Crash Course into

C/C++

Prof. Dr. Renato Pajarola

These slides may not be copied or distributed without explicit permission by all original copyright holders

C Language

* Low-level programming language
* General purpose imperative language

o procedures and structures as only way to structure code
and data types

* Syntax similar to Java

* Typed language with derived data types

o but not strongly as explicit casting of types is possible

int

short pointers
long arrays
float structures
double unions
char

ANSI-C

* Standard language with set of libraries
for I/0O, string handling, character
operations, math functions etc.

* Simple and compact language

o independent of machine architecture

o efficient compilation into native machine code
o small required run-time library

o source code portable

o no GUI

* C++ extension provides object-oriented
language features

C++

* C++ is a general purpose programming
language with a bias towards systems
programming that

o is a better C
o supports data abstraction
o supports object-oriented programming

o supports generic programming

* Java derived much of its syntax from C
and C++

o but Java has fewer low-level facilities
o typically compiled into intermediate bytecode for Java VM

Program Structure

* Definitions and implementations are
separated into header (.h/.hpp) and
source (.c/.cc/.cpp) files

* Encapsulation and modularization is
strongly encouraged by grouping code
into header/source file pairs

o header file contains all declarations of global variables,
type definitions, data structures, procedures, objects and
methods

o actual implementation of procedures and methods is in the
source file

Quicksort Routines

. J Header flle }nt partition_array(float list[], int 1, int r)
/% float tmp, pivot;

* quicksort.h int 1ij;
*/ int J;

void sort_array(float list[], int 1, int r); pivot = list[1];

int partition_array(float list[], int 1, int r); i 1-
j=r;
while (1) {

° Source flle while (list[3j] > pivot)

J--5
while (pivot > list[i])
1++;

/*
* quicksort.cpp
*/ : : :
1f (1 < 3) {
#include "quicksort.h" tmp = list[i];
list[1] = list[]];
void sort_array(float list[], int 1, int r) list[j] = tmp;
{
int pivot_index; /* skip these two elements */
if (< { -~ . e
pivot_index = partition_array(list, 1, r); 1 ?
sort_array(list, 1, pivot_index); }else
sort_array(list, pivot_index+1, r); return j;

}

Main Quicksort

* Program must contain one main()
function which is called at process startup

/* int main(void)
* main.cpp {
*/ int 1;
float numbers[ARRAY_SIZE];
#include <unistd.h>
#include <stdlib.h> /* initialize array of random float numbers */
#include <iostream> srandom(getpid());
for (1 = 0; 1 < SIZE; 1++)
#include "quicksort.h" numbers[i] = random();

#define ARRAY_SIZE 8 /* quicksort the array */
sort_array(numbers, 0, SIZE-1);
using namespace std;
/* output result */
for (1 = 0; 1 < SIZE; 1++)
cout << "Number " << 1 <<

<< numbers[i] << endl;

return 0;

C/C++

External Code

/*

* External functionality is ,, matn-cpp
imported via header files relude <umietd. b
#include <stdlib.h>

o #include <header file> #include <iostream>

* #include IS @ preprocessor #include "quicksort.h’
directive preparing the source - #define arrav.size &
files for compilation

o unistd.h declares the getpid() system function
o stdlib.h declares the random number generator functions
o jostream declares the standard C++ I/O streams

* #define iS a preprocessor directive for
symbolic constants

Namespaces

* C++ includes a number of standard classes

and libraries

o e.g I/O streams, strings or containers (STL)
o standard C headers included as <c_name> instead of < _name.h>

Namespaces used to limit scope of symbols

to specific blocks of code

o generally to avoid naming collisions
o namespace std - space the C++ standard library resides in

Declare namespace usage within scope of
source code or for individual elements

using namespace std; // imports all standard C++ library
// symbols into the current scope

using std::cout; // 1mport 1iostream cout only

Compiling and Linking

* At compile time only the header

information is needed

o only the function and variable definitions need to be
verified

o cc -c quicksort.cpp generates quicksort.o object file
o include file directories can be specified with compiler flags

* At link time the actual object files and/or
libraries are needed

o object and libraries are merged and linked into one binary
executable

°c cc -0 sort main.o quicksort.o generates executable

o standard libraries are linked automatically
o extra libraries are indicated with compiler flags

Control Flow

* Sequence of statements terminated by ;

o definitions, assignments, procedure calls
o blocks of statements within { }

+ Selection of code blocks

o if, else if, else and switch statements

* Loops over statement blocks

o while, do and for iterations

* Recursive calls of procedures

Data Types and Variables

* Declaration of variables by type generally

at beginning of code block
o float numbers[ARRAY SIZE];

* Range of numeric types is machine dependent

o int and float are typically 4 bytes on 32- or 64-bit
systems
can check with sizeof (<type>)

use #include <sys/types.h> Or <inttypes.h> for fixed
size numerical types uint8 t, intl6é t, uint32 t

* C++ strings are ASCII characters and
modifiable

o string test = "Hello";
o test += " World";

Arithmetic

* Arithmetic expressions are based on

implicit type conversion
o starts with int — continues with truncated computations

#1include <iostream>
using namespace std;

int main(void)

{

int fahr, celsius; Convert Fahrenheit to Celsius

/* Eahrenheit-Celsius */ Fahrenheit: 57 Celsius: 0
fahr = 57; Celsius: 23 Fahrenheit: 55
celsius = (5 /7 9 * (fahr - 32));

cout << "Fahrenheit: " << fahr << " Celsius: " << celsius;

/* Celsius-Fahrenheit */

celsius = 23;

fahr = (9 / 5 * celsius) + 3Z;
cout << "Celsius: " << celsius <<

Fahrenheit: << fahr;

Functions

+* Functions are identified via return value
and parameters

o void sort array(float list[], int 1, int r);

o not part of any class — global functions

* Must be defined before being used

o just procedure header without code body

* Arguments are call-by-value

o functions receive a copy of the actual parameters

o original cannot be modified inside function

References

* Call-by-reference can be enforced by ‘&’

o if passed by reference, function can modify original variable

o void raiseSalary(Employee &e, int amount);

o normal behavior in Java on objects

* C++ references also work on basic types

void swap(int &a, int &b) {
int tmp = a;
a = b;
= tmp;
}

o use references in C++ when function needs to modify
parameters

Class Headers

* The class definition only contains the
declaration of members and methods

o implementation is separated in the source file

* Classes have public and private sections

class Employee {
public:
Employee();
Employee(string input);
string getName() const;
private:
string name;
}i
o protected — access by members and friends of derived
classes

Class Implementation

* Methods are implemented in the source file

o methods are prefixed by the class name and :: for correct
class association

Employee: :Employee {
name = "'Muster';

}

Employee: :Employee(string input) {
name = 1input;

}

string Employee::getName() const {
return name;

}

ODbjects

* In C++ variables hold values not

references

o definition of variables causes memory to be allocated and a
constructor to be called

Employee admin;
o object is constructed using default constructor

o causes only uninitialized reference in Java

* Assignment of variables causes copy of
value

o similar to clone in Java

o no two variables for the same object
o need to use pointers for that

* Object variable can only hold one
particular type

Inheritance

* C++ syntax similar to Java

o use of : public instead of extend to denote inheritance

class Manager : public Employee {
public:
Manager(string nm, int salary, string dept);
virtual void print() const; // dynamically bound
private:
string department;

i
* Unless specified with virtual, methods
cannot be dynamically bound

Superclass Methods

* Invokation of superclass constructor done
outside of constructor code body

Manager: :Manager(string nm, int salary, string dept)
: Employee(nm, salary) // 1initialization list

{
department = dept;

}
* Reference to superclass via ::operator

volid Manager::print() const {
Employee: :print(); // call superclass method

cout << department << endl;

}

Polymorphism

* C++ variable of type T holds objects only
of this type

o variables hold value not reference to object

* Polymorphism requires use of pointer
variable type T+*

o T *p; canh point to T or any subclass of T

Employee *e = new Manager(Steve", 100000, "HW");

* Dynamic binding supported via pointers only

vector<Employee*> staff;

for (1 = 0; 1 < staff.size(); 1i++)
staff[i]->print();

Pointers

+ VVariables hold values

float x; writes the float representation of 0.5
x = 0.5; into the 4 bytes of variable x

* Pointers declared by '+’ indicate memory
addresses

float *px; is @ memory address of a float
pX = &X; address given by the ‘&’ operator

* Pointers are dereferenced again by '+’ to

get value

float y;
y = *px + 1.0;

Pointers as Reference

* Similar to object variables in Java,
pointers can be set to NULL and initialized

with new

Employee *staff = NULL; // always initialize !

Employee *chief = new Employee('Steve Jobs");

staff = chief; // two variables pointing to the same

delete chief; // leaves staff dangling

* To access object, point must be
dereferenced

string boss = (*chief).getName();
o or use the arrow operator *->’

string boss = chief->getName();

Arrays

o Defined as type name[dimension]

o start index isat O

* Access via name[expression]

o where expression is an integer expression

o implicit type cast converts any expression to integer index

o array bounds are not implicitly checked

* Represents continuous block of memory

o number of used bytes is dimension * sizeof(type)
o variable name indicates start of array’s memory

o name IS in fact a memory address (pointer)

Pointer-Array Equivalence

* NULL indicates a void pointer

o not pointing to any valid memory address (=0)
o int *pnum = NULL; initialize pointers to NULL for safety

* Allocation via new and delete[]

o malloc, calloc, free in standard C

* Array variables are pointers

char string[5]; pointer to fixed sized array
char *pc; arbitrary pointer to a char
pc = string;

* Array indexing is dereferencing

pc = &string[2]; point to third element in array
*pc = string[3]; copy value to location at pc

Books

* The C++ Programming Language, by
Bjarne Stroustrup, Addison Wesley, 2000

* The C Programming Language — ANSI C,
by Brian Kernighan and Dennis Ritchie,
Prentice Hall, 1988

These slides may not be copied or distributed without explicit permission by all original copyright holders

