
Aspect-Oriented Programming

Harald Gall
University of Zurich
seal.ifi.uzh.ch/ase

Source:
http://www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html

2

Programming paradigms
n  Procedural programming

n  Executing a set of commands in a given sequence
n  Fortran, C, Cobol

n  Functional programming
n  Evaluating a function defined in terms of other functions
n  Lisp, ML, Scheme

n  Logic programming
n  Proving a theorem by finding values for the free variables
n  Prolog

n  Object-oriented programming (OOP)
n  Organizing a set of objects, each with its own responsibilities
n  Smalltalk, Java, C++ (to some extent)

n  Aspect-oriented programming (AOP)
n  Executing code whenever a program shows certain behaviors
n  AspectJ (a Java extension)
n  Does not replace O-O programming, but rather complements it

3

good modularity

n  XML parsing in org.apache.tomcat
n  red shows relevant lines of code
n  nicely fits in one box

XML parsing

4

good modularity

n  URL pattern matching in org.apache.tomcat
n  red shows relevant lines of code
n  nicely fits in two boxes (using inheritance)

URL pattern matching	

5

problems like…

n  where is logging in org.apache.tomcat
n  red shows lines of code that handle logging
n  not in just one place
n  not even in a small number of places

logging is not modularized	

6

problems like…

HTTPRequest	

HTTPResponse	

Servlet	

getCookies()	

getRequestURI()(doc)	

getSession()���
getRequestedSessionId()	

...	

getRequest()	

setContentType(contentType)	

getOutptutStream()���
setSessionId(id)	

...	

SessionInterceptor	

requestMap(request)	

beforeBody(req, resp)	

...	

Session	

getAttribute(name)	

setAttribute(name, val)	

invalidate()	

...	

session tracking is not modularized	

7

The problem of crosscutting concerns
n  critical aspects of large systems do not fit in traditional

modules
n  logging, error handling
n  synchronization
n  security
n  power management
n  memory management
n  performance optimizations

n  tangled code has a cost
n  difficult to understand
n  difficult to change
n  increases with size of system
n  maintenance costs are huge

n  good programmers work hard to get rid of tangled code
n  the last 10% of the tangled code causes 90% of the

development and maintenance headaches

logging, security, optimizations	

8 CASCON '04 8	

The AOP idea
n  crosscutting is inherent in complex systems
n  crosscutting concerns

n  have a clear purpose
n  have a natural structure

n  defined set of methods, module boundary crossings, points
of resource utilization, lines of dataflow…

n  so, let’s capture the structure of crosscutting
concerns explicitly...
n  in a modular way
n  with linguistic and tool support

n  aspects are
n  well-modularized crosscutting concerns

n  Aspect-Oriented Software Development: AO
support throughout lifecycle

aspect-oriented programming

9

Example
n  class Fraction {

 int numerator;
 int denominator;
 ...
 public Fraction multiply(Fraction that) {
 traceEnter("multiply", new Object[] {that});
 Fraction result = new Fraction(
 this.numerator * that.numerator,
 this.denominator * that.denominator);
 result = result.reduceToLowestTerms();
 traceExit("multiply", result);
 return result;
 }
 ...
}

n  Now imagine similar code in
every method you might want to
trace

10

Logging Example
import com.foo.Bar; 	
// Import log4j classes. 	
import org.apache.log4j.Logger; 	
import org.apache.log4j.BasicConfigurator; 	
	
public class MyApp { 	

	// Define a static logger variable so that it references the 	
	// Logger instance named "MyApp". 	
	static Logger logger = Logger.getLogger(MyApp.class); 	
		
	public static void main(String[] args) { 	

	// Set up a simple configuration that logs on the console. 	
	BasicConfigurator.configure(); 	
	 		
	logger.setLevel(Level.DEBUG); // optional if log4j.properties not used 	
	// Possible levels: TRACE, DEBUG, INFO, WARN, ERROR, and FATAL	
	 		
	logger.info("Entering application."); 	
	Bar bar = new Bar(); 	
	bar.doIt(); 	
	logger.info("Exiting application."); 	

	} 	
}	

11

Consequences of crosscutting code

n  Redundant code
n  Same fragment of code in many places

n  Difficult to reason about
n  No explicit structure
n  The big picture of the tangling isn’t clear

n  Difficult to change
n  Have to find all the code involved...
n  ...and be sure to change it consistently
n  ...and be sure not to break it by accident

n  Inefficient when crosscuting code is not needed

12

AspectJTM

n  AspectJ is a small, well-integrated extension to
Java
n  Based on the 1997 PhD thesis by Christina Lopes, A

Language Framework for Distributed Programming
n  AspectJ modularizes crosscutting concerns

n  That is, code for one aspect of the program (such as
tracing) is collected together in one place

n  The AspectJ compiler is free and open source
n  AspectJ works with JBuilder, Forté, Eclipse, etc.

n  Best online writeup: http://www.eclipse.org/aspectj/
doc/released/progguide/starting-aspectj.html
n  Parts of this lecture were taken from the above paper

13

Terminology

n  A join point is a well-defined point in the program flow
n  A pointcut is a group of join points
n  Advice is code that is executed at a pointcut
n  Introduction modifies the members of a class and the

relationships between classes
n  An aspect is a module for handling crosscutting

concerns
n  Aspects are defined in terms of pointcuts, advice, and

introduction
n  Aspects are reusable and inheritable

n  Each of these terms will be discussed in greater detail

14

The Figure Element example

15

Example I

n  A pointcut named move that chooses various method
calls:
n  pointcut move():

 call(void FigureElement.setXY(int,int)) ||
 call(void Point.setX(int)) ||
 call(void Point.setY(int)) ||
 call(void Line.setP1(Point)) ||
 call(void Line.setP2(Point));

n  Advice (code) that runs before the move pointcut:
n  before(): move() {

 System.out.println("About to move");}

n  Advice that runs after the move pointcut:
n  after(): move() {

 System.out.println("Just successfully moved");}

16

Join points
n  A join point is a well-defined point in the program flow

n  We want to execute some code (“advice”) each time a join
point is reached

n  We do not want to clutter up the code with explicit indicators
saying “This is a join point”

n  AspectJ provides a syntax for indicating these join points “from
outside” the actual code

n  A join point is a point in the program flow “where
something happens”
n  Examples:

n  When a method is called
n  When an exception is thrown
n  When a variable is accessed

17

Pointcuts
n  Pointcut definitions consist of a left-hand side and a

right-hand side, separated by a colon
n  The left-hand side consists of the pointcut name and the

pointcut parameters (i.e. the data available when the events
happen)

n  The right-hand side consists of the pointcut itself
n  Example pointcut:

pointcut setter(): call(void setX(int));
n  The name of this pointcut is setter
n  The pointcut has no parameters
n  The pointcut itself is call(void setX(int))
n  The pointcut refers to any time the void setX(int) method is

called

18

Example pointcut designators I
n  When a particular method body executes:

n  execution(void Point.setX(int))

n  When a method is called:
n  call(void Point.setX(int))

n  When an exception handler executes:
n  handler(ArrayOutOfBoundsException)

n  When the object currently executing (i.e. this) is

of type SomeType:
n  this(SomeType)

19

Example pointcut designators II
n  When the target object is of type SomeType

n  target(SomeType)

n  When the executing code belongs to class
MyClass
n  within(MyClass)

n  When the join point is in the control flow of a call to

a Test's no-argument main method
n  cflow(call(void Test.main()))

20

Pointcut designator wildcards

n  It is possible to use wildcards to declare
pointcuts:
n  execution(* *(..))

n  Chooses the execution of any method regardless
of return or parameter types

n  call(* set(..))
n  Chooses the call to any method named set

regardless of return or parameter type
n  In case of overloading there may be more than

one such set method; this pointcut picks out calls
to all of them

21

Pointcut designators based on types

n  You can select elements based on types, e.g.
n  execution(int *())

n  Chooses the execution of any method with no parameters
that returns an int

n  call(* setY(long))
n  Chooses the call to any setY method that takes a long as an

argument, regardless of return type or declaring type

n  call(* Point.setY(int))
n  Chooses the call to any of Point’s setY methods that take

an int as an argument, regardless of return type

n  call(*.new(int, int))
n  Chooses the call to any classes’ constructor, so long as it

takes exactly two ints as arguments

22

Pointcut designator composition

n  Pointcuts compose through the operations or (“||”),
and (“&&”) and not (“!”)

n  Examples:
n  target(Point) && call(int *())

n  Chooses any call to an int method with no arguments on an
instance of Point, regardless of its name

n  call(* *(..)) && (within(Line) || within(Point))
n  Chooses any call to any method where the call is made from the

code in Point’s or Line’s type declaration

n  within(*) && execution(*.new(int))
n  Chooses the execution of any constructor taking exactly one int

argument, regardless of where the call is made from

n  !this(Point) && call(int *(..))
n  Chooses any method call to an int method when the executing

object is any type except Point

23

Pointcut designators based on modifiers

n  call(public * *(..))
n  Chooses any call to a public method

n  execution(!static * *(..))
n  Chooses any execution of a non-static method

n  execution(public !static * *(..))
n  Chooses any execution of a public, non-static

method

n  Pointcut designators can be based on interfaces
as well as on classes

24

Example I, repeated

n  A pointcut named move that chooses various method
calls:
n  pointcut move():

 call(void FigureElement.setXY(int,int)) ||
 call(void Point.setX(int)) ||
 call(void Point.setY(int)) ||
 call(void Line.setP1(Point)) ||
 call(void Line.setP2(Point));

n  Advice (code) that runs before the move pointcut:
n  before(): move() {

 System.out.println("About to move"); }

n  Advice that runs after the move pointcut:
n  after(): move() {

 System.out.println("Just successfully moved"); }

25

Kinds of advice

n  AspectJ has several kinds of advice:
n  Before advice runs as a join point is reached, before

the program proceeds with the join point
n  After advice on a particular join point runs after the

program proceeds with that join point
n  after returning advice is executed after a method returns

normally
n  after throwing advice is executed after a method returns by

throwing an exception
n  after advice is executed after a method returns, regardless

of whether it returns normally or by throwing an exception
n  Around advice on a join point runs as the join point is

reached, and has explicit control over whether the
program proceeds with the join point

26

Example II, with parameters

n  You can access the context of the join point:

n  pointcut setXY(FigureElement fe, int x, int y):
 call(void FigureElement.setXY(int, int))
 && target(fe)
 && args(x, y);

n  after(FigureElement fe, int x, int y) returning: setXY(fe, x, y) {
 System.out.println(fe + " moved to (" + x + ", " + y + ").");
}

27

Introduction

n  An introduction is a member of an aspect, but it
defines or modifies a member of another type
(class). With introduction we can
n  add methods to an existing class
n  add fields to an existing class
n  extend an existing class with another
n  implement an interface in an existing class
n  convert checked exceptions into unchecked

exceptions

28

Example introduction

n  aspect CloneablePoint {

 declare parents: Point implements Cloneable;

 declare soft: CloneNotSupportedException:
 execution(Object clone());

 Object Point.clone() { return super.clone(); }
}

29

Approximate syntax
n  An aspect is: aspect nameOfAspect { body }

n  An aspect contains introductions, pointcuts, and advice

n  A pointcut designator is: when(signature)
n  The signature includes the return type
n  The “when” is call, handler, execution, etc.

n  A named pointcut designator is:

 name(parameters): pointcutDesignator
n  Advice is:

 adviceType(parameters): pointcutDesignator
 { body }
n  Introductions are basically like normal Java code

30

Example aspect I
n  aspect PointWatching {

 private Vector Point.Watchers = new Vector();

 public static void addWatcher(Point p, Screen s) {
 p.Watchers.add(s);
 }

 public static void removeWatcher(Point p, Screen s) {
 p.Watchers.remove(s);
 }

 static void updateWatcher(Point p, Screen s) {
 s.display(p);
 }
// continued on next slide

31

Example aspect II
n  // continued from previous slide

 pointcut changes(Point p): target(p) && call(void
Point.set*(int));

 after(Point p): changes(p) {
 Iterator iter = p.Watchers.iterator();
 while (iter.hasNext()) {
 updateWatcher(p, (Screen)iter.next());
 }
 }
}

32 32

Simple tracing

aspect SimpleTracing {
 pointcut tracedCall():
 call(void FigureElement.draw(GraphicsContext));

 before(): tracedCall() {
 System.out.println("Entering: " + thisJoinPoint);
 }
}

33 33

Checking pre- and post-conditions
aspect PointBoundsChecking {

 pointcut setX(int x):
 (call(void FigureElement.setXY(int, int)) && args(x, *))
 || (call(void Point.setX(int)) && args(x));

 pointcut setY(int y):|
 (call(void FigureElement.setXY(int, int)) && args(*, y))
 || (call(void Point.setY(int)) && args(y));

 before(int x): setX(x) {
 if (x < MIN_X || x > MAX_X)
 throw new IllegalArgumentException("x is out of bounds.");
 }

 before(int y): setY(y) {
 if (y < MIN_Y || y > MAX_Y)
 throw new IllegalArgumentException("y is out of bounds.");
 }
}

34 34

Updates

n  The preceding slides, while accurate enough, do
not reflect the most recent changes in AspectJ

n  Good reference: The AspectJTM 5
Development Kit Developer's Notebook
n  http://www.eclipse.org/aspectj/doc/released/

adk15notebook/

35

Concluding remarks

n  Aspect-oriented programming (AOP) is a new
paradigm--a new way to think about programming

n  AOP is somewhat similar to event handling, where the
“events” are defined outside the code itself

n  AspectJ is not itself a complete programming language,
but an adjunct to Java

n  AspectJ does not add new capabilities to what Java can
do, but adds new ways of modularizing the code

n  AspectJ is free, open source software
n  Like all new technologies, AOP may--or may not--catch

on in a big way

