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Quality and software life cycle models"

❍  Classic software quality management assumes a classic 
software life cycle model"
●  Phased, waterfall-style model with single delivery, or"
●  Iterative, evolutionary model with incremental delivery;  

typical delivery cycle > 6 weeks"

❍  Focus on comprehensive documentation"
❍  Testing and integration are phases in the development 

cycle"

❍  Upfront quality planning"
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Quality in evolutionary software development"

❍  Exploiting the benefits of shorter feedback cycles"
❍  Less upfront planning required"

❍  Can adapt to changing quality needs"
❍  Otherwise: classic software quality management"
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Agile development is different"

Agile software development is characterized by"
❍  Iterative development in fixed-length cycles"

❍  Cycle length typically 1-6 weeks"
❍  Focus on programming"
❍  Little documentation"
❍  No or little upfront planning; focus on refactoring"
❍  Requirements specified by stories and test cases"

❍  Continuous testing and integration"
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Quality in agile software development"

❍  Opportunities:"
●  Very short feedback cycles"
●  Focus on people: quality culture instead of document-based 

quality management"
●  Early prototypes"

❍  Problems:"
●  Frequent re-validation required"
●  Not all quality problems can be fixed by refactoring"
●  Real stakeholders have to be represented by product owner 

or on-site customer representative"
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Agile quality management"

❍  Feedback-oriented development"
●  Customer representative or product owner on site"
●  Small increments – rapid feedback"
●  Continuous integration"
●  Regularly held retrospectives"

❍  People-focused quality culture "
●  Quality over functionality"
●  Realistic planning and workload"
●  Joint responsibility for results"
●  Team as a learning organization"
●  Intrinsically motivated developers work faster and better"
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Agile quality management – 2"

❍  Testing from the very beginning"
●  Tests define required system behavior"
●  Tests are written prior to coding or in parallel with coding"
●  Continuous regression testing"

❍  Catching faults early"
●  Inspection of code prior to committing"
●  Pair programming (⇒ continuous inspection)"
●  Unit testing prior to committing "

❍  Explicit quality improvement"
●  Quality improvement refactorings"
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Quality problems – Architecture"

❍  Growing a system into an 
architectural mess"

❍  Structure follows people structure 
instead of problem structure 
(Conway’s law*)"

❍  Major architectural mistakes 
cannot be fixed by refactoring"

Source: "Morris: Lucky Luke – Auf nach Oklahoma  
"© Ehapa Verlag"

* Conway (1968): How Do Committees Invent?"

The new city has been built in a rapid and 
agile fashion – unfortunately, the settlers 
forgot to reserve space for streets"
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Quality problems – Specification by testing"

❍  Specification by testing" "•   focuses on required behavior 
" " " " " " " " " " " "•   neglects unwanted behavior"

Required 
system"
behavior"

Implemented 
system"
behavior"

Required, but "
• "not implemented or"
• "wrongly implemented"
behavior is typically detected  
in agile testing"

Not required, but implemented 
behavior can be harmful (e.g., 
for security) and is typically not 
detected with agile testing"
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Quality problems – regulatory compliance"

The need for regulatory compliance (for example, in the 
healthcare or transportation domains) may"

❍  require a full requirements specification"
❍  require classic system testing"

❍  confine agility to agile design and coding"
"
"
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Tooling"

Quality-aware agile development is impossible without 
adequate tools for"

❍  Configuration management"
❍  Continuous integration"

❍  Test automation"
❍  Problem report management"
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