
Department of Informatics!

Martin Glinz 
  

Software Quality 
  
Chapter 7  
  

Quality in Agile Development"

© 2014-2016 Martin Glinz. All rights reserved. Making digital or hard copies of all or part of this work for educational, non-commercial use is permitted. Using this material
for any commercial purposes and/or teaching is not permitted without prior, written consent of the author. Note that some images may be copyrighted by third parties."

Software Quality "7. Quality in Agile Development "© 2016 Martin Glinz " 2"

7.1 "The Role of Software Life Cycle Models"

7.2 "Agile Software Quality"

"

3"

Quality and software life cycle models"

❍  Classic software quality management assumes a classic
software life cycle model"
●  Phased, waterfall-style model with single delivery, or"
●  Iterative, evolutionary model with incremental delivery;  

typical delivery cycle > 6 weeks"

❍  Focus on comprehensive documentation"
❍  Testing and integration are phases in the development

cycle"

❍  Upfront quality planning"

Software Quality "7. Quality in Agile Development "© 2016 Martin Glinz "

4"

Quality in evolutionary software development"

❍  Exploiting the benefits of shorter feedback cycles"
❍  Less upfront planning required"

❍  Can adapt to changing quality needs"
❍  Otherwise: classic software quality management"

Software Quality "7. Quality in Agile Development "© 2014 Martin Glinz "

5"

Agile development is different"

Agile software development is characterized by"
❍  Iterative development in fixed-length cycles"

❍  Cycle length typically 1-6 weeks"
❍  Focus on programming"
❍  Little documentation"
❍  No or little upfront planning; focus on refactoring"
❍  Requirements specified by stories and test cases"

❍  Continuous testing and integration"

Software Quality "7. Quality in Agile Development "© 2014 Martin Glinz "

Software Quality "7. Quality in Agile Development "© 2016 Martin Glinz " 6"

7.1 "The Role of Software Life Cycle Models"

7.2 "Agile Software Quality"

"

7"

Quality in agile software development"

❍  Opportunities:"
●  Very short feedback cycles"
●  Focus on people: quality culture instead of document-based

quality management"
●  Early prototypes"

❍  Problems:"
●  Frequent re-validation required"
●  Not all quality problems can be fixed by refactoring"
●  Real stakeholders have to be represented by product owner

or on-site customer representative"

Software Quality "7. Quality in Agile Development "© 2016 Martin Glinz "

8"

Agile quality management"

❍  Feedback-oriented development"
●  Customer representative or product owner on site"
●  Small increments – rapid feedback"
●  Continuous integration"
●  Regularly held retrospectives"

❍  People-focused quality culture "
●  Quality over functionality"
●  Realistic planning and workload"
●  Joint responsibility for results"
●  Team as a learning organization"
●  Intrinsically motivated developers work faster and better"

Software Quality "7. Quality in Agile Development "© 2016 Martin Glinz "

9"

Agile quality management – 2"

❍  Testing from the very beginning"
●  Tests define required system behavior"
●  Tests are written prior to coding or in parallel with coding"
●  Continuous regression testing"

❍  Catching faults early"
●  Inspection of code prior to committing"
●  Pair programming (⇒ continuous inspection)"
●  Unit testing prior to committing "

❍  Explicit quality improvement"
●  Quality improvement refactorings"

Software Quality "7. Quality in Agile Development "© 2016 Martin Glinz "

10"

Quality problems – Architecture"

❍  Growing a system into an
architectural mess"

❍  Structure follows people structure
instead of problem structure
(Conway’s law*)"

❍  Major architectural mistakes
cannot be fixed by refactoring"

Source: "Morris: Lucky Luke – Auf nach Oklahoma  
"© Ehapa Verlag"

* Conway (1968): How Do Committees Invent?"

The new city has been built in a rapid and
agile fashion – unfortunately, the settlers
forgot to reserve space for streets"

Software Quality "7. Quality in Agile Development "© 2014 Martin Glinz "

11"

Quality problems – Specification by testing"

❍  Specification by testing" "• focuses on required behavior 
" " " " " " " " " " " "• neglects unwanted behavior"

Required
system"
behavior"

Implemented
system"
behavior"

Required, but "
• "not implemented or"
• "wrongly implemented"
behavior is typically detected  
in agile testing"

Not required, but implemented
behavior can be harmful (e.g.,
for security) and is typically not
detected with agile testing"

Software Quality "7. Quality in Agile Development "© 2014 Martin Glinz "

Quality problems – regulatory compliance"

The need for regulatory compliance (for example, in the
healthcare or transportation domains) may"

❍  require a full requirements specification"
❍  require classic system testing"

❍  confine agility to agile design and coding"
"
"

Software Quality "7. Quality in Agile Development "© 2016 Martin Glinz " 12"

13"

Tooling"

Quality-aware agile development is impossible without
adequate tools for"

❍  Configuration management"
❍  Continuous integration"

❍  Test automation"
❍  Problem report management"

Software Quality "7. Quality in Agile Development "© 2014 Martin Glinz "

References"

V. R. Basili, A. J. Turner (1975). Iterative Enhancement: A Practical Technique for Software Development.
IEEE Transactions on Software Engineering SE-1(6):390–396."
K. Beck (2002). Test Driven Development by Example. Boston: Addison-Wesley."
K. Beck (2004). Extreme Programming Explained: Embrace Change. 2nd edition, Boston: Addison-
Wesley."
M. E. Conway (1968). How Do Committees Invent? Datamation 14(4):28–31."
P. Deemer, G. Benefield, C. Larman, B. Vodde (2010). Scrum Primer, Version 2.0. 
http://www.goodagile.com/scrumprimer/scrumprimer20.pdf"
C. Larman, V. R. Basili (2003). Iterative and Incremental Development: A Brief History. IEEE Computer
36(6):47–56."
K. Schwaber (2004). Agile Project Management with Scrum. Microsoft Press."
K. Schwaber, J. Sutherland (2012). Software in 30 Days: How Agile Managers Beat the Odds, Delight
Their Customers, And Leave Competitors In the Dust. New York: John Wiley&Sons."
L. Williams, R.R. Kessler, W. Cunningham, R. Jeffries (2000). Strengthening the Case for Pair
Programming. IEEE Software 17(4):19–25."
H. Wolf, S. Roock, M. Lippert (2005). Extreme Programming: Eine Einführung mit Empfehlungen und
Erfahrungen aus der Praxis. (in German). 2nd edition. Heidelberg: dPunkt."

Software Quality "7. Quality in Agile Development "© 2016 Martin Glinz " 14"

