Aspect-Oriented Programming

Harald Gall

University of Zurich
seal.ifi.uzh.ch/ase

Source:
http://www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html

S; EA a A I A
‘oftware evolution & architecture lab

Programming paradigms

Procedural programming
Executing a set of commands in a given sequence
Fortran, C, Cobol
Functional programming
Evaluating a function defined in terms of other functions
Lisp, ML, Scheme
Logic programming
Proving a theorem by finding values for the free variables
Prolog
Object-oriented programming (OOP)
Organizing a set of objects, each with its own responsibilities
Smalltalk, Java, C++ (to some extent)
Aspect-oriented programming (AOP)
Executing code whenever a program shows certain behaviors
Aspectd (a Java extension)
Does not replace O-O programming, but rather complements it

g()Od modularity XML parsing

= XML parsing in org.apache.tomcat
= red shows relevant lines of code
= nicely fits in one box

goo d modulari ty URL pattern matching

= URL pattern matching in org.apache.tomcat
= red shows relevant lines of code
= hicely fits in two boxes (using inheritance)

prOblemS I|ke - logging is not modularized

= where is logging in org.apache.tomcat
= red shows lines of code that handle logging
= not in just one place
= not even in a small number of places

prOb lems like... session tracking is not modularized

HTTPRequest

SessionInterceptor
getCookies()
getRequestURI()(doc) requestMap(request)
get STSHONE— beforeBody(req, resp)
getRequestedSesStomdd()

Session

HITPResponse] getAttribute(name)
getRequest() # | setAttribute(name, val)
setContentType(contentType) ¢ | invalidate()
getOutptutStream()
setSessionld(id)

}Servlet

The problem of crosscutting concerns

critical aspects of large systems do not fit in traditional

modules =

logging, error handling “m
synchronization
security Al
power management 1 UF
memory management 4] -
performance optimizations | [|

tangled code has a cost B :

difficult to understand 1 logging, security, optimizations

difficult to change
increases with size of system
maintenance costs are huge
good programmers work hard to get rid of tangled code

the last 10% of the tangled code causes 90% of the
development and maintenance headaches

The AOP idea aspect-oriented programming

crosscutting is inherent in complex systems

crosscutting concerns
have a clear purpose

have a natural structure

defined set of methods, module boundary crossings, points
of resource utilization, lines of dataflow...

so, let’ s capture the structure of crosscutting
concerns explicitly...

in a modular way
with linguistic and tool support

aspects are
well-modularized crosscutting concerns

Aspect-Oriented Software Development: AO
support throughout lifecycle

CASCON '04 8

Example

class Fraction {
int numerator;
int denominator;

public Fraction multiply(Fraction that) {

traceEnter("multiply”, new Object[] {that});

Fraction result = new Fraction(
this.numerator * that.numerator,
this.denominator * that.denominator);

result = result.reduceTolLowestTerms();

traceExit("multiply”, result);

return result;

}
Now imagine similar code in
} every method you might want to
trace

Logging Example

import com.foo.Bar;

// Import log4j classes.

import org.apache.log4j.Logger;

import org.apache.log4j.BasicConfigurator;

public class MyApp {
// Define a static logger variable so that it references the
// Logger 1instance named "MyApp".
static Logger logger = Logger.getlLogger(MyApp.class);

public static void main(String[] args) {
// Set up a simple configuration that logs on the console.
BasicConfigurator.configure();

logger.setLevel(Level .DEBUG); // optional if log4j.properties r
// Possible levels: TRACE, DEBUG, INFO, WARN, ERROR, and FATAL

logger.info("Entering application.");
Bar bar = new Bar();

bar.doIt();

logger.info("Exiting application.");

10

Consequences of crosscutting code

Redundant code
Same fragment of code in many places

Difficult to reason about
No explicit structure
The big picture of the tangling isn’ t clear

Difficult to change
Have to find all the code involved...
...and be sure to change it consistently
...and be sure not to break it by accident

Inefficient when crosscuting code is not needed

11

Aspect)™

Aspectd is a small, well-integrated extension to
Java

Based on the 1997 PhD thesis by Christina Lopes, A
Language Framework for Distributed Programming

AspectdJ modularizes crosscutting concerns

That is, code for one aspect of the program (such as
tracing) is collected together in one place

The Aspectd compiler is free and open source
Aspectd works with JBuilder, Forte, Eclipse, etc.

Best online writeup: http://www.eclipse.org/aspectj/
doc/released/progguide/starting-aspectj.html

Parts of this lecture were taken from the above-paper

12

Terminology

A join point is a well-defined point in the program flow
A pointcut is a group of join points
Advice is code that is executed at a pointcut

Introduction modifies the members of a class and the
relationships between classes

An aspect is a module for handling crosscutting
concerns

Aspects are defined in terms of pointcuts, advice, and
introduction

Aspects are reusable and inheritable
Each of these terms will be discussed in greater detail

13

The Figure Element example

Display FgureBement

Figure
¢ < factory > » |]

+makePoint()
| +makeline()

Example |

A pointcut named move that chooses various method
calls:

pointcut move():
call(void FigureElement.setXY(int,int))
call(void Point.setX(int))
call(void Point.setY(int))
call(void Line.setP1(Point))
call(void Line.setP2(Point));

Advice (code) that runs before the move pointcut:

before(): move() {
System.out.printin("About to move”);}

Advice that runs after the move pointcut:

after(): move() {
System.out.println("Just successfully moved”);}

15

Join points

A join point is a well-defined point in the program flow
We want to execute some code (“advice”) each time a join
point is reached
We do not want to clutter up the code with explicit indicators
saying “This is a join point”

AspectJ provides a syntax for indicating these join points “from
outside” the actual code

A join point is a point in the program flow “where
something happens”

Examples:
When a method is called
When an exception is thrown
When a variable is accessed

Pointcuts

Pointcut definitions consist of a left-hand side and a
right-hand side, separated by a colon

The left-hand side consists of the pointcut name and the
pointcut parameters (i.e. the data available when the events
happen)

The right-hand side consists of the pointcut itself

Example pointcut:

pointcut setter(): call(void setX(int));
The name of this pointcut is setter
The pointcut has no parameters
The pointcut itself is call(void setX(int))

The pointcut refers to any time the void setX(int) method is
called

Example pointcut designators |

When a particular method body executes:
execution(void Point.setX(int))

When a method is called:
call(void Point.setX(int))

When an exception handler executes:
handler(ArrayOutOfBoundsException)

When the object currently executing (i.e. this) is
of type SomeType:

this(SomeType)

18

Example pointcut designators II

When the target object is of type SomeType
target(SomeType)

When the executing code belongs to class
MyClass

within(MyClass)

When the join point is in the control flow of a call to
a Test's no-argument main method

cflow(call(void Test.main()))

19

Pointcut designator wildcards

It is possible to use wildcards to declare
pointcuts:

execution(* *(..))

Chooses the execution of any method regardless
of return or parameter types

call(* set(..))

Chooses the call to any method named set
regardless of return or parameter type

In case of overloading there may be more than
one such set method; this pointcut picks out calls

to all of them
20

Pointcut designators based on types

You can select elements based on types, e.g.

execution(int *())

Chooses the execution of any method with no parameters
that returns an int

call(* setY(long))

Chooses the call to any setY method that takes a long as an
argument, regardless of return type or declaring type

call(* Point.setY(int))
Chooses the call to any of Point’ s setY methods that take
an int as an argument, regardless of return type
call(*.new(int, int))

Chooses the call to any classes’ constructor, so long as it
takes exactly two ints as arguments
21

Pointcut designator composition

Pointcuts compose through the operations or (“| | ”),
and (“&&"”) and not (“!")

Examples:

target(Point) && call(int *())
Chooses any call to an int method with no arguments on an
instance of Point, regardless of its name
call(* *(..)) && (within(Line) | | within(Point))
Chooses any call to any method where the call is made from the
code in Point’ s or Line’ s type declaration
within(*) && execution(*.new(int))
Chooses the execution of any constructor taking exactly one int
argument, regardless of where the call is made from
Ithis(Point) && call(int *(..))
Chooses any method call to an int method when the executing

object is any type except Point -

Pointcut designators based on modifiers

call(public * *(..))

Chooses any call to a public method

execution(!static * *(..))
Chooses any execution of a non-static method

execution(public !static * *(..))

Chooses any execution of a public, non-static
method

Pointcut designators can be based on interfaces
as well as on classes

23

Example |, repeated

A pointcut named move that chooses various method
calls:

pointcut move():
call(void FigureElement.setXY(int,int))
call(void Point.setX(int))
call(void Point.setY(int))
call(void Line.setP1(Point))
call(void Line.setP2(Point));

Advice (code) that runs before the move pointcut:

before(): move() {
System.out.printin("About to move”); }

Advice that runs after the move pointcut:

after(): move() {
System.out.printin("Just successfully moved”); }

24

Kinds of advice

Aspectd has several kinds of advice:

Before advice runs as a join point is reached, before
the program proceeds with the join point

After advice on a particular join point runs after the
program proceeds with that join point

after returning advice is executed after a method returns
normally

after throwing advice is executed after a method returns by
throwing an exception

after advice is executed after a method returns, regardless

of whether it returns normally or by throwing an exception
Around advice on a join point runs as the join point is
reached, and has explicit control over whether the
program proceeds with the join point

25

Example Il, with parameters

You can access the context of the join point:

pointcut setXY(FigureElement fe, int x, int y):
call(void FigureElement.setXY(int, int))
&& target(fe)
&& args(x, y);

after(FigureElement fe, int x, int y) returning: setXY(fe, x, y) {
System.out.println(fe + "moved to (" + x + ", " +y + ").");
3

20

Introduction

An introduction is a member of an aspect, but it
defines or modifies a member of another type
(class). With introduction we can

add methods to an existing class

add fields to an existing class

extend an existing class with another

implement an interface in an existing class

convert checked exceptions into unchecked
exceptions

27

Example introduction

aspect CloneablePoint {

declare parents: Point implements Cloneable;

declare soft: CloneNotSupportedException:
execution(Object clone());

Object Point.clone() { return super.clone(); }

}

28

Approximate syntax

An aspect is: aspect nameOfAspect { body }
An aspect contains introductions, pointcuts, and advice

A pointcut designator is: when(signature)
The signature includes the return type
The “when” is call, handler, execution, etc.

A named pointcut designator is:
name(parameters): pointcutDesignator

Advice is:
adviceType(parameters). pointcutDesignator

{ body }
Introductions are basically like normal Java code

29

Example aspect |

aspect PointWatching {
private Vector Point.Watchers = new Vector();

public static void addWatcher(Point p, Screen s) {
p.Watchers.add(s);

}

public static void removeWatcher(Point p, Screen s) {
p.Watchers.remove(s);

}

static void updateWatcher(Point p, Screen s) {

s.display(p);
3

// continued on next slide

30

Example aspect I

// continued from previous slide

pointcut changes(Point p): target(p) && call(void
Point.set*(int));

after(Point p): changes(p) {
lterator iter = p.Watchers.iterator();
while (iter.hasNext()) {
updateWatcher(p, (Screen)iter.next());

}
}
}

31

Simple tracing

aspect SimpleTracing {
pointcut tracedCall():
call(void FigureElement.draw(GraphicsContext));

before(): tracedCall() {
System.out.println("Entering: " + thisJoinPoint);

}
}

32 32

Checking pre- and post-conditions

aspect PointBoundsChecking {

pointcut setX(int x):
(call(void FigureElement.setXY(int, int)) && args(x, *))
| | (call(void Point.setX(int)) && args(x));

pointcut setY(int y): |
(call(void FigureElement.setXY(int, int)) && args(*, y))
| | (call(void Point.setY(int)) && args(y));

before(int x): setX(x) {
if (X <MIN_X || x>MAX_X)
throw new lllegalArgumentException(“x is out of bounds.");

3

before(int y): setY(y) {
if (y<MIN_Y []y>MAXY)
throw new lllegalArgumentException("y is out of bounds.");

33 33

Updates

The preceding slides, while accurate enough, do
not reflect the most recent changes in AspectJ
Good reference: The AspectJ™ 5

Development Kit Developer's Notebook

http://www.eclipse.org/aspectj/doc/released/
adk15notebook/

34 34

Concluding remarks

Aspect-oriented programming (AOP) is a new
paradigm--a new way to think about programming

AOP is somewhat similar to event handling, where the
“events” are defined outside the code itself

Aspectd is not itself a complete programming language,
but an adjunct to Java

Aspectd does not add new capabilities to what Java can
do, but adds new ways of modularizing the code

Aspectd is free, open source software

Like all new technologies, AOP may--or may not--catch
on in a big way

35

