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Abstract

The MapReduce-algorithm is a model that operates on distributed, parallel systems. Hadoop
is an implementation of this MapReduce-algorithm. Some applications may produce an im-
balance of work on the cluster during the execution. The goal of this thesis is to implement an
load-balancing algorithm in the Hadoop framework to sort a list of timestamps. Implemented
was an algorithm called TopCluster, which was developed at the universities of Munich and
Bozen-Bolzano.

This algorithm gathers locally the necessary information, combines them and produces a
distribution of the data in order to avoid skew. In this thesis the TopCluster-algorithm is
implemented, modified to meet the necessary requirements and eventually tested with different
randomly distributed data.



Zusammenfassung

Der MapReduce-Algorithmus ist eine Modell, um auf verteilten, parallelen System grosse
Datenmengen zu verarbeiten. Hadoop ist eine Implementierung dieses MapReduce-
Algorithmus. Manche Anwendungen können eine ungleiche Arbeitsverteilung bei der Aus-
führung hervorrufen. Das Ziel dieser Arbeit ist es, einen Load-Balancing-Algorithmus in das
Framework Hadoop zu implementieren, um Zeitstempel zu sortieren. Es wurde ein Algorith-
mus namens TopCluster implementiert, der an den Universitäten München und Bozen Bolzano
entwickelt wurde.

Dieser Algorithmus sammelt die notwendigen Informationen lokal, kombiniert diese und
produziert eine Verteilung der Daten um eine ungleiche Arbeitslast auf den einzelnen In-
stanzen des Systems zu verhindern. In dieser Arbeit wurde der TopCluster-Algorithmus imple-
mentiert, modifiziert, um den spezfiischen Anforderungen gerecht zu werden, und mit zufällig
verteilten Datensätzen getestet.
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1 Introduction
The MapReduce-algorithm and especially Apache Hadoop [4] are powerful and cost-effective
approaches to process large amounts of data in a distributed way. Hadoop offers the user
many new advantages like the possibility to handle unstructured data and the possibility to
provide stability throughout different platforms and different instances. In Hadoop the load of
work is distributed throughout a cluster of instances. Although Hadoop is very powerful, the
efficiency stands and falls with the fact, that the load of work is distributed equally in order to
provide the best throughput.

Modern MapReduce implementations like Hadoop offer the user a large variety of possibil-
ities to implement user-defined functions. Because of the many possibilities, many situations
may occur where the uneven distribution of the data may lead to a longer execution time [8].
One challenge is to evenly distribute the workload among the clusters. There are many ex-
amples of scientific data, that is skewed [6] and balancing the load may become necessary. A
popular example of skewed data could be the height of patients in medical studies. Another
example is the distribution of mountains over the planet. Due to tectonic plate movement
mountains are concentrated on several regions whereas other regions are plainer. For some
application, these unequal compositions of data may lead to longer execution times. Uneven
distribution due to the input data can be detected and prevented. A strategy to balance the load
of work can be crucial.

This thesis is about developing and describing an approach to sort a list of timestamps in
ascending order [5]. Because timestamps can be distributed unevenly, load-balancing can be
useful. The process is shown in figure 1.1.

Figure 1.1: Diagram of the Input and Output

The input data consists of an unsorted list of timestamps of the form yyyy-mm-dd. The
same timestamp can occur multiple times. Also several lists can serve as input, where the
different lists are handled as one unsorted list of timestamps.
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The output of the system is a sorted list of timestamps. This list is separated into different
ordered files, which is a restriction of the system that is used to process this data. The files are
ordered in ascending order as is the output data therein. Duplicate timestamps are not required
and should be eliminated by the system.

The goal of this paper is an implementation in Hadoop, which is able to analyze the input
data and in case of an uneven distribution, react to avoid skew and distribute the load of work
evenly over the reducers. The implementation should deal with different distributions of data.
A subgoal is to keep the overhead of this skew-avoiding system as small as possible.

The scope of this implementation covers the task to sort a list of individual timestamps in
ascending order. This task has to be achieved by implementing the load-balancing algorithm
TopCluster [7] in Hadoop [4]. It is assumed, that the processing time for each object is the
same and the source of skew is only owed by the uneven distribution of the data. Even if it
could be the goal of future projects to implement load-balancing for more general problems,
this paper focuses on timestamp processing.
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2 Related Work

In this section alternative approaches to the implementation of a load-balancing algorithm in
Hadoop are discussed. The first paper in section 2.1 deals with the question, which types of
skew can occur and why they occur. The second paper in section 2.2 discusses how the work
is distributed evenly among the different instances. The last paper in section 2.3 deals with an
approach, which handles skew by evaluating tasks during the execution and redistribute the
tasks, which take more time.

2.1 Manifestations of Skew in MapReduce-Algorithms
Kwon, Balazinska and Howe [8] describe various causes and manifestations of skew. It is
differentiated between skew that occurs during the map-phase and skew that occurs during the
reduce-phase of a MapReduce-algorithm.

2.1.1 Skew during the Map-Phase
The paper identifies three different reasons, why skew occurs during the map-phase. It is as-
sumed that all the mappers process approximately the same number of input values. Therefore
skew cannot occur as a result of an uneven distribution of input values.

The first sort of skew is called Expensive Record. This sort of skew occurs, if the procession
costs of individual input values, depending on the specific map-function, are significantly
larger than others.

The second reason is very similar to the first reason. Since in some cases, the same appli-
cation can be used to process different kinds of input data, skew can occur, because different
data takes an unequal amount of time. This sort of skew is called Heterogeneous Maps.

The third sort of skew is called Non-Homomorphic Maps. Jobs in Hadoop can be executed
consecutively. In some cases the data is therefore already mapped by the prior job and the
map-phase of the later job is modified to execute a reduce-side task. In cases, where the map-
phase executes a job, which is normally executed by the reduce-phase, the same skews as in
the reduce-phase can occur. The possible skews in the reduce-phase are discussed in section
2.1.2.

2.1.2 Skew during the Reduce-Phase
During the reduce-phase two types of skew can occur. The first is analogous to the Expensive
Record in section 2.1.1. This means, the evaluation of the reduce-function for different values
is more expensive for one value than it is for another. This problem is even more pronounced
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during the reduce-phase, because for a single key, a list of values has to be evaluated. This
sort of skew is called Expensive Input.

Another sort of skew during the reduce-phase is Partitioning Skew. In MapReduce-
algorithms the outputs of the map-phase are distributed among reduce tasks via a partition-
ing logic. This partitioning logic can be implemented either user-defined or using a default
hash-partitioning. Whereas the default hash-partitioning in most cases distributes the load of
work adequate, user-defined logic can fail to achieve this goal. In both cases skew during the
reduce-phase can arise in practice and can lengthen the task execution.

2.1.3 Impact on the Thesis
For the problem of sorting timestamps in order, the three discussed sorts of skew during the
map-phase are not relevant. The interesting reason for skew is the Partitioning Skew. During
this thesis these manifestations can occur and measures are developed to detect and avoid it.

2.2 Efficient Distribution of Data to the Reducers
The task of balancing load with TopCluster [7] is split in two parts. The first task is two
acquire the distribution of the data, called the cost model, and the second task is to distribute
the data according to the previous acquired cost model. Gufler, Augsten, Reiser and Kemper
describe in their paper [6] two strategies how this second task can be executed. This paper is
to some extent the sequel to the paper [7] discussed in this thesis.

2.2.1 Fine Partitioning
The first strategy is based on the fact that more partitions than reducers have been created.
This allows the system a degree of freedom to distribute them. To distribute the partitions
to the reducers, the algorithms takes the biggest partition not yet assigned to a reducer and
distributes this partition to the reducer with the smallest load. This step is repeated until all
partitions have been assigned to a reducer. This is a relatively simple algorithm to distribute
the partitions to the reducers.

2.2.2 Dynamic Fragmentation
Because the fine partitioning strategy discussed in section 2.2.1 may be ineffective in some
cases, a second strategy is presented. This strategy takes partitions, which exceed the average
partition size by a predefined factor, and splits them into smaller fragments. Because this
fragmentation is carried out locally for each mapper, the information is transferred to a central
unit. The central unit decides to fragment the partition over the whole system or ignore the
fragmentation. If the central unit decides to split the partition up and reduce it by two different
reducers the algorithm ensures that the necessary data and information are forwarded to the
affected reducers.
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Figure 2.1: Conceptual skew mitigation in SkewTune [9]

2.2.3 Impact on the Thesis
For the specific problem of sorting timestamps both approaches do not offer an adequate so-
lution, because these algorithm cannot ensure that the partitions remain in a sorted order. For
the implementation in this paper a different algorithm to distribute the workload was cho-
sen. For many other problems these two approaches provide valuable solutions, which can be
implemented relatively simple.

2.3 A Different Approach to handle Skew

2.3.1 Explanation of the Algorithm
Acquiring information about the data distribution and adjust the work according to this infor-
mation is only one way to deal with skew. Kwon, Balazinska, Howe and Rolia [9] present a
completely different way with an implementation of an algorithm in Hadoop, which offers a
strategy to balance the load. This implementation is called SkewTune.

A great advantage of SkewTune is, that it is applicable both during the map-phase and
during the reduce-phase of the MapReduce-job. The algorithm detects, which tasks take longer
than others. If a slot to becomes available the remaining values of the longer tasks are split
into sub-tasks and executed by the free slots. Figure 2.1 shows a conceptual load-balancing of
the SkewTune-implementation.
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2.3.2 Impact on the Thesis
SkewTune represents an alternative to the implementation discussed in this thesis. SkewTune
does not differentiate between map- or reduce-tasks. This implementation is again not applica-
ble to the problem of sorting timestamps, because of the same reasons dynamic fragmentation
in section 2.2.2 is not. The order of the partitions could not be guaranteed. But for the most
cases, SkewTune can be a very useful alternative.
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3 Foundation

3.1 MapReduce and Hadoop
To process large data sets with a parallel and distributed algorithm on a cluster the program-
ming model MapReduce can be used. MapReduce allows a big variety of tasks, which can be
performed in a relatively simple manner. The model consists of two parts. The first part is a
map-function, which filters and sorts the input. The second part, the reduce-function, calcu-
lates and summarizes the results in a defined way. Multiple map- and the reduce-functions are
independently carried out with small partitions of the data. This procedure allows MapReduce
to work in a distributed fashion and therefore to exploit the advantages of parallelism.

Apache Hadoop is an open source implementation of the MapReduce-algorithm. It is a
framework that allows the distributed processing of large data sets across clusters of computers
[4]. Apache Hadoop is already frequently used by big companies like Yahoo, Facebook or
eBay to process large amounts of data they are dealing with. Hadoop supports distributed
applications on commodity hardware and doesn’t have to use large-capacity computers. The
architecture of Hadoop makes the system extremely tolerant towards breakdowns of single
nodes in the cluster. Hadoop is relatively simple to use and gives the user a variety of different
possibilities to process data in a user-defined manner combined with a very efficient system.

3.2 TopCluster
TopCluster [7] is an algorithm, which collects information about the global distribution of the
input data throughout the execution of a MapReduce-algorithm. It offers a strategy to reduce
communication and calculation time for the goal to calculate the global distribution of the
data. With TopCluster skew can be detected and through the accurate use of this information
the skew can be avoided.

3.3 Use Case
To illustrate the possibilities, the strengths and weaknesses of Hadoop and the TopCluster-
algorithm, a specific use case consisting of a characteristic dataset and processing task is used.
All the examples in the paper will be exercised with the help of this dataset to guarantee
consistency.
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3.3.1 Dataset
The dataset consists of fifteen timestamps. The timestamps are chosen randomly and lie within
the range of 1992-01-01 and 1998-31-12. The associated partitioning function relies on the
fact that all the dates are between 1992-01-01 and 1998-31-12. The problems concerning this
limitation will be discussed in section 5.4. In table 3.1 the used timestamps are given.

Number Timestamp
1 1993-04-10
2 1994-02-04
3 1996-01-30
4 1996-09-12
5 1992-01-01
6 1997-03-02
7 1994-11-24
8 1993-07-13
9 1995-10-26
10 1995-04-19
11 1998-12-29
12 1992-03-29
13 1997-12-04
14 1998-05-21
15 1994-08-13

Table 3.1: Unsorted List of Timestamps

3.3.2 Processing Task
To sort timestamps in ascending order Hadoop doesn’t need special map- or reduce-functions.
In order to explain the functionality of Hadoop it is necessary to have an example, where the
map- and reduce-functions effectively operate. As an example for this case, the number of
timestamps for each year will be counted. The same set of timestamps as in the previous
section 3.3.1 will be used for illustration purposes.
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4 The Hadoop Architecture

In this section the default Hadoop implementation and its operating mode will be explained.
Throughout this thesis, it has to be clearly differentiated between the Hadoop Source Code

and the Hadoop Program. The Hadoop Source Code is the part of Hadoop, which is usually
not seen by the end-user. In the Hadoop Source Code the exact process of how the different
instances and nodes interact with each other is defined.

The Hadoop Program is the code, which consists of the specific map and reduce function
and the request to start the Hadoop-Job. The Hadoop Program is sufficient to provide a great
variety of powerful algorithms with the definition of the map- and reduce-function. For a
regular user usually this variety of options is enough. Through giving the user such a simple
way to perform MapReduce-algorithms, without giving him to much possibilities to change
the process, Hadoop ensures security of a stable process during the execution and optimal
performance.

Necessary information about the structure and the individual classes of Hadoop can be
found in the API of Hadoop [2].

In section 4.2 the structure of the Hadoop Program is explained. Section 4.3 gives an
overview of the Hadoop Source Code and explains some of the core-mechanisms of Hadoop.

4.1 Conventions
It has to be clearly differentiated between the non-modified, default version, henceforth
called default Hadoop implementation and the modified version, henceforth called mod-
ified Hadoop implementation. To implement the TopCluster-algorithm some changes are
necessary. In this context implementation means an alteration in the Hadoop Source Code. In
this section, the architecture of Hadoop without any alteration is explained. In chapter 5, the
modification to the default Hadoop distribution is being illustrated.

4.2 Hadoop Program
The Hadoop Program is divided into two sections. The first section is the definition of the es-
sential functions for MapReduce. Besides the map and reduce functions, there are the optional
partitioner and combiner functions, which can be defined by the user. These four functions are
the basic modules of the Hadoop-Job. In table 4.1, the four functions are explained.
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Module Functionality Input Output
Mapper The mapper converts a piece of data

into a key-value pair.
input object <key, value>

Reducer The reducers converts a key and a
list of values into the final output of
the job.

<key, list of val-
ues>

output object

Partitioner
(optional to
implement)

The partitioner distributes the key-
value pairs to different partitions.
By default, every partition is re-
duced by one reducer.

<key, value> the partition num-
ber of the key-
value pair

Combiner (op-
tional to im-
plement)

The combiner can optionally com-
bine large lists of values to smaller,
for example if only the maximum
of a list has to be used for reduc-
ing. The combiner is like a small
reducer to improve the throughput

<key, list of val-
ues>

<key, smaller list
of values>

Table 4.1: Four Functions of Hadoop

The second section of the Hadoop Program is the initialization of the Hadoop-Job. This
means, store the necessary functions in the JobConfiguration, like the mapper-, reducer- and
sometimes a partitioner-class, and afterward start the execution.

To process the use case introduced in section 3.3, a number of mappers and reducers had
to be chosen. The fifteen timestamps will be processed by two mappers and three reducers.
These specifications are summarized in table 4.2.

Specification Usage Value
Number of Mappers The number of map-tasks that

Hadoop performs.
2

Number of Reducers The number of reduce-tasks that
Hadoop performs.

3

Table 4.2: Specification

4.3 Hadoop Source Code

4.3.1 Important Classes of Hadoop
In this section the important classes of Hadoop are explained. With respect to the implementa-
tion of TopCluster the JobClient, the JobConfiguration, the JobTracker and for every instance
of the system the TaskTracker are important. An overview of the interaction between these
classes can be found in section 4.3.2.
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4.3.1.1 JobConfiguration

The JobConfiguration is the central class were the settings and information are stored. The
object JobConfiguration is given to many classes, in order to assure, that the whole system
has access to its information. There are several ways to save the desired parameters in the
configuration. Hadoop gives the user the opportunity to save the settings in a XML-file, which
can be accessed by Hadoop. Another possibility is to save the settings in the Hadoop Program,
for example the map and the reduce function are stored in the JobConfiguration in this way.

4.3.1.2 JobClient

The JobClient is the starting point of every Hadoop-Job. The JobClient tells the JobTracker to
start a Hadoop Job.

4.3.1.3 JobTracker

The JobTracker can accept a Hadoop Job and distribute the tasks to the different nodes in the
system. The JobTracker is started independently to the Hadoop Job and waits for a Hadoop
Job. The JobTracker tells the nodes, which tasks they should execute and receives the state-
ment, that the task has ended.

4.3.1.4 TaskTracker

The TaskTracker runs on every node. A TaskTracker receives the tasks (either a map or a
reduce task) from the JobTracker and executes them. The tasks are being executed by a vir-
tual Java machine (JVM). This is to make sure that bugs in the user-defined map and reduce
functions don’t affect the TaskTracker (by causing it to crash or hang, for example) [11]. The
TaskTracker informs the JobTracker occasionally that he is still alive and is ready to execute
more tasks.

4.3.2 Overview of the Execution
Figure 4.1 gives an overview of how a Hadoop Job is being executed. The shared FileSystem
stands representative for the different possibilities to store the necessary data and settings in
Hadoop. These can be for example, the JobConfiguration or the Hadoop Distributed FileSys-
tem [3].

4.3.3 Map-Phase
The map-phase has the goal to build a key-value pair for each object in the split of the input
data, that was assigned to this mapper. This phase consists of three sub-tasks: The acquisition
of a split of the input data, the actual mapping and in the end the preparation of the map output
files for further processing. Between the last two sub-tasks, in section 4.3.3.3 the use of the
partitioning function is explained. This step is necessary to explain the building of the map
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Figure 4.1: The Execution of a Hadoop Job (based on White [11])
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Figure 4.2: Overview of the Map-Phase

output files. A short overview of the four phases is shown in figure 4.2. The more detailed
explanation follows in sections 4.3.3.1 to 4.3.3.4.

4.3.3.1 Acquisition of Data

The input of the Hadoop-Job can consist of more than one file. As it is explained in section
4.3.1.4 a Java Virtual Machine is started to perform either a map- or a reduce-task. To map
the input data, obviously a map-task is initialized. The number of map-tasks started during
a Hadoop-Job depends on the amount of input data. The number of map-tasks is driven by
the predefined block size of the input. Up to a certain point, the number of mappers can be
manipulated manually. On the one hand, this block size can be altered, on the other hand the
number of map-tasks can be increased.

Using the use case in section 3.3, the fifteen timestamps will be mapped by two map-tasks.
The first eight timestamps will go to a first mapper (M1), and the timestamps number nine to
fifteen will go to a second mapper (M2). The following table 4.3 shows how the timestamps
are distributed between the mappers:
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Mapper 1 (M1)
1 1993-04-10
2 1994-02-04
3 1996-01-30
4 1996-09-12
5 1992-01-01
6 1997-03-02
7 1994-11-24
8 1993-07-13

Mapper 2 (M2)
9 1995-10-26
10 1995-04-19
11 1998-12-29
12 1992-03-29
13 1997-12-04
14 1998-05-21
15 1994-08-13

Table 4.3: Distribution of Timestamps between the Mappers

4.3.3.2 Map-Function

The input data is now located in the correspondent map-task instance. The next step of the
map-task is to run the actual map-function, which has been designed in the Hadoop Program
by the user. This map-function is deposited in the JobConfiguration and can therefore be
accessed through the map-task. In detail, the map-task instantiates an object of the class
MapRunner to execute this map-function. The MapRunner fetches the explicit map-function
from the JobConfiguration and executes this function on every object of the input data.

This map-function converts a data object into a key-value pair. To illustrate how a map-
function is working and is building the key-value pairs, the map-function that is needed to
perform the example presented in section 3.3.2 is applied to the data. The key-value pairs are
formed out of the input data for M1, where the key in this example is the year, and the value
of every object is 1. With an adequate reducer, which will be explained in section 4.3.4.3, the
number of timestamps for each year can be evaluated. Table 4.4 shows the output key-value
pairs for M1.

Timestamp Key Value Key-Value Pair
1993-04-10 1993 1 <1993,1>
1994-02-04 1994 1 <1994,1>
1996-01-30 1996 1 <1996,1>
1996-09-12 1996 1 <1996,1>
1992-01-01 1992 1 <1992,1>
1997-03-02 1997 1 <1997,1>
1994-11-24 1994 1 <1994,1>
1993-07-13 1993 1 <1993,1>

Table 4.4: Key-Value Pairs for M1

4.3.3.3 Partitioning

A partitioner, respectively the partitioning function, has the duty to divide the key-value pairs
into partitions. It decides, which key-value pair is processed by which reducer. As it is ex-
plained in section 4.2 the user has the possibility to manually define a partitioner in the Hadoop
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Program or to use the default Hash-Partitioner of Hadoop. The decision, which partitioning
function should be used, depends on the nature of the problem Hadoop should manage. A
partitioning function in Hadoop will produce exactly the same number of partitions as there
are going to be reduce tasks.

The choice of an appropriate partitioner can be very decisive and game changing. If, for
example, a partitioner by accident sends all the key-value to one reducer, the whole data set
would be processed by one reducer, while the others would be without work. The partitioning
function is therefore responsible for the load distribution throughout the cluster as it already
has been discussed in section 2.1.2.

The partitioning function can be individually defined in the Hadoop Program. In contrast
to map and reduce functions, Hadoop offers some standard partitioning function, which in
many cases satisfy the need of the users. The default partitioning function uses a hash value
generated out of the key of the key-value pair. The final number of the partition is this hash
value modulo the number of reduce-tasks of the job. This way it is ensured, that no reducer is
theoretically without work.

4.3.3.4 Production of the Map Output

After the actual execution of the map-function, the MapRunner-class, which executed the map-
function, returns the mapped data to the MapTask-class. The MapTask then builds the map
output files. These files are necessary for the data to be interchanged between the different
nodes of the system. The map output files are constructed with the help of the partitioning
function. Each mapper builds as many files as there are going to be reduce tasks. Now it will
be iterated through the key-value pairs. For every entry, the partitioning function is evaluated
and the entry is added to the file, where the entry will be reduced in the next phase. The output
of M1, following the example from section 3.3.2, where the number of occurrences per year is
evaluated, is shown in table 4.5. The Hash-Partitioner is used and the number of reduce-tasks
is 3.

File Reducer 1
Key Hash-Value
1992 0

File Reducer 2
Key Hash-Value
1993 1
1996 1
1996 1
1993 1

File Reducer 3
Key Hash-Value
1994 2
1997 2
1994 2

Table 4.5: Map Output Files of Mapper M1

4.3.4 Reduce-Phase
The reduce-phase is the second main part of a MapReduce-algorithm. The goal of the reduce-
phase is to evaluate all the key-value pairs with the same key and summarize these pairs to a
output object. This phase consists of three sub-tasks: The acquisition of the necessary map
output files, the consolidation of the key-value pairs with the same key and the actual reducing.
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Figure 4.3: Overview of the Reduce-Phase

Similar to the execution of a map task, the TaskTracker starts a Java Virtual Machine, which
then performs the reducing. A short overview of the three phases is shown in figure 4.3. The
more detailed explanation follows in sections 4.3.4.1 to 4.3.4.3.

4.3.4.1 Acquisition of the Map Output and Shuffling

As it has been discussed in section 4.3.3 , the map output files for all the reduce tasks are built.
To perform the reduce-step, it is necessary to acquire all the files for a specific reducer. This
phase, the acquisition, is called the shuffle-phase. During the shuffle-phase the reduce task is
in a while-loop. It asks the TaskTracker of completed map tasks, and if a map output is found
and ready, it is transferred to the reduce task via a buffered stream. The while-loop continues
until all the necessary map output files are acquired. Many security methods are implemented
to assure that only one map output file per mappers is acquired.

Table 4.6 shows the finished files of the shuffle phase for Reducer 1 (hash value 0):

Key-Value Pairs
of Map Output
File M1

Hash-Value

<1992,1> 0

Key-Value Pairs
of Map Output
File M2

Hash-Value

<1995,1> 0
<1995,1> 0
<1998,1> 0
<1992,1> 0
<1998,1> 0

Table 4.6: Acquired Map Output Files
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4.3.4.2 Sorting

The next phase after shuffling is the sorting-phase. During this phase, all the map output files
have been acquired, and now have to be merged, sorted and converted to a proper format
in order for the reduce function to iterate over the data. The data is not yet in the form the
reducer requires it. Until now the data consists only of key-value pairs. The input format for
the reducer is of the form <key, list of values>. Therefore the data has to be transformed. The
task of transformation and merging, is done in a separate class called Merger.

The Merger-class merges the same keys together across all acquired map output files and
constructs the requested format for the reduce function. During this merging process, the keys
are sorted in alphabetic ascending order.

To achieve the goal of sorting the timestamps in order, this functionality will be used. After
the merging and sorting, the data has temporary structure shown in table 4.7. Note, that the
alphabetical ordering of the keys is favored.

Key List of Values
1992 <1, 1>
1995 <1, 1>
1998 <1, 1>

Table 4.7: Reduce Input

Once the merging and sorting is completed, the keys with the lists of values are in adequate
form to be processed by the reduce function. The map output files, which were collected
during the shuffling-phase are now not longer required and are deleted.

4.3.4.3 Reduce-Function

To apply the reduce function on the data is the main task. All the phases before are for the
preparation of the data in the right form to iterate over all the keys with the reduce function.
As discussed in the section 4.3.4.2, all the data from all the mappers are in the form <key, list
of values>. The reduce function is a while-loop, which iterates over all the keys. The actual
reduce function is provided by the Hadoop Program and is stored in the JobConfiguration.

This actual reduce function, which is provided by a user (there is no default implementation
for the reduce function), has a for-loop. This loop typically iterates over all the entries in the
list of values. To illustrate the functionality, the evaluation of a year will be shown. Table 4.7
shows the inputs for the Reducer 1 (hash-value 0). This is the specific reduce function:
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public void reduce(Text key, Iterator<Text> values,
OutputCollector<Text, Text> output, Reporter reporter) {

int sum = 0;
for (IntWritable val : values) {

sum += val.get();
}
output.write(key, new IntWritable(sum));

}

This specific reduce function adds the values together, and gives in the end the number of
occurrences of the specific key. The final output of the reduce functions OutputCollector can
be seen in table 4.8.

Key Value
1992 2
1995 2
1998 2

Table 4.8: Output of the Reduce Function

The data has now been processed by the reduce function and is ready to be used as output
of the job. Parallel to the reduce function of the reducer, the output file of Hadoop is written.
The object OutputCollector directly writes the key-value pair of the reducer to the file. It is
important to know, that each reducer produces an individual output file. By default the output
files are not merged.
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5 TopCluster in Hadoop

This section explains the main part of this paper: the TopCluster-algorithm and its implemen-
tation in Hadoop. In section 5.1 the original TopCluster [7] will be explained. Section 5.2
discusses the modifications that are necessary to adapt TopCluster to Hadoop and the problem
of sorting timestamps. Then sections 5.3 to 5.8 show step by step the modifications of the
Hadoop Source Code.

TopCluster is an algorithm, that is adaptable to different MapReduce implementation. To
adjust the algorithm to Hadoop and to the specific problem of sorting timestamps, some spec-
ifications have to be changed. In this paper, it will be differentiated between the orginal
TopCluster-algorithm and the modified TopCluster-algorithm. The modified TopCluster-
algorithm is the result of this thesis and solves the problem of sorting timestamps.

5.1 Original TopCluster-Algorithm
TopCluster [7] is one approach to deal with the balancing of processing load due to skewed
data. As discussed in section 2 there exist other approaches to handle the skew. The method,
described in the paper about TopCluster, is a straightforward one. The goal of TopCluster is
to compute the distribution of the data in the fastest and most cost-effective way possible and
with this knowledge distribute the load of work evenly throughout the different nodes of the
system.

5.1.1 Definitions
A cost model is a model of the data, which represents the costs to process it. A cost model
has the dimension of the costs, which can be for example the quantity, the data volume or the
complexity of the key-value pairs. During this thesis the cost model is built out of the quantity
of the key-value pairs. The goal of TopCluster is to form a cost model of the data to process.
With the help of this cost model the data can be distributed in a way that all the reducers have
to process the same "costs".

All the timestamps are processed by mappers. Each mapper produces a local histogram,
which is the local image of the cost model in Hadoop. The heading of these local his-
tograms are integrated to form a global histogram, which represents the distribution of the
data throughout the whole system.

The controller represents the central unit of TopCluster. The global histogram is managed
and calculated by the controller. The controller for this implementation is integrated in the
JobTracker of Hadoop.
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5.1.2 How the Algorithm works
The TopCluster-algorithm has been designed to provide an algorithm, which is able to create
a cost model of the data. The goal of TopCluster is to keep the management overhead of this
model as small as possible. Skew may as well appear during the map-phase of the algorithm,
but this case shall be neglected. It is assumed, that the skew and the uneven workload can
occur more likely during the reduce-phase of Hadoop. For the problem of sorting timestamps
Partitioning Skew [8] as it has been discussed in section 2.1.2 is most likely to appear. The
principle of TopCluster is, that it gathers information during the map-phase of the MapReduce-
algorithm to avoid skew during the reduce-phase.

The map tasks are computed in a distributed way. Every instance has to collect a local
histogram at first. All the local histograms are sent to a central point, where out of the local
histograms of each mapper a global histogram is built. With the help of this global histogram
the distribution is known and the system can take measures to balance the load. Because the
data processed with MapReduce can be very large, the size of these local histograms may
increase heavily and become infeasible for large scale data [7]. To face this problem the
TopCluster-algorithm offers a methodology to approximate the global histogram and reduce
the transmissions.

To reduce transmission costs, not the complete local histogram is sent to the controller, but
only the header of the local histograms. The header histogram consists only of the partitions
with a size bigger than a threshold value τ . There exist two approaches to define the threshold
value τ . The first approach is, that τ is calculated dynamically and individually by each
mapper and follows the formula: τ = (1+ ε) ∗ µi where ε is a multiplication factor chosen by
the user and µi is the average number of entries per partition. For the implementation a value
for ε of 10% has been chosen. The second approach TopCluster [7] offers is not dynamic
and a global τglobal is defined by the user. Every local histogram has a local τlocal. This τlocal
is calculated by the division of the global τglobal by the number of mappers. In general the
definition of τ manually can be difficult. For the use of TopCluster in Hadoop this approach
to define τ is not advised, because necessary parameters like for example the size of the input
data is not known, and the dynamic approach has been chosen.
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Figure 5.1: Conversion of Local Histogram to Local Histogram Header

In addition to these values above a certain threshold τ , the headers collect a presence indi-
cator, for all the partitions which size is bigger than zero. With the help of these headers of
the histograms, the overhead to process the histograms can be reduced significantly.

All the local histograms are combined together to form the global histogram. Because not
the complete local histograms, but only the headers of the local histograms are collected by
the controller, the main part of TopCluster is an algorithm to generate the global histograms
out of these headers.

TopCluster builds temporary a lower and an upper bound histogram. In the lower bound
histogram all the existing values of the headers are added and where no values exist, the lower
bound histogram is filled with zeros. In the upper bound histogram also the existing values
of the headers are added, but where no values exist and the headers carry a presence indicator
for the partition, the smallest value of this specific header is added. If the presence indicator
is negative, also the value zero is added to the upper bound histogram.

If these lower and upper bound histograms have been built, the global histogram is calcu-
lated out of the average of these two histograms.

5.1.3 Advantages and Disadvantages of the original
TopCluster-algorithm

One advantage of TopCluster compared to Hadoop without load-balancing is the improved
distribution of load, if there exists a skew. Another advantage is that TopCluster is very flexi-
ble. New cost models can be introduced and can be implemented without deeper knowledge
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of architectural subtleties of the MapReduce-implementation.
To the contrary, if the data is evenly distributed, TopCluster produces an overhead, which

isn’t necessary. TopCluster has no possibility to notice before the map-phase, how the data is
distributed and if a load-balancing is needed at all.

5.2 Modified TopCluster-Algorithm
This section deals with the modifications to the original TopCluster-algorithm, which are re-
quired to implement it in Hadoop to sort a list of timestamps. Two alterations are necessary to
the original TopCluster: the increase of the partitions and the alteration in counting partitions
instead of keys.

5.2.1 Increase of the Number of Partitions
The straightforward approach to implement TopCluster in Hadoop would be, to count the
number of occurrences per key and then redistribute the keys to the existing partitions in a
way, that the load is balanced. Because the global histogram and the final distribution overall
is not calculated until all mappers are done, a redistribution of the key-value pairs to other
partitions would be costly because all the key-value pairs had to be visited again. Therefore
another approach to distribute the work has to be chosen.

Hadoop, as explained in section 4, is constructed in a way that the number of reducers and
the number of partitions are equal. It follows the paradigm that every partition is reduced by
one reducer. One way to balance the load is by increasing the number of partitions, where the
number of the reducer remains constant. Another theoretical approach would be to redistribute
some keys to other partitions, but the architecture of Hadoop denies this possibility. By the in-
crease of the number of partitions, more than one partition could be sent to one reducer and the
work load could be distributed in the way, the global histogram defines it. The altered number
of partitions is determined by the number of reducers multiplied by a fineness variable. The
minimum value for the fineness variable is 1, one partition for each reducer. The maximum
of partitions is given by the number of different input values. A higher fineness variable on
the one hand would improve the load-balancing, but on the other hand would produce more
overhead for calculation purposes.

For demonstration purposes the fineness and therefore the number of partitions for the use
case are specified in table 5.1.
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Specification Usage Value
Number of Reducers The number of reduce-tasks, that

Hadoop will perform.
3

Fineness The constant, that defines the fine-
ness of the load-balancing

2

Number of Partitions The number of partitions, that the
data can be distributed to. This
number is defined by the multipli-
cation of the number of reduce-
tasks with the fineness.

3 * 2 = 6

Table 5.1: Specification

5.2.2 Counting the Partition-Size
Where the default TopCluster-algorithm counts the number of occurrences of each key, it
is sufficient for the modified TopCluster-algorithm to evaluate only the size of the partitions.
Under the assumption, that duplicate timestamps are not being desired as output of the system,
every key appears only one single time. Balancing according to the number of occurrences
would not be successful, since this number would always be one. To avoid this problem, the
modified version counts the number of timestamps per partition. To guarantee the keys are
always counted to the same partition, for the calculation of the partition for the histogram and
the calculation of the partition for a key-value pair as it is described in section 4.3.3.4 the same
partitioning function is applied.

The two different alternatives are demonstrated with the help of the timestamps of the use
case in section 3.3. To demonstrate the functionality of the original TopCluster-algorithm, the
map-function, which takes the year of a timestamp as key-value, is being chosen. The original
TopCluster-algorithm counts the number of occurrences per key. The global histogram of the
original version is shown in table 5.2.

Entry in Global Histogram Number of Entries
1992 2
1993 2
1994 3
1995 2
1996 2
1997 2
1998 2

Table 5.2: Global Histogram Entries for original MapReduce-algorithm with key = year

The modified TopCluster-algorithm in contrast does not count the number of occurrences
per key, but the size of the partitions. To illustrate the functionality of this modified version, the
timestamps of the demonstration dataset in section 3.3 are partitioned by a partitioner, which
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separates the timestamps in two intervals. The first partition is for the timestamps between
1992-01-01 to 1995-12-31 and the second partition is for timestamps between 1996-01-01
and 1998-12-31. The global histogram for the modified TopCluster-algorithm is shown in
table 5.3:

Entry in Global Histogram Number of Entries
Partition 1 9
Partition 2 6

Table 5.3: Count of Elements in one Partition

The fact, that TopCluster counts the size of the partitions instead of occurrences of a specific
key, reduces the work of TopCluster on the one hand, and on the other hand does not lower the
efficiency of TopCluster. In section 7, where further research is discussed, the extension to a
more general approach will be mentioned.

5.2.3 Distribution
The paper about the TopCluster-algorithm [7] only deals with the collecting of the informa-
tion and the creation of the global histogram. To implement a load-balancing mechanism in
Hadoop, another algorithm has to be introduced, which converts the global histogram into a
distribution of the partitions for the specific reducers. As already discussed in section 2.2 dif-
ferent approaches to solve this problem exist. Due to the specification, that all the partitions
have to remain in order, a new algorithm has been applied.

The distribution-algorithm calculates the average load of one reducer by dividing the num-
ber of keys by the number of reducers. Then the first partition is filled with partitions until
the reducer has to process more than this threshold value of timestamps. After that the next
reducer is filled with partitions until it reaches this threshold. This is carried out until all
partitions are distributed.

5.3 Implementation of the modified
TopCluster-Algorithm

In section 5.4 the implementation of the new partitioner, as it is necessary to increase the
number of partitions is discussed. The section 5.5 explains how the local histogram is built
during the map-phase. Section 5.6 deals with the building process and calculation of the
global histogram. The alteration of the reduce-phase is shown in section 5.7. The section 5.8
discusses the problem of Hadoop already starting with some reduce-tasks and the influence
on the modified TopCluster-algorithm. In the end in section 5.9 some of the difficulties of the
implementation are shown.

In this paper the changes are not being explained on a source-code-level. The important
steps are explained and are referenced to the source code. The alterations in the code are
noted in a general form. This simplifies the effort to find the changes in the source code. The
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form of the comments in the code have the following form "TopCluster-<class>-<sequential
number>". An example in the class Test would be:

...
//TopCluster-Test-0001
topcluster.add(0);
//EndTopCluster-0001
...

All the changes to implement the TopCluster-algorithm were made in the
package org.apache.hadoop.mapred. Only the new partitioner can be found in
org.apache.hadoop.mapred.lib. Therefore the class names are given without the exact
name of the package.

The source code can be accessed and downloaded under the address:
http://www.ifi.uzh.ch/dbtg/research.html.

An implementation of the modified TopCluster-algorithm in the Hadoop Program is not
possible. The Hadoop Program, as mentioned in section 4.2, consists only of the definition
of the four modules and the initialization of the job. The implementation needs deeper ac-
cess to specific functions of Hadoop and the architecture has to be modified to satisfy the
requirements.

In section 4.3.1.1 it already has been discussed, that the general information and settings
are stored in the JobConfiguration. The modified TopCluster-algorithm has as well some
settings and information and the JobConfiguration serves the algorithms as the storage of these
information. The settings can be stored in topcluster-site.xml as a XML-File. In topcluster-
site.xml three important properties can be defined as shown in table 5.4.

Property Definition
mapred.topcluster.granularity The fineness of the partitions (this value will mul-

tiplied by the number of reducers and produces the
number of partitions)

mapred.topcluster.startdate The lower bound
mapred.topcluster.enddate The upper bound

Table 5.4: Elements of topcluster-site.xml

The most important value is the mapred.topcluster.granularity. It determines the number of
partitions Hadoop creates and therefore the fineness of the load-balancing.

In Hadoop the different instances have to communicate. This means, that the JobClient has
to communicate with the JobTracker, and the JobTracker with the TaskTrackers. In general
the various instances inform about success and progress of the different tasks. In the modified
Hadoop implementation it will be necessary to send the headers of the local histograms via
these communication-protocols. For big Hadoop-clusters, these histograms could become
very large, therefore only the headers of the histograms (as discussed in section 5.1) will be
exchanged between the TaskTrackers and the the JobTracker.
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5.4 New Partitioner
An important part of the modified Hadoop implementation is the partitioning func-
tion. A new partitioner for the modified Hadoop implementation has been built as
the class TopClusterPartitioner (TopCluster-TopClusterPartitioner-0060) in the package
org.apache.hadooop.mapred.lib. This function is a key to the successful implementation. In
order to equally distribute the data between the reducers, the number of partitioners has to
be bigger than the number of reducers as it already has been mentioned in section 5.2.1. The
partitioner to sort the timestamps calculates the partition. It is essential for the implementation
that the calculation of the partition during the building of the local histograms and the calcula-
tion of the effective partition during the building process of the map output files are the same.
This new partitioner is able to do this task and can not be overwritten by the user’s Hadoop
Program (TopCluster-JobClient-0200). Given is an algorithm to calculate the partition of a
timestamp:

int getPartition(Date input) {
int numberOfPartitions;

//defined in topcluster-site.xml
int rangeOfPartitions;

// How many days each partitions covers,
// calculated before

int numberOfDaysBetween;
// Number of Days between start- and enddate,
// calculated by lower and upper bound

int diff; //days between the date and startdate
int border = 0;
int partition = -1;
while(diff >= border &&

diff < (numberOfDaysBetween+1)) {
border += rangeOfPartitions;
++partition;

}
return partition;

}

With the help of the demonstration dataset in section 3.3, the partitions have been built with
start date 1992-01-01, end date 1998-12-31 and six partitions (3 (number of reducers) * 2
(fineness) = 6):
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Number Startdate Enddate
1 1992-01-01 1993-03-02
2 1993-03-03 1994-05-02
3 1994-05-03 1995-07-02
4 1995-07-03 1996-08-31
5 1996-09-01 1997-10-31
6 1997-11-01 1998-12-31

Table 5.5: List of Partitions

To build these intervals it is necessary for the implementation to define the range
in which all the timestamps are located. The user can define a lower bound and
an upper bound in topcluster-site.xml as the properties mapred.topcluster.startdate and
mapred.topcluster.enddate. It is important for all the timestamps to be between these bounds,
otherwise Hadoop can’t handle them.

5.5 New Map-Function
First the partitioner and the local histogram are initlialized with the specific data from the
JobConfiguration (TopCluster-MapRunner-0003). Important information is for example the
fineness, the number of reducers and the number of mappers. With this information the local
histogram can be built (TopCluster-MapRunner-0001).

5.5.1 Collecting the Data for the Local Histogram
During the process of mapping, the map-function iterates over all the values and maps them.
After each mapping step for one key-value pair, this pair is added to the corresponding bar
in the local histogram (TopCluster-MapRunner-0004). The partition is calculated by the new
partitioning function as explained in section 5.4. If all the values are processed by the mappers,
the local histogram already has been filled entirely with the necessary data.

5.5.2 Local Histogram Header
The next step is the calculation of the header of the local histogram and the transmission
to the JobTracker. This calculation is handled by the MapRunner-class, where already the
information of the local histogram is kept. The task however is initialized by the MapTask-
class. After the successful execution, the headers are sent to the JobTracker to be administrated
further (TopCluster-MapTask-0040).

The calculation of the header is handled by the MapRunner-class (TopCluster-MapRunner-
0002). An object LocalHistogramMini (TopCluster-LocalHistogramMini-0025) is created,
which represents the header of the local histogram. The header is built analogously to the
explanation in section 5.1 with a dynamic threshold and ε = 0.1.
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5.6 Building the Global Histogram
After all the mappers have finished with their tasks, the JobTracker has collected all the local
histograms and is ready to calculate the global histogram. The global histogram gives the
system the knowledge about the distribution of the data across it. The global histogram is
produced in the class GlobalHistogram (TopCluster-GlobalHistogram-0090).

The calculation of the global histogram follows the rules already explained in section 5.1.
Briefly it is about calculating a lower and an upper bound histogram. These temporary his-
tograms represents the estimated maximum and minimum of the partition sizes, because only
the headers of the local histograms are collected, and therefore not all information is pro-
cessed. The global histogram is the result of the average between lower and upper bound
histogram. This global histogram is calculated after all the mappers have finished (TopCluster-
GlobalHistogram-0091). The global histogram for the use case is shown in table 5.6.

Partition Number of Timestamps
1 2
2 3
3 3
4 2
5 2
6 3

Table 5.6: Global Histogram

After the global histogram is built, the next step is to calculate how the partitions will be dis-
tributed to the reducers. A function in the GlobalHistogram-class (TopCluster-GlobalHistogram-
0092) builds this distribution. The requirements can only be met through keeping the order
of the partitions. To calculate the distribution, the number of key-value pairs is counted. This
number is divided by the number of reducers, which produces the average load of a reducer.
The algorithm to distribute the partitions, now starts at reducer 1 and adds so many partitions,
until the number of key-value pairs is even or bigger than the average work load of the reducer.
In the example of the use case, the average work load of a reducer is 15/3 = 5 key-value pairs
per reducer. The partitions are distributed to the reducers as shown in table 5.7.

Reducer Allocated Partitions Number of key-value pairs
1 1,2 5
2 3,4 5
3 5,6 5

Table 5.7: Distribution

The last task after the calculation is to tell the JobTracker, that the global histogram has
been calculated and therefore the distribution is ready. Now the reducers can start their work,
because they know, which partitions will be processed by them.
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5.7 New Reduce-Function
Some changes in the reduce task had to be implemented as well. The first change is a loop
for the reduce task to wait for the calculation of the global histogram to finish (TopCluster-
ReduceTask-0500). The JobTracker is asked every three seconds, if the mappers all have
finished. If they did, a function is initiated, which acquires the start and the end partition
of the partitions that will be processed by the reducer (TopCluster-ReduceTask-0510). For
example reducer 1 gets the start partition 1 and the end partition 2 as it was calculated in table
5.7. The individual reduce tasks get their individual start and end points as it shown in the
table 5.8.

Reducer Start Partition End Partition
1 1 2
2 3 4
3 5 6

Table 5.8: Start and End Partition

The reduce task acquires the necessary map output files (TopCluster-ReduceTask-0530).
Until now, the reduce task was allowed only to import one map output file per mapper, but
with this alteration, it now will acquire all the necessary files. Another little alteration had to
be made concerning the temporary names of the map output files (TopCluster-ReduceTask-
0520), because now there exist more than one file per mapper.

It has to be mentioned, that some security mechanisms responsible for the limitation to
acquire exactly one file per mapper had to be disabled throughout the whole ReduceTask-
class.

5.8 Slowstart of Reduce-Phase
It is a paradigm of Hadoop, that not all the map tasks have to be finished before the system
initializes the first reduce tasks. This mechanism is called slow start. Obviously no reduce
task can finish before all the map tasks are finished. But with the help of the slow start the first
two phases of the reduce-phase, shuffling and sorting, can already start. In some cases, this
functionality allows Hadoop a higher throughput. [11]

For the implementation of the TopCluster-algorithm, this slow start can not be applied. The
reduce tasks need all the map tasks to have finished and the global histogram to be calculated
before they can start. It is advised to shut this slow start mechanism down, by setting the prop-
erty mapred.reduce.slowstart.completed.maps in the mapred-site.xml to 1. Otherwise some
reduce tasks already start and keep waiting, due to the modified TopCluster-implementation,
until the global histogram has been calculated and block resources in the mean time.

5.9 Challenges during the Implementation
During the implementation of TopCluster in Hadoop some challenges occurred:
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• A first challenge to modify the Hadoop Source Code was to compile and execute the
code properly. Hadoop uses another framework called Ant [1] to compile the source
code. This framework had to be installed.

• Another challenge was at the beginning the transmission of the headers of the local his-
tograms as an object. The object had to be serialized into an array of bytes, transmitted
and deserialized in the JobTracker.

• The acquisition of more than one map output file per mapper was a challenge. The
system only allowed one file per mapper and in instance of the ReduceTask. A large
number of security measures had to be deactivated. It was a challenge to shut down only
the minimum number of measures in order to prevent the highest standard of security.

• The impossibility of the combination of map output files due to issues with a checksum
feature of the Hadoop Distributed File System had been a problem as well. For a time
it had been an idea, not to deal with all the map output files individually, but merge the
files to one file. This idea had to be discarded due to issues with this checksum feature.
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6 Testing the Implementation of the
modified TopCluster-Algorithm

6.1 Coefficient of Variation as Measurement Category
for Skew

To measure the quality of the implementation, a measurement indicator to evaluate the even
distribution of the workload is being introduced. In this thesis the coefficient of variation σr
is used to measure the skew. σr is the relative standard deviation. This means the standard
deviation divided by the expectation E. In this section the expectation E is the theoretical
average load of one reducer. The coefficient of variation therefore tells that 68.3% of the
values are in an interval [E−σr, E+σr] [10]. A decreasing coefficient of variation σr means
that the load is distributed more evenly. In figure 6.1 two examples of distributions are shown,
one shows a distribution with an uneven distribution and a high coefficient of variation, the
other one an even distribution with a low coefficient of variation.

Figure 6.1: Two Examples of different Distributions

6.2 Approach
The quality of the equal distribution of the data using the modified Hadoop implementation is
being tested. The test data has been produced by the class DataBuilder in the folder TopClus-
terTools. DataBuilder can generate different distributions in order to test the the functionality
and the quality. The number of peeks and the size of the peeks can be varied to test different
data distributions. The timestamps are in the range of 1992-01-01 to 1998-12-31. For testing
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Figure 6.2: The four tested Distributions

purposes, the timestamps are being supplemented by an individual, random value. This was
made to ensure that each timestamp is unique. The random value has no effect on the proper
functionality of the modified Hadoop implementation. The test has being conducted by a clus-
ter with one instance. For every job the coefficient of variation σr has been calculated in order
to evaluate the quality of the implementation.

To illustrate the efficiency of the load-balancing of Hadoop, the processing of four different
distributions with the modified Hadoop implementation is going to be evaluated. Some of
the parameters, like fineness and the number of reducers, are being varied as well. The four
different distribution are shown in figure 6.2 and named A,B,C and D. Table 6.1 shows the
coefficient of variation for these four distributions.

Distribution Coefficient of Variation
A 60.6%
B 60.4%
C 76.2%
D 0%

Table 6.1: Start and End Partition

The goal of this evaluation is to demonstrate, that the modified Hadoop implementation low-
ers the coefficient of the variation and therefore improves the load-balancing. The distribution
D has been chosen to test the modified implementation with an already equal distribution of
data.
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6.3 Test Results
In table 6.2 the results of the test are shown. The test was conducted with 1’000’000 times-
tamps. The data was mapped by two mappers.

Distri-
bution

Number
Of
Times-
tamps

Number
of Re-
ducers

Fineness Number
of Par-
titions

Theoretical
Average
Load
of one
Reducer

Coefficient
of Vari-
ation
σr

Execution
Time in
s

A 1’000’000 4 4 16 250’000 33.2 72
B 1’000’000 4 4 16 250’000 51.9 82
C 1’000’000 4 4 16 250’000 53.3 68
D 1’000’000 4 4 16 250’000 25.0 72
A 1’000’000 8 4 32 125’000 19.4 136
B 1’000’000 8 4 32 125’000 44.4 108
C 1’000’000 8 4 32 125’000 51.2 109
D 1’000’000 8 4 32 125’000 9.6 125
A 1’000’000 4 20 80 250’000 11.5 78
B 1’000’000 4 20 80 250’000 4.9 82
C 1’000’000 4 20 80 250’000 11.2 81
D 1’000’000 4 20 80 250’000 4.9 84
A 1’000’000 8 20 160 125’000 12.4 129
B 1’000’000 8 20 160 125’000 5.4 136
C 1’000’000 8 20 160 125’000 17.6 152
D 1’000’000 8 20 160 125’000 9.0 145
A 1’000’000 4 100 400 250’000 3.3 112
B 1’000’000 4 100 400 250’000 1.9 104
C 1’000’000 4 100 400 250’000 2.8 100
D 1’000’000 4 100 400 250’000 1.1 112
A 1’000’000 8 100 800 125’000 3.8 171
B 1’000’000 8 100 800 125’000 1.6 173
C 1’000’000 8 100 800 125’000 3.3 189
D 1’000’000 8 100 800 125’000 1.5 179

Table 6.2: Standard Deviation in Percent to Average Load

6.4 Conclusion
The results in section 6.3 show that the modified Hadoop implementation with the TopCluster-
algorithm solves the problem stated in section 1. For data with skew, the standard deviation
could be reduced significantly in comparison to not using the extension.
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Figure 6.3: Coefficients of Variation in relation to the Number of Partitions

The test results show that with an increasing number of partitions the load-balancing be-
comes more precise. The coefficients of variation are summarized in figure 6.3. It can be
observed, that the initial distribution has an influence on the quality of the load-balancing, but
the number of partitions has a greater effect. With the increase of the number partitions the
quality of the load-balancing increases as well, but on the other hand can become a bottleneck,
if the management overhead is too large.

Because the Hadoop Job has been executed on one instance, the execution time is only
partly significant. As it can be observed, all the execution with eight reducers take longer than
the executions with four reducers. This is, because the system has an overhead to execute an
additional reduce task. But still it can be seen, that with the increase of fineness, the execution
time increases along, because of the communication and calculation overhead of TopCluster.

6.5 Comparison to the Default Hash-Partitioner
In the sections 6.1 to 6.4 the reduction of the coefficient of variation by using the modified
Hadoop implementation was tested. In this section it is experimented with a worst case sce-
nario, where the data is constructed in a way that all of the key-value pairs are reduced by only
one reducer. As already discussed in section 4.3.3.3, Hadoop uses by default a partitioning
function, which classifies the key-value pairs by a hash-value. It can be created a dataset in a
way, that all timestamps have the same hash-value and are therefore sent to the same reducer.

This experiment was successful. If the generated data is a list of unsorted timestamps,
the default Hadoop implementation sends all the timestamps to one reducer, which means
a coefficient of variation of 200% for 4 reducers. The experiment was conducted with all
the four distributions introduced in section 6.2 and the result was always the same. All the
timestamps were sent to only one reducer. The results are shown in table 6.3.
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Distri-
bution

Load Re-
ducer 1

Load
Reducer
2

Load
Reducer
3

Load
Reducer
4

Coefficient
of Varia-
tion

A 1’000’000 0 0 0 200%
B 1’000’000 0 0 0 200%
C 1’000’000 0 0 0 200%
D 1’000’000 0 0 0 200%

Table 6.3: Distribution with all timestamps having Hash-Value 0

This experiment should show, that for all sort of problems skew may occur. TopCluster
can provide a solution to detect skew and avoid it. The implementation in this paper only
deals with load-balancing a list of timestamps. In section 7 the extension to a more general
level is discussed. The implementation presented in this thesis is a first step for a general
implementation of TopCluster in Hadoop.
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7 Further Research

In this chapter two fields of further research questions is discussed. The first section deals
with the generalization of TopCluster. The second section deals with the extension of the cost
model.

7.1 A general TopCluster Implementation
The implementation of TopCluster has been adjusted to the problem of sorting timestamps as
stated in the introduction of the paper. Of course a more general implementation of TopCluster
could be very useful and could be an interesting question for further work. The problem of
data skew can occur for many different problems. A further research question could be, how
the algorithm could be extended to a more general use. By a generalization the use of the im-
plementation would increase. In the next section the alteration to the current implementation
are illustrated in a general way.

Basically only two major alterations have to be made: the use of the partitioning function
and a new algorithm to calculate, which reducer will process which partitions. The calculation
of the global histogram could be kept as it is implemented now.

7.1.1 Alteration to the Partitioner
To generalize TopCluster, the implementation has to be extended to accept all possible par-
titioners. It is important to know, that the default partitioners, which Hadoop offers, always
produce as many partitions as there are reducers. To use TopCluster generally, it would be
important to ensure, that the partitioner produces enough partitions to give TopCluster the
possibility to distribute them equally. This means, that the partitioner produces more parti-
tions than there are reducers.

7.1.2 Problems of the Partitioner
There may occur severe problems to implement TopCluster for a general use. The source of
these problems is the use of the partitioner. It is important to understand, that the implemented
partitioner (TopCluster-TopClusterPartitioner-0060) was necessary, because of the goal to sort
the timestamps. For a more general use, it may be necessary for the user to define an individ-
ual partitioning function and not using the default partitioning function provided by Hadoop.
Because the number of reducers and the number of partitions won’t be equal, as it is for the
default Hadoop implementation, the user has to be aware of this fact. He only then can create a
partitioner, which respects the necessities of TopCluster. The default Hadoop implementation
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faces the same problem. The user has the possibility to define a partitioner, which produces
problems, because the number of partitions is not equal to the number of partitions. Therefore
the user can define a partitioning function with a number of partitions, that isn’t fit for Hadoop.
Until now, Hadoop has no security measures to prohibit this fact. A general implementation
of TopCluster does not augment this problem, but it has to be mentioned, that this problem
can be severe, and could make TopCluster useless, if the partitioner is implemented wrong.

7.1.3 Alteration to the Distribution
Because the partitions had to remain in order, the distribution algorithm had been adjusted to
this specific problem (TopCluster-GlobalHistogram-0091). The implementation in this paper
depends on the fact that the partitions stay in order. If this specification is obsolete, a more
efficient algorithm could be implemented to distribute the partitions to the reducer. There exist
more complex and efficient algorithms. Gufler et al. [6] provide some solutions to deal with
the distribution problem as it has already been discussed in section 2.2. In addition, other
algorithms, which concerns the specific location of the big partitions could be very useful and
spare time, which is required to copy the big partitions to the right reducer.

7.2 Extension of the Cost Model
An interesting question also is a change of the cost model. During the implementation, only
the number of key-value pairs have been calculated. This is satisfying for problems, where the
calculation of every key-value pair is about the same. But there may occur tasks for Hadoop,
where the complexity of the task varies between different key-value pairs. A new cost model
could help TopCluster or similar load-balancing algorithms to become more efficient.
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