗j∈[d]xj〉 −
∑
j∈[d]

λjx
>
j xj .

The critical points of g then satisfy

T × (⊗j∈[d]\{i}xj) = λixi, i ∈ [d],

and hence 〈T ,⊗j∈[d]xj〉 = λix
>
i xi = λi for all i ∈ [d] which implies (2.4).

Observe next that (x1, . . . ,xd) satisfies (2.4) iff the vectors (±x1, . . . ,±xd) satisfy (2.4). In
particular, we could choose the signs in (±x1, . . . ,±xd) such that each corresponding λ is
nonnegative and then these λ can be interpreted as the singular values of T . The maximal singular
value of T is denoted by σ1(T ) and is given by (2.3). Note that to each nonnegative singular value
there are at least 2d−1 singular vectors of the form (±x1, . . . ,±xd). So it is more natural to view
the singular vectors as one dimensional subspaces Ui = span(xi), i ∈ [d].

As observed in [6] for tensors, i. e., for d > 2, there is a one-to-one correspondence between the
singular vectors corresponding to positive singular values of T and the fixed points of an induced
multilinear map of degree d− 1.

Lemma 2
Let d > 2 and assume that T ∈ Rm1×...×md . Associate with T the map F from R(m) := Rm1 ×
. . .×Rmd to itself, where

F := (F1, . . . , Fd), Fi(u1, . . . ,ud) := T × (⊗j∈[d]\{i}uj), i ∈ [d].

Then there is a one-to-one correspondence between the critical points of f |S(m) corresponding to
positive singular values λ and the nonzero fixed points of

F(u) = u. (2.5)

Namely, each (x1, . . . ,xd) ∈ S(m) satisfying (2.4) with λ > 0 induces a fixed point of F of the
form

(u1, . . . ,ud) = λ
−1
d−2 (x1, . . . ,xd).

Conversely, any nonzero fixed point satisfying (2.5) induces a d-set of singular vectors
(x1, . . . ,xd) =

1
‖u1‖ (u1, . . . ,ud) ∈ S(m) corresponding to λ = ‖u1‖−(d−2). In particular, the

spectral norm σ1(T ) corresponds to a nonzero fixed point of F closest to the origin.

Proof
Assume that (2.4) holds for λ > 0. Dividing both sides of (2.4) by λ

d−1
d−2 we obtain that

(u1, . . . ,ud) = λ
−1
d−2 (x1, . . . ,xd) is a nonzero fixed point of F.

For the converse, assume that (u1, . . . ,ud) is a nonzero fixed point of F. Clearly u>i ui =
〈T ,×j∈[d]uj〉 for i ∈ [d]. Hence, ‖u1‖ = . . . = ‖ud‖ > 0 and (x1, . . . ,xd) =

1
‖u1‖ (u1, . . . ,ud) ∈

S(m) satisfies (2.4) with λ = ‖u1‖−(d−2).
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ON BEST RANK ONE APPROXIMATION OF TENSORS 5

The largest positive singular value of T corresponds to the nonzero fixed point (u1, . . . ,ud),
where

∑
i∈[d] ‖ui‖2 = d‖u1‖2 is the smallest. We also have that the trivial fixed point is

isolated.

Proposition 3
The origin 0 ∈ R(m) is an isolated simple fixed point of F.

Proof
A fixed point of F satisfies

u− F(u) = 0 (2.6)

and clearly, u = 0 satisfies this system. Observe that the Jacobian matrix D(u− F(u))(0) is the
identity matrix. Hence the implicit function theorem yields that 0 is a simple isolated solution of
(2.5).

In view of Lemma 2 and Proposition 2.6, to compute the best rank one tensor approximation, we
will introduce an iterative procedure that converges to the fixed point closest to the origin.

In [7] the following results are established. First, for a generic T ∈ Rm1×...×md the best rank
one approximation of T is unique. Second, a complex generic T ∈ Cm1×...×md has a finite number
ν(m1, . . . ,md) of singular value tuples and the corresponding “singular complex values” λ. We
now consider the “cube” case where m1 = . . . = md = m. Then ν(m, . . . ,m) is different from
the number of complex eigenvalues computed in [8]. Finally, for a generic symmetric tensor
T ∈ Rm×...×m, the best rank one approximation is unique and symmetric. (The fact that the best
rank one approximation of a symmetric tensor can be chosen symmetric is proved in [6].)

3. THE ALS AND THE ASVD METHOD

In this section we briefly recall the alternating least squares (ALS) method and suggest an analogous
alternating singular value decomposition (ASVD) method.

Consider T ∈ Rm1×...×md \ {0} and choose an initial point (x1,0, . . . ,xd,0) ∈ S(m) such
that f(x1,0, . . . ,xd,0) 6= 0. This can be done in different ways. One possibility is to choose
(x1,0, . . . ,xd,0) ∈ S(m) at random. This will ensure that with probability one we have
f(x1,0, . . . ,xd,0) 6= 0. Another, more expensive way to obtain such an initial point (x1,0, . . . ,xd,0)
is to use the higher order singular value decomposition (HOSVD) [9]. To choose xi,0 view T
as an mi × m1×...×md

mi
matrix Ai, by unfolding in direction i. Then xi is the left singular vector

corresponding to σ1(Ai) for i ∈ [d]. The use of the HOSVD is expensive, but may result in a better
choice of the initial point.

Given (x1,p, . . . ,xd,p) ∈ S(m), for an integer p ≥ 0 the points xi,p+1 ∈ Smi−1 are then computed
recursively via

xi,p+1 =
1

‖T × (⊗i−1
j=1xj,p+1 ⊗ (⊗d

j=i+1xj,p))‖
(T × ((⊗i−1

j=1xj,p+1)⊗ (⊗d
j=i+1xj,p))), (3.1)

for i ∈ [d]. Each iterate of (3.1) is the solution of an optimization problem which is obtained by
setting the gradient of a simple Lagrangian to 0. Therefore, clearly, we have the inequality

f(x1,p+1, . . . ,xi−1,p+1,xi,p, . . . ,xd,p) ≤ f(x1,p+1, . . . ,xi,p+1,xi+1,p, . . . ,xd,p),

for i ∈ [d] and p ≥ 0, and the sequence f(x1,p, . . . ,xd,p), p = 0, 1, . . . is a nondecreasing sequence
bounded by σ1(T ), and hence it converges.

Recall that a point (x1,∗, . . . ,xd,∗) ∈ S(m) is called a 1-semi maximum, if xi,∗ is a maximum
for the function f(x1,∗, . . . ,xi−1,∗,xi,xi+1,∗, . . . ,xd,∗) restricted to Smi−1 for each i ∈ [d]. Thus,
clearly any 1-semi maximal point of f is a critical point of f . In many cases the sequence
(x1,p, . . . ,xd,p), p = 0, 1, . . . does converge to a 1-semi maximal point of f , however, this is not
always guaranteed [2].
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An alternative to the ALS method is the alternating singular value decomposition (ASVD). To
introduce this method, denote for A ∈ Rm×` by u(A) ∈ Sm−1,v(A) ∈ S`−1 the left and the right
singular vectors of A corresponding to the maximal singular value σ1(A), i. e.,

u(A)>A = σ1(A)v(A)
>, Av(A) = σ1(A)u(A).

Since for d = 2 the singular value decomposition directly gives the best rank one approximation,
we only consider the case d ≥ 3. Let T = [ti1,...,id ] ∈ Rm1×...×md and X := (x1, . . . ,xd) ∈ S(m)
be such that f(x1, . . . ,xd) 6= 0. Fix an index pair (i, j) with 1 ≤ i < j ≤ d and denote by Xi,j the
d− 2 tensor ⊗k∈[d]\{i,j}xk. Then T × Xi,j is an mi ×mj matrix.

The basic step in the ASVD method is the substitution

(xi,xj) 7→ (u(T × Xi,j),v(T × Xi,j)). (3.2)

For example, if d = 3 then the ASVD method is given by repeating iteratively the substitution (3.2)
in the order

(2, 3), (1, 3), (1, 2).

For d > 3, one goes consecutively through all
(
d
2

)
pairs in an “evenly distributed way”. For example,

if d = 4 then one could choose the order

(1, 2), (3, 4), (1, 3), (2, 4), (1, 4), (2, 3).

Observe that the substitution (3.2) gives σ1(T × Xi,j). Note that the ALS method for the bilinear
form g(x,y) = x>(T × Xi,j)y could increase the value of g at most to its maximum, which is
σ1(T × Xi,j). Hence we have the following proposition.

Proposition 4
Let T ∈ Rm1×...×md \ {0} and assume that (x1, . . . ,xd) ∈ S(m). Fix 1 ≤ i < j ≤ d and consider
the following three maximization problems. First, fix all variables except the variable xp and denote
the maximum of f(x1, . . . ,xd) over xp ∈ Smp−1 by ap. Then find ai, aj . Next fix all the variables
except xi,xj and find the maximum of f(x1, . . . ,xd) over (xi,xj) ∈ Smi−1 × Smj−1, which is
denoted by bi,j . Then bi,j ≥ max(ai, aj). In particular one step in the ASVD increases the value of
f as least as much as a corresponding step of ALS.

The procedure to compute the largest singular value of a large scale matrix is based on the Lanczos
algorithm [3] implemented in the partial singular value decomposition. Despite the fact that this
procedure is very efficient, for tensors each iteration of ALS is still much cheaper to perform than
one iteration of (3.2). However, it is not really necessary to iterate the partial SVD algorithm to
full convergence of the largest singular value. Since the Lanczos algorithm converges rapidly [3], a
few steps (giving only a rough approximation) may be enough to get an improvement in the outer
iteration. In this case, the ASVD method may even be faster than the ALS method, however, a
complete analysis of such an inner-outer iteration is an open problem. As in the ALS method, it
may happen that a step of the ASVD will not decrease the value of the function f , but in many cases
the algorithm will converge to a semi-maximum of f . However, as in the case of the ALS method,
we do not have a complete understanding when this will happen. For this reason, in the next section
we suggest a modification of both ALS and ASVD method, that will guarantee convergence.

4. MODIFIED ALS AND ASVD

The aim of this section is to introduce modified ALS and ASVD methods, abbreviated here as MALS
and MASVD. These modified algorithms ensure that every accumulation point of these algorithms
is a semi-maximal point of f |S(m). For simplicity of the exposition we describe the concept for the
case d = 3, i. e., we assume that we have a tensor T ∈ Rm×n×l.

Copyright c© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2013)
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We first discuss the MALS. For given (x,y, z) ∈ S(m,n, l) with f(x,y, z) 6= 0, the procedure
requires to compute the three values

f1(x,y, z) := f

(
T × (y ⊗ z)

‖T × (y ⊗ z)‖
,y, z

)
,

f2(x,y, z) := f

(
x,
T × (x⊗ z)

‖T × (x⊗ z)‖
, z

)
,

f3(x,y, z) := f

(
x,y,

T × (x⊗ y)

‖T × (x⊗ y)‖

)
,

and to choose the maximum value. This needs 3 evaluations of f .
The modified ALS procedure then is as follows. Let (x0,y0, z0) ∈ S(m,n, l) and f(x0,y0, z0) 6=

0. Consider the maximum value of fi(x0,y0, z0) for i = 1, 2, 3. Assume for example that this value
is achieved for i = 2 and let y1 := T ×(x0⊗z0)

‖T ×(x0⊗z0)‖ . Then we replace the point (x0,y0, z0) with the new
point (x0,y1, z0) and consider the maximum value of fi(x0,y1, z0) for i = 1, 2, 3. This needs only
two f evaluations, since f2(x0,y0, z0) = f2(x0,y1, z0). Suppose that this maximum is achieved for
i = 1. We then replace the point in the triple (x0,y1, z0) with (x1,y1, z0) where x1 = T ×(y1⊗z0)

‖T ×(y1⊗z0)‖
and then as the last step we optimize the missing mode, which is in this example i = 3. In case that
the convergence criterion is not yet satisfied, we continue iteratively in the same manner. The cost
of this algorithm is about twice as much as that of ALS.

For the modified ASVD we have a similar algorithm. For (x,y, z) ∈ S(m,n, l), f(x,y, z) 6= 0,
let

g1(x,y, z) := f(x,u(T × x),v(T × x)),

g2(x,y, z) := f(u(T × y),y,v(T × y)),

g3(x,y, z) := f(u(T × z),v(T × z), z),

which requires three evaluations of f . Let (x0,y0, z0) ∈ S(m,n, l) and f(x0,y0, z0) 6= 0 and
consider the maximal value of gi(x0,y0, z0) for i = 1, 2, 3. Assume for example that this value is
achieved for i = 2. Let x1 := u(T × y0), z1 := v(T × y0). Then we replace the point (x0,y0, z0)
with the new point (x1,y0, z1) and determine the maximal value of gi(x1,y0, z1) for i = 1, 2, 3.
Suppose that this maximum is achieved for i = 1. We then replace the point in the triple (x1,y0, z1)
with (x1,y1, z2) where y1 = u(T × x1), z2 = v(T × x1) and if the convergence criterion is not
met then we continue in the same manner. This algorithm is about twice as expensive as the ASVD
method. For d = 3, we then have the following theorem.

Theorem 5
Let T ∈ Rm×n×l be a given tensor and consider the sequence

(xi,yi, zi) ∈ S(m,n, l) for i = 0, 1, . . . , (4.1)

generated either by MALS or MASVD, where f(x0,y0, z0) 6= 0. If (x∗,y∗, z∗) ∈ S(m,n, l) is an
accumulation point of this sequence, then (x∗,y∗, z∗) ∈ S(m,n, l) is a 1-semi maximum if (4.1) is
given by MALS and a 2-semi maximum if (4.1) is given by MASVD.

Proof
Let (x∗,y∗, z∗) ∈ S(m,n, l) be an accumulation point of the sequence (4.1), i.e., there exists a
subsequence 1 ≤ n1 < n2 < n3 < . . . such that
limj→∞(xnj

,ynj
, znj

) = (x∗,y∗, z∗). Since the sequence f(xi,yi, zi) is nondecreasing, we deduce
that limi→∞ f(xi,yi, zi) = f(x∗,y∗, z∗) > 0. By the definition of fi(x∗,y∗, z∗) it follows that

min{fj(x∗,y∗, z∗), j = 1, 2, 3} ≥ f(x∗,y∗, z∗). (4.2)

Assume first that the sequence (4.1) is obtained by either ALS and MALS. We will point out
exactly, where we need the assumption that (4.1) is obtained by MALS to deduce that (x∗,y∗, z∗) ∈
S(m,n, l) is a 1-semi maximum.

Copyright c© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2013)
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Consider first the ALS sequence given as in (1.3). Then

f(xi,yi−1, zi−1) = f1(xi−1,yi−1, zi−1)

≤ f(xi,yi, zi−1) = f2(xi,yi−1, zi−1)

≤ f(xi,yi, zi) = f3(xi,yi, zi−1). (4.3)

For any ε > 0, since f1(x,y, z) is a continuous function on S(m,n, l), it follows that for a
sufficiently large integer j that f1(xnj ,ynj , znj ) > f1(x∗,y∗, z∗)− ε. Hence

f(x∗,y∗, z∗) ≥ f(xnj+1,ynj+1,ynj+1) ≥ f1(xnj+1,ynj , znj ) ≥ f1(x∗,y∗, z∗)− ε. (4.4)

Since ε > 0 can be chosen arbitrarily small, we can combine inequality (4.4) with (4.2) to deduce
that f1(x∗,y∗, z∗) = f(x∗,y∗, z∗). We can also derive the equality f3(x∗,y∗, z∗) = f(x∗,y∗, z∗)
as follows. Clearly,

f(xnj
,ynj

, znj−1) ≤ f3(xnj
,ynj

, znj−1) = f(xnj
,ynj

, znj
) ≤ f(xnj+1

,ynj+1
, znj+1

)

Using the same arguments as for f1 we deduce the equality f3(x∗,y∗, z∗) = f(x∗,y∗, z∗). However,
there is no way to deduce equality in the inequality f2(x∗,y∗, z∗) ≥ f(x∗,y∗, z∗) for the ALS
method, since f2(xi,y, zi) = f(xi,ui, zi) and ui is not equal to yi or yi+1.

We now consider the case of MALS. We always have the inequalities fj(xi,yi, zi) ≤
f(xi+1,yi+1, zi+1) for each j = 1, 2, 3 and i ∈ N. Then the same arguments as before imply in
a straightforward way that we have equalities in (4.2). Hence (x∗,y∗, z∗) is a 1-semi maximum.

Similar arguments show that if the sequence (4.1) is obtained by MASVD then gk(x∗,y∗, z∗) =
f(x∗,y∗, z∗) for k ∈ [3]. Hence (x∗,y∗, z∗) is a 2-semi maximum. It
is easy to accelerate the convergence of the MALS and MASVD algorithm in the neighborhood of
a semi-maximum via Newton’s method, see e.g. [10].

Despite the fact Theorem 5 shows convergence to 1- or 2-semi-maximal points, the monotone
convergence can not be employed to show convergence to a critical point and the following
questions remain open. Suppose that the assumptions of Theorem 5 hold. Assume further, that
one accumulation point (x∗,y∗, z∗) of the sequence (4.1) is an isolated critical point of f |S(m,n,l).
Is it true that for the MALS method and a generic starting value the sequence (4.1) converges to
(x∗,y∗, z∗), where we identify −x∗,−y∗,−z∗ with x∗,y∗, z∗ respectively? Is the same claim true
for the MASVD method assuming the additional condition

σ1(T × x∗) > σ2(T × x∗), σ1(T × y∗) > σ2(T × y∗), σ1(T × z∗) > σ2(T × z∗)?

In the Appendix we show that for specific initial values convergence may not happen towards the
unique isolated critical point, but towards other semi-maximal points. Our numerical results with
random starting values however, seem to confirm the convergence to the unique critical point.

5. NUMERICAL RESULTS

We have implemented a C++ library supporting the rank one tensor decomposition using
vmmlib [11], LAPACK and BLAS in order to test the performance of the different best rank
one approximation algorithms. The performance was measured via the actual CPU-time (seconds)
needed to compute the approximate best rank one decomposition, by the number of optimization
calls needed, and whether a stationary point was found. All performance tests have been carried out
on a 2.8 GHz Quad-Core Intel Xeon Macintosh computer with 16GB RAM.

The performance results are discussed for synthetic and real data sets of third-order tensors. In
particular, we worked with three different data sets: (1) a real computer tomography (CT) data set
(the so-called MELANIX data set of OsiriX), (2) a symmetric random data set, where all indices
are symmetric, and (3) a random data set. The CT data set has a 16bit, the random data set an 8bit
value range. All our third-order tensor data sets are initially of size 512× 512× 512, which we
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gradually reduced by a factor of 2, with the smallest data sets being of size 4× 4× 4. The synthetic
random data sets were generated for every resolution and in every run; the real data set was averaged
(subsampled) for every coarser resolution.

Our simulation results are averaged over different decomposition runs of the various algorithms.
In each decomposition run, we changed the initial guess, i.e., we generated new random start
vectors. We always initialized the algorithms by random start vectors, since this is cheaper than
the initialization via HOSVD. Additionally, we generated for each decomposition run new random
data sets. The presented timings are averages over 10 different runs of the algorithms.

All the best rank one approximation algorithms are alternating algorithms, and based on the
same convergence criterion, where convergence is achieved if one of the two following conditions:
iterations > 10; fitchange < 0.0001 is met. The number of optimization calls within one iteration
is fixed for the ALS and ASVD method. During one iteration, the ALS optimizes every mode
once, while the ASVD optimizes every mode twice. The number of optimization calls can vary
widely during each iteration of the modified algorithms. This results from the fact that multiple
optimizations are performed in parallel, while only the best one is kept and the others are rejected.
The partial SVD is implemented by applying a symmetric eigenvalue decomposition (LAPACK
DSYEVX) to the product AAT (BLAS DGEMM) as suggested by the ARPACK package.

With respect to the total decomposition times for different sized third-order tensors (tensor3s),
we observed that for tensor3s smaller than 643, the total decomposition time was below one second.
That represents a time range, where we do not need to optimize further. On the contrary, the larger
the tensor3s gets, the more critical the differences in the decomposition times are. As shown in
Figure 1, the modified versions of the algorithms took about twice as much CPU-time as the standard
versions. For the large data sets, the ALS and ASVD take generally less time than the MALS and
MASVD. The ASVD was fastest for large data sets, but compared to (M)ALS slow for small data
sets. For larger data sets, the timings of the basic and modified algorithm versions came closer to
each other.

Furthermore, we compared the number of optimization calls needed for the algorithms of ALS,
ASVD, MALS, and MASVD, recalling that for the ALS and the MALS, one mode is optimized per
optimization call, while for ASVD and MASVD, two modes are optimized per optimization call.
Figure 2 demonstrates the relationships of the four algorithms (color encoded) on three different data
sets (marker encoded) and the different data set sizes (hue encoded). As can be seen, the ASVD has
the smallest number of optimization calls followed by the ALS, the MASVD and the MALS. One
notices as well that the number of optimization calls for the two random data sets are close to each
other for the respective algorithms. The real data set takes most optimization calls, even though
it probably profits from more potential correlations. However, the larger number of optimization
calls may also result from the different precision of one element of the third-order tensor (16bit
vs. 8bit values). Another explanation might be that it was difficult to find good rank one bases
for a real data set (the error is approx. 70% for the 5123 tensor). For random data, the error stays
around 63%, probably due to a good distribution of the random values. Otherwise, the number of
optimization calls followed the same relationships as already seen in the timings measured for the
rank one approximation algorithm. For data sets larger than 1283, the time per optimization call
stays roughly the same for any of the decomposition algorithms. However, the number of needed
optimization calls is largest for the MALS and lowest for the ASVD.

It is not only important to check how fast the different algorithms perform, but also what quality
they achieve. This was measured by checking the Frobenius norm of the resulting decompositions,
which serves as a measure for the quality of the approximation. In general, we can say that the
higher the Frobenius norm, the more likely it is that we find a global maximum. Accordingly, we
compared the Frobenius norms in order to say whether the different algorithms converged to the
same stationary point. In Figure 3, we show the absolute differences of the average Frobenius norms
achieved by the ALS, ASVD, MALS and MASVD. The differences are taken with respect to the
ALS. As previously seen, the results for the real CT data set and the two random dataset differ.
For the real data set, the differences for the achieved qualities are much smaller. Moreover, we see
that the achieved quality for the ALS and the MALS are almost the same. A similar observation
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Figure 1. Average CPU times for best rank one approximations per algorithm and per data set taken over 10
different initial random guesses.

applies to the ASVD and the MASVD, which achieve almost the same quality. We observed that
all the algorithms reach the same stationary point for the smaller and medium data sets. However,
for the larger data sets (≥ 1283) the stationary points differ slightly. We suspect that either the same
stationary point was not achieved, or the precision requirement of the convergence criterion was too
high. That means that the algorithms stopped earlier, since the results are not changing that much
anymore in the case that the precision tolerance for convergence is 0.0001.

Finally, the results of best rank one approximation for symmetric tensors using ALS, MALS,
ASVD and MASVD show that the best rank one approximation is also symmetric, i.e., is of the
form au⊗ v ⊗w, where u ≈ v ≈ w ∈ Sm−1. This confirms an observation made by Paul Van
Dooren, (private communication), and the main result in [6], which claims that the best rank one
approximation of a symmetric tensor can be always chosen symmetric. The results of ASVD and
MASVD give a better symmetric rank one approximation, i.e., u− v,u−w in ASVD and MASVD
are smaller than in ALS and MALS.
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Figure 3. Differences of the achieved Frobenius norms by ALS, ASVD, MALS, and MASVD. The
Frobenius norm of the approximations per algorithm and per data set are averages taken over 10 different

initial random guesses.

6. CONCLUSIONS

We have presented a new alternating algorithm for the computation of the best rank one
approximation to a d-mode tensor. In contrast to the alternating least squares method, this method
uses a singular value decomposition in each step. In order to achieve guaranteed convergence to a
semi-maximal point, we have modified both algorithms. We have run extensive numerical tests to
show the performance and convergence behavior of the new methods.
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APPENDIX: REMARKS ON LOCAL SEMI-MAXIMALITY

In this appendix we discuss the notion of an isolated critical point of a function f which is semi-
maximal but not maximal. The main emphasize is to characterize semi-maximal points for which
the alternating maximization iteration, abbreviated as AMI, converges to the critical point at least
for some nontrivial choices of the starting points. We explain the convergence issues for ALS on
local semi-maximality by the help of the AMI.

Consider a polynomial function p(t), t ∈ RN and let M ⊂ RN be a smooth compact manifold
of dimension L. Denote by g the restriction of p to M . For example, in the three mode case we
let N = m+ n+ l, t = (x,y, z), p(t) = T × (x⊗ y ⊗ z) and M = Sm−1 × Sn−1 × Sl−1, L =
N − 3. Assume that a point t? ∈M is a non-degenerate critical point of g on M . We take
local coordinates around t?, so that in these local coordinates t? corresponds to the zero vector
of dimension L, denoted as 0L. So the open connected neighborhood of t? is identified with
an open connected neighborhood 0L ∈ RL. Assume that the local coordinates around 0L are
x> = [x>1 , . . . ,x

>
d ]
>,xj ∈ Rmj , j ∈ [d].

The AMI method consists of maximizing g (or f ) on xj for j = 1, . . . , d, and then repeating the
process. Let us discuss the details of the AMI for a function f given by a quadratic form in the block
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vector x> = [x>1 , . . . ,x
>
d ] ∈ RL, given by

f = −x>Hx, H =


H1,1 H1,2 · · · H1,d

H2,1 H2,2
. . . H2,d

...
. . . . . .

...
Hd,1 · · · Hd,d−1 Hd,d

 , (6.1)

H>p,q = Hq,p, p, q ∈ [d].

Note that locally we obtain this form for general f via Taylor expansion and leaving off terms of
order higher than two.

Consider the AMI iteration ξk−1 := [ξ>1,k−1, . . . , ξ
>
d,k−1]

> → ξk = [ξ>1,k, . . . , ξ
>
d,k]
> ∈ RL for a

function f of the form (6.1) starting from a point ξ0. Then this iteration is the block Gauß-Seidel
iteration, see e.g. [12], applied to the linear system −Hξ = ξ0 with the block symmetric matrix H ,
i.e.,

−
j∑

`=1

Hj,`ξ`,k =

d∑
`=j+1

Hj,`ξ`,k−1, j = 1, . . . , d, k ∈ N. (6.2)

This iterative method can be expressed as −LHξk = UHξk−1, where H = LH + UH is the
decomposition ofH into the block lower triangular part LH and the strict block upper triangular part
UH . Assume that LH is invertible, which is equivalent to the requirement that all diagonal blocks
Hj,j are invertible. Then (6.2) is of the form ξk = Kξk−1, where

K := −L−1H UH . (6.3)

It is well known that an iteration ξk = Kξk−1 will converge to 0L for all starting vectors ξ0 if and
only if the spectral radius of K, denoted as ρ(K), is less than 1. If ρ(K) ≥ 1 then the iteration will
converge to 0L if and only if ξ0 lies in the invariant subspace of K associated with the eigenvalues
of modulus less than 1.

Assume in the following that 0L := [0>m1
, . . . ,0md

]> is a semi-maximal point, i.e., that all
diagonal blocks Hj,j , j ∈ [d] of H are positive definite. Then it follows from a classical result
of Ostrowski, see e.g. [12, Thm 3.12], that the iteration (6.2) converges to 0L if and only if H is
positive definite, which is equivalent to ρ(K) < 1. Clearly, in this case 0L is non-maximal for f(ξ)
if and only if H is indefinite.

We summarize these observations to give a precise condition on ξ0 so that the iteration (6.2)
converges to zero, which in the particular case discussed here can be proved easily. We give a proof
for completeness.

Theorem 6
Let 0L := [0>m1

, . . . ,0md
]> be a semi-maximal point of f(ξ) = −ξTHξ, i.e., each Hi,i is positive

definite and let K be given by (6.3). Denote by α, β, γ the number of eigenvalues λ of K,
counting with multiplicities, satisfying |λ| < 1, |λ| > 1, |λ| = 1, respectively. Assume that H has
π, ν, ζ positive, negative and zero eigenvalues, respectively. Then

π ≥ max{mj , j ∈ [d]}, (6.4)
α = π, β = ν, γ = ζ. (6.5)

Furthermore, all γ eigenvalues of K on the unit circle correspond to a unique eigenvalue 1
of geometric multiplicity γ. The corresponding eigenvectors of K are the eigenvectors of H
corresponding to the zero eigenvalue.

Proof
We first prove (6.4). Let Hi,i be the diagonal block of maximal size mi. Let H̃ be a principal
submatrix of H of order mi + 1 which has Hi,i as its submatrix. The Cauchy interlacing theorem
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[13] implies that the eigenvalues of H̃ interlace with the eigenvalues of Hi,i. Since all eigenvalues
of Hi,i are positive it follows that H̃ has at least mi positive eigenvalues and hence, (6.4) holds.

To prove (6.5), assume first that ζ ≥ 1. But if x is an eigenvector of H corresponding to the
eigenvalue 0 then Kx = x. Hence γ ≥ ζ, and 1 is an eigenvalue of K of geometric multiplicity at
least ζ.

Let V0 be the null space of H . Then K restricted to V0 is the identity operator. Consider the
quotient space Q := RL/V0. Clearly, K and H induce linear operators K1, H1 : Q→ Q, where
H1 is nonsingular with π positive eigenvalues and ν negative eigenvalues. Observe also that if
y, z ∈ RL and y − z ∈ V0 then y>Hy = z>Hz. Thus, it is enough to study the eigenvalues of K1,
which corresponds to the case where H is nonsingular, which we assume from now on.

Observe that the AMI does not decrease the value of f(ξ). Moreover, f(ξk) = f(ξk−1) if and only
if ξk−1 = 0L. Let us, for simplicity of notation, consider the iteration ξk = Kξk−1 in the complex
setting, i.e., we consider F (ξ) = −ξ∗Hξ ,where ξ ∈ CL. All the arguments can also be carried out
in the real setting, by considering pairs of complex conjugate eigenvalues and the corresponding
real invariant subspace associated with the real and imaginary part of an eigenvector.

Let λ be an eigenvalue of K and let ξ0 be the eigenvector to λ. Then F (ξ1) = |λ|2F (ξ0) > F (ξ0)
which implies that |λ| 6= 1. (This implies that the only eigenvalue of K of modulus 1 can be the
eigenvalue 1, which corresponds to the eigenvalue 0 of H .)

Observe next, that if H is positive definite, then F (ξ0) < 0 and the inequality F (ξ1) > F (ξ0)
yields that |λ|2 < 1, i.e., ρ(K) < 1, which is Ostrowski’s theorem.

¿From now on we therefore assume that H is indefinite and nonsingular. Assume that F (ξ0) ≥ 0
and ξ0 6= 0L. Then F (ξk) is an increasing sequence which either diverges to +∞ or converges
to a positive number. Hence we cannot have convergence ξk → 0L. More precisely, we have
convergence ξk → 0L if and only if F (ξk) ≤ 0 for all k ≥ 0.

Let U0 ⊆ U1 ⊂ CL be the invariant subspaces of K corresponding to the eigenvalues 0 and the
eigenvalues λ of modulus less than 1 of K, respectively. So KU0 ⊂ U0 and K|U0 is nilpotent.
Let l0 = dimU0. We have that F (ξ) ≤ 0 for all ξ ∈ U. Let V−,V+ ⊂ CL be the eigen-subspaces
corresponding to negative and positive eigenvalues of H , respectively. So π = dimV+, ν :=
dimV− and π + ν = L. Consider W = Range (KL). Then

U0 ∩W = {0L}, dimW = L− l0, KW = W, W +U0 = CL.

With W+ := W ∩V+, then we have that dimW+ ≥ π − l0 and K1 := K|W is invertible. Setting
Wj = K−j1 W+, we have that ξj ∈Wj , and F (Kkξj) ≤ 0 for k = 0, . . . , j, and clearly, dimWj =
dimW+. Since the space of dimW+ subspaces in CL is compact, there exists a subsequence
of Wjk , k ∈ N which converges to a dimW+ dimensional subspace X ⊂ CL. This subspace
corresponds to the invariant subspace of K associated with eigenvalues satisfying 0 < |λ| < 1,
since F (Kkξ) ≤ 0 for all k ≥ 0 and ξ ∈ X. Thus, X ∩U0 = {0L} and U1 = X+U0. Note that
dimU1 = dimX+ dimU0 ≥ π. Since F (ξ) ≤ 0 for each ξ ∈ U1 ,it follows that dimU1 = π, i.e.,
α = π.

As α+ β = L, it then follows that β = L− α = L− π = ν.
As an example, if we apply the ALS method for finding the maximum of the trilinear form

T × (x⊗ y ⊗ z) restricted to (x,y, z) ∈M = Sm−1 × Sn−1 × Sl−1, then this is just the AMI for
the local quadratic form g. It is well known that g may have several critical points, some of whom
are strict local maxima and local semi-maxima see [14, Example 2, p. 1331]. The above analysis
shows that the ALS may converge to each of these points for certain appropriate starting points.
For a specific T ∈ Rm×n×l one can expect that the ALS iteration exhibits a complicated dynamics.
Hence, it is quite possible that in some cases the ALS method will not converge to a unique critical
point, see also [14, 2, 15].
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