On the Future of Informatics Departments:

Informatics Research & Education

Manfred Broy

Technische Universität München Institut für Informatik D-80290 Munich, Germany

Universität Zürich, 40 years of ifi, September 2010

The scientific mission ...

- Information is a scientific phenomenon as fundamental as
 - energy (physics)
 - material (chemistry)
 - **◊** ...
- Informatics aims at understanding and utilizing the role of information
 - ♦ in natural sciences (physics, chemistry, ...)
 - ♦ in life sciences (biology, medicine, ...)
 - in human behaviour (psychology)
 - in society (economy)
 - in reasoning (logics)
 - in computations (computer science)
 - in economy ("Wirtschaftsinformatik")
 - in engineering (building software intensive systems)

in theory, methodology, and application

ПΠ

Information ... and its many facets ...

• Static: Data Models

- Representing data
- Related by functions and relations
- Specified by laws and rules
- Dynamic: Computation & interactive system behaviour
 - ♦ Algorithms, functions and procedures
 - Processes, interaction and reaction, control
 - ♦ Real time
 - Behaviour
- Information is the result of interpretation and abstraction

ПΠ

Informatics is an enabler ...

- High performance computing:
 - ♦ calculation
 - ♦ simulation
 - deduction
- Data storing systems
 - storing mass data
 - ♦ data mining
 - information systems
- Graphics, animation, visualisation
 - ♦ Image processing
- Communication
 - Transmission
 - ♦ Local and global networks for speech and data processing

ТΠ

... that has changed the world

- Advanced tools and assistance
 - mobile multi-functional devices
 - virtual reality
 - social networks
- Global networks: the web and internet
 - pervasive ubiquitous information
- Cyber physical systems
 - embedded systems
 - ♦ pervasive ubiquitous computing
- Advanced domain theories and modelling
 - knowledge engineering
- Global knowledge engineering

5

ПЛ

Three in one ...

- fundamental science of information and computing
 - theory: syntactic expressiveness, computability, complexity
 - algorithmics, data structures, logics of programming
 - digital systems and their models
- science of engineering software & information systems
 - information engineering
 - software technology
 - software evolution
 - software project organisation and management
- informatics in application domain engineering
 - domain theories
 - domain modelling
 - ♦ the science of the virtual

ТШП

Is informatics actually a scientific discipline?

Yes!

- Information is a fundamental phenomenon in many scientific disciplines (physics, chemistry, biology, psychology, economy, technology), such as
 - energy in physics
 - material in chemistry
 - Iife in biology
- informatics addresses
 - the fundamental theory of information,
 - its representation and processing
- information is fundamental in human thinking and behaviour
 - operception
 - reasoning & reflection
 - reaction
 - Ianguage
 - knowledge representation

ПΠ

Example: Information and humans' intellect

Historical

- ♦ spoken languages
- written languages
- representing information and calculating (numbers, ...)
- formalizing reasoning (logics)
- Understanding human information processing
 - brain structures and processes
 - ways humans think (rationally) languages and logics
 - ways humans communicate
- Man machine issues
 - man machine interaction
 - advanced assistance systems
 - context aware adaptive user interfaces
 - ♦ workflow

What the example shows

- Close interaction between
 - foundational research in informatics
 - domain theories
 - applications
- Highly interdisciplinary
 - ♦ informatics
 - Iinguistics
 - ♦ medicine
 - psychology
 - history
 - mathematics
 - engineering
 - **◇** ...

ТЛ

The challenge: understanding information

- What is the nature of information?
- How to represent it?
- What is the role of information?
 - ♦ in physics
 - in biology
 - ♦ in chemistry
 - in human life
 - \diamond in reasoning
 - in human thinking
 - in computing
 - ♦ in technical systems
- Informatics opens the door into new ways of
 - capturing
 - analysing
 - operationalizing

knowledge in various application domains

ТШ

Is informatics an engineering discipline?

Yes!

- The engineering of software intensive systems is one of the grand challenges of today
 - engineering hybrid systems: integrating mechanics, digital hardware, software
 - information systems
 - advanced assistance systems
 - ♦ usable, reliable, safe, secure, affordable, …
- Software intensive system evolution
 - shows all the characteristics of engineering disciplines
 - has become a major field of engineering
 - shows tight interactions and relationships with other engineering discipline
 - society depends critically on software
- But essentially different to classical engineering

Example: advanced avionics

Fly by wire

- Engineering fly by wire systems
 - domain engineering
 - functional safety
- From reality to the virtual
 - requirements capture
 - from the abstract to the concrete
- From the virtual to reality
 - reliable and safe implementation and operation
 - augmented reality
 - advanced mission assistance automation
 - context awareness and adaptation
 - system quality engineering

ПΠ

The example avionics: conclusion

- Capturing the real world
 - how to grasp the real world by sensors, actuators, internal representations (data and functions)
- Man machine issues
 - man machine interaction under stress
- Augmented reality, context awareness, adaptivity
 information and reaction at the right time in the right situation
- New patterns of perception
 - ♦ virtual reality

The growing role of informatics ...

- In a very short time, informatics
 - ♦ has become a key discipline both
 - ♦ in scientific research as well
 - ♦ as a substantial social, technical and economical factor.
- … has changed the world by its cyber-physical systems comprising
 - embedded systems,
 - domain specific software applications and
 - global networks

and its interdisciplinary role ...

- The future of informatics departments and informatics research will be determined to a large extend by the question
 - how these quite different dimensions of informatics can be covered and integrated
 - education and research is organised along these lines
 - the interaction with key partner disciplines is organized
- A critical topic both for teaching and research is
 - the synergy between theory and engineering
 - the organisation and structuring of topics and themes in the cooperation with partner disciplines
 - the importance of informatics in education (in school, high school, academic education)
 - the moderation of a social consensus about the use of information in the age of cyber-physical systems

ТШП

Informatics: the historical roots ...

- Before computers
 - numbers, hieroglyphs, scripture
 - algorithms, arithmetic, calculators, nickelodeons, punch cards
 - \diamondsuit the formalisation of mathematics, logics, $\lambda\text{-calculus}$
- When computers have been invented, more than seventy years ago,
 - computer programming was considered a minor issue
 - ♦ compared to all the difficulties to construct computing devices.
- Only over the years it has become more and more apparent that
 - ♦ software: the programming of computers is a major challenge.
- Step by step it became visible that
 - the challenge is not only to master the pure coding but
 - ♦ to gain a deep understanding of computing and information
 - as a major concept and of
 - its impact and its application in all kinds of domains.

ТШ

Informatics: the rapid development

- From lab computing to desk tops, lap tops and hand helds
- From sequential algorithms and batch processing to distributed interactive concurrent computing
- From file processing to data bases and to the world wide web
- From punch cards to multi-modal user interfaces
 from plotters to high resolution animation
- From stand alone computers to global computer networks
 - ♦ wireless
 - pervasive & ubiquitous
- From isolated computations to service oriented architectures
- From single purpose devices to multi-functional systems

ПП

Blinded by the light ... informatics today

- The enormous growth of informatics as a technical and economical factor
 - ♦ danger of covering some of the more scientific and fundamental aspects
- Today, informatics has grown into a major scientific discipline which comprises
 - the basic science of information and computing on its own
 - the scientific of engineering software and information
 - a rich number of fields of application with their specific domain theories, techniques and methods
- Today informatics as a scientific discipline shows
 - ♦ a number of different facets including
 - fundamentals of information,
 - communication and computing,
 - the engineering of information processing systems and
 - the domain specific application of Informatics in various fields

ТЛП

Informatics changes our abilities and possibilities

- Higher order of automation
 Connecting quite different events
- New forms of communication
 - Communication networks
 - Virtual social communities
- Informatics changes our capabilities
 - higher level of transparency
 - data mining and advanced search
 - the end of privacy and anonymity?
 - new monopoles of information
 - digital divide

Informatics

- for the mass: for every one, always and everywhere
 what does that mean for schools and education
- critical infrastructures
 - ♦ long term software evolution
- tight synergy between the virtual and reality
- enhanced domain engineering
 - ♦ new forms of understanding
- new possibilities need new rules
 - the compliance rules of the age of advanced information processing

πп

Informatics know how needed on all levels ...

- The intellectual ranges of informatics competencies
 - Core informatics know
 - Informatics and its specific application domains
 - Ethics and limits of informatics systems
- Informatics competencies from using to understanding to evaluating information processing systems
 - Using informatics systems
 - Developing informatics systems
 - Understanding informatics systems
- Informatics governance
 - Deciding about informatics systems

The two big areas of engineering ...

- Digital systems and computation:
 - Theories of computing and interaction
 - Software and system models
 - Operating systems, middleware, protocols,
 - Programming and programming languages, compilation and interpretation
- Applications: domain engineering
 - Taxonomies and ontologies
 - Advanced data models
 - Descriptive models
 - Operational and computational models: control & simulation

Research hot spots in the core ...

Man Machine Interaction - MMI

♦ adapted user interfaces

- Programming languages and concepts
 - Abstraction
 - Interaction, concurrency, distribution, real time
 - programming methodology
- Software & systems evolution
 - advanced software & system modelling
 - seamless engineering
 - ♦ tool support
- Software safety, security, reliability
 high quality software
- Advanced forms of computing

πл

Interplay theory and practice

- In some field practice much stronger than academic research
 - hot spots (example data mining and search engines)
- In other field some practice far behind theory
 - ♦ software engineering
- Lack of empirical facts and data
 - What do we know about the rules of software and systems evolution
- Interaction academic research / industry
 - ♦ a lot of "business as usual" in funding programmes
 - strategic partnerships rare

ТШ

Domain modelling

- Software cannot be better than the domain know how on which it is based
- Software requires a deep understanding of domain knowledge
- Domain knowledge has to be captured in software specific forms that it can be directly integrated into software
 - This requires targeted modelling techniques
 - Domain modelling may contribute to the know how in the application domain

ПΠ

Informatics in academia ...

- ... its academic stature
 - ♦ is it a science (faculty, department) on its own!
- ... its related disciplines
 - Electrical engineering
 - Mathematics
 - Economics
- ... its role in universities
 - who should host the chairs for specific areas of application?
 - odes every university need an informatics department?
 - ♦ is informatics to be integrated into many other curricula?

Teaching informatics

- Teaching foundations and theory
 - Information and their representation
 - Computation
 - Logics
- The methodological kernel
 - Programming
 - Systems modelling
- Engineering informatics systems
 - Software evolution
- Key application areas

◇ ...

ТШ

Teaching informatics ...

- Teaching core informatics students
 - ♦ science and research
 - professionals
 - leadership and information governance
 - high school teachers
- Teaching students from application fields and disciplines
 - o applying informatics tools
 - using informatics modelling techniques
 - vorking in teams with informatics professionals

Teaching informatics: spaghetti a la Bologna

• Bachelor: the basics

- Theory
- Programming methodology
- Programming languages, compilers
- Information systems
- Master: Specialized curricula
 - ♦ Interdisciplinary
 - Focused
 - science of information
 - engineering
 - specific areas of application
 - Joint programmes between different disciplines

ТШ

Do we teach the right topics ...

- Theory for theory's sake
 ♦ which theory for which purpose
- Too specialized short term topics
 - better solid topics than
 - ♦ newest hypes
- No appropriate scientific foundation
 - ad hoc methods do not help on the long term
- Enabling our students
 - to understand the foundations
 - to do engineering
 - to work interdisciplinary
 - ♦ for leadership

The challenge in curricula: attracting more students

- Why more students in informatics?
 - ♦ Badly needed in practice!
 - Badly needed in research!
 - Badly needed in education!
 - Best professional perspectives!
- Why so difficult to attract students?
 - Image
 - Leadership
- Why so difficult to attract high potentials?
 - We have to show the intellectual challenges
 - We have to show clear images of careers "Berufsbilder"

There is not enough understanding ...

- with people using information systems
 - privacy
 - capabilities
- with people taking part in software development projects
- in management
 - software project governance
 - corporate knowledge and information systems engineering

in politics

Conclusion

- Informatics is much more than
 - producing software by writing programs
 - theory
- Software contains domain knowledge often implicitly
 - software engineering enforces the understanding of application domains
- Software validation & verification requires to make domain knowledge explicit
- The future of informatics departments lies
 - in the interaction between application domains and models of informatics
 - the seamless engineering of software intensive systems
 - the understanding and exploitation of the role of information
- Making one out of the three
 - theory and basics
 - engineering software and information systems
 - ♦ domain specific informatics

ТШ