
These slides may not be copied or distributed without explicit permission by all original copyright holders

Prof. Dr. Renato Pajarola

Crash Course into

C Language
Low-level programming language

General purpose imperative language
procedures and structures as only way to structure code
and data types

Syntax similar to Java

Typed language with derived data types
but not strongly as explicit casting of types is possible

int
short
long
float
double
char
…

pointers
arrays
structures
unions
…

ANSI-C
Standard language with set of libraries
for I/O, string handling, character
operations, math functions etc.

Simple and compact language
independent of machine architecture

efficient compilation into native machine code

small required run-time library

source code portable

no GUI

C++ extension provides object-oriented
language features

C++

C++ is a general purpose programming
language with a bias towards systems
programming that

is a better C

supports data abstraction

supports object-oriented programming

supports generic programming

Java derived much of its syntax from C
and C++

but Java has fewer low-level facilities

typically compiled into intermediate bytecode for Java VM

Program Structure

Definitions and implementations are
separated into header (.h/.hpp) and
source (.c/.cc/.cpp) files

Encapsulation and modularization is
strongly encouraged by grouping code
into header/source file pairs

header file contains all declarations of global variables,
type definitions, data structures, procedures, objects and
methods

actual implementation of procedures and methods is in the
source file

Quicksort Routines
Header file

/*
 * quicksort.h
 */

void sort_array(float list[], int l, int r);

int partition_array(float list[], int l, int r);

Source file
/*
 * quicksort.cpp
 */

#include "quicksort.h"

void sort_array(float list[], int l, int r)
{
 int pivot_index;

 if (l < r) {
 pivot_index = partition_array(list, l, r);
 sort_array(list, l, pivot_index);
 sort_array(list, pivot_index+1, r);
 }
}

int partition_array(float list[], int l, int r)
{
 float tmp, pivot;
 int i;
 int j;

 pivot = list[l];

 i = l;
 j = r;
 while (1) {
 while (list[j] > pivot)

 j--;
 while (pivot > list[i])

 i++;

 if (i < j) {

 tmp = list[i];

 list[i] = list[j];

 list[j] = tmp;

 /* skip these two elements */
 j--;
 i++;
 } else
 return j;
 }
}

Main Quicksort
Program must contain one main()
function which is called at process startup

/*
 * main.cpp
 */

#include <unistd.h>
#include <stdlib.h>
#include <iostream>

#include "quicksort.h"

#define ARRAY_SIZE 8

using namespace std;

int main(void)
{
 int i;
 float numbers[ARRAY_SIZE];

 /* initialize array of random float numbers */
 srandom(getpid());
 for (i = 0; i < SIZE; i++)

 numbers[i] = random();

 /* quicksort the array */
 sort_array(numbers, 0, SIZE-1);

 /* output result */
 for (i = 0; i < SIZE; i++)

 cout << "Number " << i << ": " << numbers[i] << endl;

 return 0;
}

External Code
External functionality is
imported via header files
#include <header_file>

#include is a preprocessor
directive preparing the source
files for compilation

unistd.h declares the getpid() system function

stdlib.h declares the random number generator functions

iostream declares the standard C++ I/O streams

#define is a preprocessor directive for
symbolic constants

/*
 * main.cpp
 */

#include <unistd.h>
#include <stdlib.h>
#include <iostream>

#include "quicksort.h"

#define ARRAY_SIZE 8

Namespaces
C++ includes a number of standard classes
and libraries

e.g I/O streams, strings or containers (STL)
standard C headers included as <c_name> instead of <_name.h>

Namespaces used to limit scope of symbols
to specific blocks of code

generally to avoid naming collisions
namespace std – space the C++ standard library resides in

Declare namespace usage within scope of
source code or for individual elements
using namespace std; // imports all standard C++ library
 // symbols into the current scope
using std::cout; // import iostream cout only

Compiling and Linking
At compile time only the header
information is needed

only the function and variable definitions need to be
verified

cc -c quicksort.cpp generates quicksort.o object file

include file directories can be specified with compiler flags

At link time the actual object files and/or
libraries are needed

object and libraries are merged and linked into one binary
executable

cc -o sort main.o quicksort.o generates executable

standard libraries are linked automatically

extra libraries are indicated with compiler flags

Control Flow

Sequence of statements terminated by ;
definitions, assignments, procedure calls

blocks of statements within { }

Selection of code blocks
if, else if, else and switch statements

Loops over statement blocks
while, do and for iterations

Recursive calls of procedures

Data Types and Variables
Declaration of variables by type generally
at beginning of code block

float numbers[ARRAY_SIZE];

Range of numeric types is machine dependent
int and float are typically 4 bytes on 32- or 64-bit
systems
can check with sizeof(<type>)
use #include <sys/types.h> or <inttypes.h> for fixed
size numerical types uint8_t, int16_t, uint32_t

C++ strings are ASCII characters and
modifiable

string test = "Hello";
test += " World";

Arithmetic
Arithmetic expressions are based on
implicit type conversion

starts with int → continues with truncated computations

#include <iostream>

using namespace std;

int main(void)
{
 int fahr, celsius;

 /* Fahrenheit-Celsius */
 fahr = 57;
 celsius = (5 / 9 * (fahr - 32));
 cout << "Fahrenheit: " << fahr << " Celsius: " << celsius;

 /* Celsius-Fahrenheit */
 celsius = 23;
 fahr = (9 / 5 * celsius) + 32;
 cout << "Celsius: " << celsius << " Fahrenheit: " << fahr;
}

Convert Fahrenheit to Celsius

Fahrenheit: 57 Celsius: 0
Celsius: 23 Fahrenheit: 55

Functions

Functions are identified via return value
and parameters

void sort_array(float list[], int l, int r);

not part of any class → global functions

Must be defined before being used
just procedure header without code body

Arguments are call-by-value
functions receive a copy of the actual parameters

original cannot be modified inside function

References
Call-by-reference can be enforced by ‘&’

if passed by reference, function can modify original variable

void raiseSalary(Employee &e, int amount);

normal behavior in Java on objects

C++ references also work on basic types
void swap(int &a, int &b) {

 int tmp = a;

 a = b;

 b = tmp;

}

use references in C++ when function needs to modify
parameters

Class Headers
The class definition only contains the
declaration of members and methods

implementation is separated in the source file

Classes have public and private sections
class Employee {
public:
 Employee();
 Employee(string input);
 string getName() const;
private:
 string name;
};
protected – access by members and friends of derived
classes

Class Implementation

Methods are implemented in the source file
methods are prefixed by the class name and :: for correct
class association

Employee::Employee {
 name = "Muster";
}
Employee::Employee(string input) {
 name = input;
}
string Employee::getName() const {
 return name;
}

Objects
In C++ variables hold values not
references

definition of variables causes memory to be allocated and a
constructor to be called

Employee admin;
object is constructed using default constructor

causes only uninitialized reference in Java

Assignment of variables causes copy of
value

similar to clone in Java
no two variables for the same object

need to use pointers for that

Object variable can only hold one
particular type

Inheritance

C++ syntax similar to Java
use of : public instead of extend to denote inheritance

class Manager : public Employee {
public:
 Manager(string nm, int salary, string dept);
 virtual void print() const; // dynamically bound
private:
 string department;
};

Unless specified with virtual, methods
cannot be dynamically bound

Superclass Methods

Invokation of superclass constructor done
outside of constructor code body
Manager::Manager(string nm, int salary, string dept)
: Employee(nm, salary) // initialization list
{
 department = dept;
}

Reference to superclass via ::operator
void Manager::print() const {
 Employee::print(); // call superclass method
 cout << department << endl;
}

Polymorphism
C++ variable of type T holds objects only
of this type

variables hold value not reference to object

Polymorphism requires use of pointer
variable type T*

T *p; can point to T or any subclass of T

Employee *e = new Manager("Steve", 100000, "HW");

Dynamic binding supported via pointers only
vector<Employee*> staff;
...
for (i = 0; i < staff.size(); i++)
 staff[i]->print();

Pointers

Variables hold values
float x; writes the float representation of 0.5
x = 0.5; into the 4 bytes of variable x

Pointers declared by ‘*’ indicate memory
addresses

float *px; is a memory address of a float
px = &x; address given by the ‘&’ operator

Pointers are dereferenced again by ‘*’ to
get value

float y;
y = *px + 1.0;

Pointers as Reference
Similar to object variables in Java,
pointers can be set to NULL and initialized
with new

Employee *staff = NULL; // always initialize !
Employee *chief = new Employee("Steve Jobs");

staff = chief; // two variables pointing to the same
delete chief; // leaves staff dangling

To access object, point must be
dereferenced

string boss = (*chief).getName();

or use the arrow operator ‘->’
string boss = chief->getName();

Arrays

Defined as type name[dimension]
start index is at 0

Access via name[expression]
where expression is an integer expression

implicit type cast converts any expression to integer index

array bounds are not implicitly checked

Represents continuous block of memory
number of used bytes is dimension * sizeof(type)

variable name indicates start of array’s memory

name is in fact a memory address (pointer)

Pointer-Array Equivalence
NULL indicates a void pointer

not pointing to any valid memory address (=0)
int *pnum = NULL; initialize pointers to NULL for safety

Allocation via new and delete[]
malloc, calloc, free in standard C

Array variables are pointers
char string[5]; pointer to fixed sized array
char *pc; arbitrary pointer to a char
pc = string;

Array indexing is dereferencing
pc = &string[2]; point to third element in array
*pc = string[3]; copy value to location at pc

Books

The C++ Programming Language, by
Bjarne Stroustrup, Addison Wesley, 2000

The C Programming Language – ANSI C,
by Brian Kernighan and Dennis Ritchie,
Prentice Hall, 1988

These slides may not be copied or distributed without explicit permission by all original copyright holders

