
Database Lab
Queries
Fall Term 2023
Dr. Andreas Geppert
geppert@acm.org

2 | © Andreas Geppert | Fall Term 2023

Topics

• conceptual design
• logical design
• consistency constraints
• data manipulation
• queries
• transactions
• views
• stored procedures and user-defined functions
• triggers
• security
• (database applications with Java (JDBC))

3 | © Andreas Geppert | Fall Term 2023

Queries

• joins
• left ¦ right ¦ full outer joins
• subqueries
• (not) exists subqueries
• aggregates
• case (conditional)
• Expressions

– Access to attributes of structured types
– Strings
– Dates (comparison, arithmetics, current date and time)

4 | © Andreas Geppert | Fall Term 2023

Queries 2

• group by and aggregates

• finding the tuples with extreme values

• subquery in from-clause

• temporary views ("with")

• also available in the meantime: super groups (grouping sets, cube,
rollup)

• OLAP (analytic) functions/local grouping

• recursive queries

5 | © Andreas Geppert | Fall Term 2023

Temporary Views

• view is defined only for the execution of a query

• Example: the location with the biggest map (in terms of number of
bytes)
with maps(shortname, len) as

 (select shortname, length(map) from location)

select *

 from maps

 where len = (select max(len) from maps);

6 | © Andreas Geppert | Fall Term 2023

Analytic Queries

• conventional aggregates in SQL are avg, sum, count, min, max

• but there is a need for further, new aggregation operators
– for instance ranking: assign a “rank”to each tuple whhich corresponds to its position

in an ordered list

– example: bestselling books, charts

• conventional grouping partitions all the tuples in a (intermediate) relation and
performs aggregate on entire partitions

• in advanced analysis, more flexible,”local” grouping is required
– example: moving average over a three/months period

7 | © Andreas Geppert | Fall Term 2023

Analytic Queries (2)

• analytic operators: over-clause

• local partitioning
– forming of groups (partition by)

– sorting (order by)

– window definition (rows oder range)

• select year, month, sum(sales) over(partition by year) as cumsales
 from sales;

• select year, month,
 sum(sales) over(partition by year order by month) as cumsales
 from sales;

8 | © Andreas Geppert | Fall Term 2023

Analytic Queries (3)

• select year, month, sales,
 avg(sales) over(partition by year
 order by month
 rows between 1 preceding and 1 following) as mvgavg
from sales;

• new operators:
– Rank, denserank, row_number

– Ntile

– Lag, lead, nth, first_value, last_value

– Cume_dist

– min, max, avg, sum, count are possible as well

9 | © Andreas Geppert | Fall Term 2023

Grouping in SQL

• traditionally:

– group-by clause

– Per query, there is a fixed set of grouping criteria

• Suboptimal for flexible grouping

– Along multiple dimension

– On multiple levels of a dimension hierarchy

• all combinations of grouping attributes

– 2n queries with corresponding grouping criteria

– (product, store, date)
 [(product, store, date), (store, date),
 (product, date), (product, store)
 (product), (store), (date), ()]

Super groups: grouping sets, rollup, cube

 brand | size | sales
-------+------+------
 Foo | L | 10
 Foo | M | 20
 Bar | M | 15
 Bar | L | 5
 Bar | | 3
 | L | 2

10 | © Andreas Geppert | Fall Term 2023

Grouping Sets

• Groups along multiple grouping criteria

• In a single query!

Grouping sets

Explicit listing of all grouping criteria

• Example
SELECT brand, size, sum(sales)

 FROM items_sold

 GROUP BY GROUPING SETS ((brand), (size), ());

11 | © Andreas Geppert | Fall Term 2023

The Grouping Function: Example

• Similar query as above
SELECT (case when grouping(brand) = 1 then 'ALL'

 else brand end) as brand,

 (case when grouping(size) = 1 then 'ALL'

 else size end) as size,

 sum(sales)

 FROM items_sold

 GROUP BY GROUPING SETS
 ((brand), (size), ());

 brand | size | sum
-------+------+-----
 Bar | ALL | 23
 Foo | ALL | 30
 | ALL | 2
 ALL | ALL | 55
 ALL | L | 17
 ALL | M | 35
 ALL | | 3

12 | © Andreas Geppert | Fall Term 2023

The Cube Operator

• Grouping with all possible combinations?

• G1...Gn 2n criteria with grouping sets

abbreviation: the cube operator

• cube(G1...Gn) grouping sets(2{G1...Gn})

• Example: cube(A, B) grouping sets((A,B), (A), (B), ())

• (): grand total

13 | © Andreas Geppert | Fall Term 2023

The Cube Operator: Example

• Sales grouped by:
– brand

– size

– brand and size

– And overall sum (grand total)

SELECT brand, size, sum(sales)

 FROM items_sold

 GROUP BY cube (brand, size)

 brand | size | sum
-------+------+-----
 Bar | L | 5
 Bar | M | 15
 Bar | | 3
 Bar | | 23
 Foo | L | 10
 Foo | M | 20
 Foo | | 30
 | L | 2
 | | 2
 | | 55
 | L | 17
 | M | 35
 | | 3

14 | © Andreas Geppert | Fall Term 2023

The Rollup Operator

• Often we are not interested in all possible grouping criteria

• But mainly in all aggregates along a (subset of a) dimension hierarchy

• This is, we would like to see a setpwise rollup

Rollup operator

• Computes n grouping combinations + grand total

• rollup(Family, Department, Product)
grouping sets((Family, Department, Product),

(Family , Department), (Family), ()

15 | © Andreas Geppert | Fall Term 2023

The Rollup Operator: Example

• Sum of sales per
– Brand and size

– Brand

– overall (grand total)

SELECT brand, size, sum(sales)

 FROM items_sold

 GROUP BY rollup (brand, size)

 brand | size | sum
-------+------+-----
 Bar | L | 5
 Bar | M | 15
 Bar | | 3
 Bar | | 23
 Foo | L | 10
 Foo | M | 20
 Foo | | 30
 | L | 2
 | | 2
 | | 55

16 | © Andreas Geppert | Fall Term 2023

Recursive Queries

• the result is computed iteratively

• example: which airports can you reach with at most 3 stops from
Zurich?
with recursive transverbindung(von, nach, stops, weg) as

 ((select von, nach, 0, von || '-' || nach

 from verbindung

 where von = 'ZRH')

 union all

 (select v.von, v.nach, stops + 1, weg || '-' || v.nach

 from verbindung v join transverbindung t on t.nach = v.von

 where stops <= 2))

select * from transverbindung;

	Database Lab
	Topics
	Queries
	Queries 2
	Temporary Views
	Analytic Queries
	Analytic Queries (2)
	Analytic Queries (3)
	Grouping in SQL
	Grouping Sets
	The Grouping Function: Example
	The Cube Operator
	The Cube Operator: Example
	The Rollup Operator
	The Rollup Operator: Example
	Recursive Queries

