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Abstract

In the area of information technology large amount of data are generated and stored day
by day. Observation data - like measurements - often contain missing values by nature.
The goal of this work is to investigate the application of the Centroid Decomposition
algorithm for the recovery of missing values in shifted time series. We provide an exten-
sive set of experiments to evaluate the scalability of our implementation. We apply our
implementation to recover shifted missing blocks in real world hydrological time series
and identify the classes of time series that can be recovered using this technique. As
part of the implementation, we propose a graphical tool that can perform the Centroid
Decomposition of matrices and recover missing blocks in hydrological time series.
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1 Introduction

1.1 Context of Work

My master group project was carried out as a guest student within the Database Tech-
nology Group at the University of Zürich. The main motivation of the work was to
handle blocks of missing values [1] that frequently occur in hydrological datasets. The
data we have worked on, was provided by the a hydrological company [2]. This data
contains hydrological measurements such as temperature, precipitation, humidity, air
pressure, wind speed and water level computed over the time in different areas around
the region of South Tyrol in Italy. Due to sensor malfunction, both single missing data
and blocks of missing data occur frequently in the datasets. The percentage of missing
data in the different time series [3] sets is follows: for the temperature set is ∼ 20 %, for
the humidity set is ∼ 6 %, for the wind speed set is ∼ 23 %, for the precipitation set is
∼ 16 %, for the air pressure set is ∼ 11 %, for the water level set is ∼ 66 %.

The main goal of our work was to implement a scalable algorithm, and using it to
be able to recover the missing values. Within the project a recovery tool has been
implemented and different experiments have been executed.

1.2 Motivation and Contribution

Our motivation was the lack of tools that are able to recover efficiently blocks of missing
values in time series, e.g., REBOM [4] is a graphical tool that takes more than 15
minutes to recover missing blocks in time series containing 100000 observations. This
long run time makes this tool non usable for long time series. In this report, we firstly
worked on a scalable implementation of the algorithm Centroid Decomposition, used
later for the recovery. We developed a tool with a graphical user interface for the
recovery of missing data, based on iterative refinement of missing values by applying
Centroid Decomposition [5] and dimensionality reduction technique [6]. Our recovery
tool gives possibility to display and discover time series, explore and recover missing
values. We found out that using our algorithm, the efficient recovery of missing values
in shifted time series is also possible. Then, we evaluated the accuracy of our recovery
algorithm for missing values in shifted time series, and identified the classes of time series
that can be recovered using our solution.
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1.3 Hydrological Time Series

Our hydrological time series are grouped into sets. Each set represents different weather
phenomena like temperature, precipitation, humidity, air pressure, wind speed and water
level. Each time series set contains measurements from different measurement stations
around the region of South Tyrol in Italy. We consider a sequence of measurements as
a time series. Each set of time series has its own granularity, i.e., the time frequency
measurements. Time series from temperature set have the granularity 2 while the other
sets are measured with granularity 1. Each time series is defined by an id, and dispose a
description about its measurement area. Time series contain sequence of observations.
Each observation has a timestamp and a corresponding value.

1.4 Structure of Report

This report is structured as follows: in Chapter 2, we define the concepts time series
and missing values. In Chapter 3, we give a detailed introduction of the Centroid
Decomposition technique. In Chapter 4, we introduce our implementation and we show
the results of our experiments to evaluate the scalability of our implementation. In
Chapter 5, we introduce our recovery algorithm and the developed recovery tool. We
apply our implementation to recover missing blocks of time series and identify the classes
of time series that can be efficiently recovered using this technique. In Chapter 6, we
summarize the main contributions of this work and enumerate some limitations that can
be extended as future work.
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2 Background

2.1 Notations

Symbol Definition
Si denotes a time series
tj denotes a timestamp
(ytj , tj) ∈ Si denotes observation in any time series Si, where ytj is the measured value

at the timestamp tj
MSi denotes the sequence of missing values in any time series Si
TSi denotes the sequence of timestamps contained by Si

2.2 Time Series

A time series is an ordered sequence of observations captured over time. We denote an
observation that belongs to a time series S as: (t, vt) ∈ S, where t denotes a timestamp,
yt the observed value. A times series contains a finite number of observations and is
denoted as follows:

S = {(yt1 , t1), (yt2 , t2), . . . (ytn , tn)}
If ti < tj ⇒ yti is measured at a timepoint before ytj

Time series can be classified into two groups: aligned time series and shifted time series.

2.2.1 Aligned time series

Two time series S1 and S2 are considered aligned on the time window [ti, tk], if they
contain exactly the same sequence of timestamps on the time interval [ti, tk] and each
observation in S1 has a corresponding observation in S2. Formally, S1 and S2 are aligned
on the time interval [ti, tk], if

∀tj ∈ [ti, tk], (ytj , tj) ∈ S1 → (y′tj , tj) ∈ S2 (2.1)

2.2.2 Shifted time series

Time series S2 is shifted with a time shift δ with respect to time series S1 on the time
interval [ti, tk], if S2 contains exactly the same number of timestamps on the time interval
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[ti + δ, tk + δ] and each observation in S1 on time interval [ti, tk] has a corresponding
observation in S2 on time interval [ti + δ, tk + δ]. Formally S1 and S2 are shifted if:

∀(ytj , tj) ∈ [ti, tk] ∈ S1 → (y′tj , tj + δ) ∈ [ti + δ, tk + δ] ∈ S2

2.3 Missing Data

Missing data occur in real world datasets mainly due to a damage that affects the sensors
that capture the measurements. Missing data may introduce some inconsistencies in
performing any data analysis.

Given two time series S1 and S2 measured over the same time interval [t1, tn].

Time series S2 contains missing values respect to time series S1, if S2 misses some of
the timestamps, what times series S1 contains. Let us denote the sequence of missing
values in any time series Si with MSi , and denote with TSi the sequence of timestamps
contained by Si.

TSi = {∀tj | (yj, tj) ∈ Si}

Formally, the sequence of missing values in S2 respect to S1 can be written as follows:

MS2 = {tj | tj ∈ TS1 ∧ tj /∈ TS2}

Missing data can occur as single missing observations and also as blocks of missing
observations. We propose to implement a method, that can recover accurately and
missing observations using existing observations in shifted time series.

10



3 Centroid Decomposition

3.1 Notations

Notation Description
A denotes the n×m input matrix of decomposition
ai denotes the ith row of A
n denotes the number of rows
m denotes the number of columns
B denotes the n×m loading matrix
V denotes the m×m factor matrix
vi denotes the ith column of V called centroid factor
bi denotes the ith column of B called loading vector
z denotes the sign vector

3.2 Centroid Decomposition

3.2.1 Input matrix

Let us assume, we have m entities, what can be measured (like temperature in m different
place). We have n variables what can take values from a defined value set (like n different
time point in a day what can take the values of temperature in that time point). We
construct a matrix, whose columns represent the m entities and whose rows represent
the n variables.

A =


a11 a12 · · · · · · a1m

a21
. . . · · · · · · a2m

... · · · aij ...
...

... · · · · · · . . .
...

an1 · · · · · · · · · anm


In this terminology every element of the matrix means

aij = the measured value of variable i on entity j.

3.2.2 Decomposition

Centroid Decomposition is a matrix decomposition technique [7], it decomposes an input
matrix An×m into the product of two other matrices Bn×m and V m×m. Formally a matrix
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A can be decomposed as follows:
A = BV T

,where B called as loading matrix and V called as factor matrix.

3.2.3 Factor Matrix V

Obtained matrix V is an orthogonal matrix (Property 1 of Appendix) with dimension
m. We call the column vectors of V as centroid factors.

V =
[
v1 · · · vj · · · vm

]
We call vj as the jth centroid factor.

V =


v11 · · · v1j · · · v1m
...

. . .
... · · · ...

vi1 · · · vij · · · vim
... · · · ...

. . .
...

vm1 · · · vmj · · · vmm



The following constraints are valid for the elements of V .

Constraint 1.

v21j + · · ·+ v2ij + · · ·+ v2mj = 1

Constraint 2.

vi1 + · · ·+ vij + · · ·+ vim < m

3.2.4 Loading Matrix B

Obtained matrix B has exactly the same dimension as A: n × m. We call the n-
dimensional column vectors of B as loading vectors.

B =
[
b1 · · · bj · · · bm

]
Written in matrix form:

B =


b11 · · · b1j · · · b1m
...

. . .
... · · · ...

bi1 · · · bij · · · bim
... · · · ...

. . .
...

bn1 · · · bnj · · · bnm


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We call the elements of the loading matrix as loadings.

Let us call the sum of the square of the elements in the jth loading vector bj as the
significance of the jth centroid factor, and denote it with ψj.

ψi = b21j + · · ·+ b2ij + · · ·+ b2nj (3.1)

As the outcome of the decomposition the following equation is valid:

A = b1v
T
1 + b2v

T
2 + · · ·+ bmvT

m (3.2)

3.2.5 Extraction Procedure of the Centroid Factors

Centroid decomposition aims to find factors with high siginifance. It uses a greedy
method to iteratively define candidate factors. This method is called the centroid
method, therefore the factors which are produced by this algorithm are called centroid
factors. In order to have a better understanding on the meaning of the centroid factors,
we give a geometric interpretation of the problem. Each row of the input matrix A1

denotes a point in the m-dimensional space, which means our measurement entities are
represented by points in Rm space. The basic idea of finding a suitable factor is that
we take the arithmetic mean (centroid) of all the points, and use it to calculate the first
centroid factor. We call the centroid point c1 the first centroid of A1 and calculate as
the following:

c1 =
AT

1 1n

n
The first centroid factor is defined as the normalized vector (Property 2 of Appendix).

v1 =
c1

‖c1‖
=

AT
1 1n

‖AT
1 1n‖

Where ||c1|| is the norm (Property 3 of Appendix) of vector c1. We are searching for
factors with high significance, and from the above equation of significance (3.1) follows,
that a factor has high significance if the absolute value of the loadings belonging to that
factor is high. The centroid factor calculated that way, would be a significance factor
under special circumstances:

1. if all the variables (represented by points) residue near the line determined by the
centroid factor

2. and the centroid c1’s distance from the origin (or in other means, its vector’s
length) is large.

The larger the centroid vector’s length ‖c1‖ is, the more variable are dispersed around it
and the more loading the centroid factor v1 has on it, so the higher it is its significance.

After determining the centroid factor candidate, it is then tweaked with respect to the
above remarks. We introduce the vector z in the candidate factor’s tweaked formula,
and call it sign vector.
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Definition 1 The sign vector denoted with z is an n-dimensional vector containing
only -1 and 1 values in its coordinates.

This vector will modify the signs of the rows in A1. The remarks above make us sure,
that changing these signs doesn’t modify a factor’s significance property, because only
the signs of the loadings will change, not their absolute value. So with the proper choice
of z we can find the best possible centroid, and centroid factor belonging to A1. The
algorithm of finding the proper sign vector is described in details in Chapter 4.

After modifying the formula of the first centroid it will be like the following:

c1 =
AT

1 z

n
(3.3)

The modified formula of the first centroid factor:

v1 =
c1

‖c1‖
=

AT
1 z

‖AT
1 z‖

(3.4)

After we have discovered the first centroid factor (which will be v1, the first column of
factor matrix V ), we then calculate the first loading vector (which will be b1, the first
column of the loading matrix B) respect to it as the follows:

b1 = A1v1 (3.5)

Now we have the first centroid factor and the loadings respective to it. Now our job is to
subtract the “information” along the new factor v1 from A1, in other words, to eliminate
its impact from the data matrix, in order to be able to find the second centroid factor,
and so on. This step is equivalent with a rank reduction on matrix A1.

A2 := A1 − A1v1v
T
1 (3.6)

As we have A2 we can start to search for the second centroid factor. Iteratively repeating
the whole procedure will extract the centroid factors and loading vectors respective to
each from the original matrix A1. Each factor extraction step will reduce the rank of A1

by one, so the procedure will stop in r step, where r denotes the rank of A1.

3.3 Algorithm

The centroid decomposition is an iterative process, in which each step finds a centroid
factor and the corresponding loading vector.
The algorithm of centroid factor retrieval is described as follows:
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Algorithm 1: Centroid Decomposition

Input: An×m

Output: loading matrix B and factor matrix V

i = 1 ;1

Ai := A ;2

repeat3

z = FindSignV ector(Ai) ;4

ci = AT
i z ;5

vi = ci
‖ci‖ ;6

bi = Aivi ;7

Ai := Ai − biv
T
i ;8

if i = 0 then9

B = bi, V = vi ;10

else11

B = append(B,bi) // append bi to the right side of B;12

V = append(V,vi) // append vi to the right side of V ;13

i = i+ 1;14

m = m− 1;15

until m = 0 ;16

Key question is the implementation of the function in the 4. line, we called FindSignV ector(Ai).
In the next chapter we review the algorithm of finding a sign vector, and show our dif-
ferent implementations and their’s computational complexity.
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4 Sign Vectors Computation

4.1 Definitions

For simplicity, we use A to denote the input matrix obtained out of the extraction of
any factor, i.e, Ai. Choosing the proper sign vector means, finding the sign vector that
generates the largest sized centroid (3.3), i.e., that has the maximal ‖c‖, in each step.
Recall the definition of c and write down the formula of ‖c‖:

‖c‖ =
‖ATz‖
n

The following formula gives the scalar multiple of the size of the centroid:

n2‖c‖2 = ‖ATz‖2 (4.1)

This type of formula is difficult to handle by an optimization. For an exhaustive search
would take 2n steps to find the proper sign vector. That’s why we are looking for an
equivalent formula, which we can maximize in less steps. Let R denote the product of
A and it’s transpose: R = AAT . Then we can write the following equation:

n2‖c‖2 = ‖ATz‖2 = zTRz (4.2)

Maximization of the formula zTRz is an integer programming problem. [5] To show
the proof of the equation (4.2), let’s initialize sign vector z with 1n, i.e., the vector of 1
values. Then, we have the following:

‖ATz‖2 = zTRz (4.3)

,what is the scalar multiple (4.1) of ‖c‖. This means that finding the largest size centroid
is equivalent with the following maximization problem:

z = arg max
|zj |=1

zT
j Rzj (4.4)

Where index j denotes the number of iteration during the maximization process. It
is seen, from the equation (??) , that the value of elements in the diagonal of R are
independent from the choice of z. Let’s consider matrix P has all values of R except
that the diagonal values set to 0. Thus, we can write the following:
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zT
j Rzj = zT

j Pzj +
n∑

i=1

rii = zT
j Pzj + k (4.5)

, where k denotes a constant value.
It follows that the maximization problem of equation 4.4 is equivalent to the following:

arg max
|zj |=1

zT
j Pzj (4.6)

In what follows, we explain why we use P instead of R. In the first iteration of the
algorithm we initialize z = 1n. Our initial w1 is equal to:

w1 = Pz1 =


w

(1)
1

w
(2)
1
...

w
(n)
1


If we use R instead of P our initial w’1 can be written as follows:

w’1 = Rz1 =


w

(1)
1 + r11

w
(2)
1 + r22

...

w
(n)
1 + rnn


where rii denotes the ith element in the diagonal of R.

In any j iteration our algorithm is looking for the index k where:

k = arg max
{i | w(i)

j ·z
(i)
j <0}

|w(i)
j | (4.7)

The next sign vector zj+1 in the iterative process will be created by changing the sign

of it’s kth component, i.e., z
(k)
j+1 := −z(k)j .

The problem with using R instead of P is that our algorithm’s decision on k would be
different than compared to the one based on P . The reason is that the kth component
in w’j is w′

(k)
j = (w

(k)
j + rkk), so the decision of k depends not only on w′

(k)
j but on

rkk as well, which can mislead the choice. The following table summarizes the cases of
decisions on k as the result of the misleading formula: arg max{i | w′(i)

j ·z
(i)
j <0} |w

′(i)
j |. We

show if the decision would differ from the correct result based on (4.7).

1st case: (w
(k)
j + rkk) < 0 and |w(k)

j + rkk| > |w(i)
j + rii|, ∀i {1 ≤ i ≤ n, i! = k} no

2nd case: (w
(k)
j + rkk) < 0, but ∃ i, that |w(i)

j + rii| > |w(k)
j + rkk| yes

3rd case: (w
(k)
j + rkk) > 0 yes
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Now we have proved that the decision of k will be different in the 2nd and 3rd cases,
when R is used as input.

The algorithm finds a maximum of zTPz. It can occur that there are more optimal
sign vectors for P . The reason is, more than one choice of k can satisfy (4.7). The
algorithm can get to every optimal sign vector, if by running, it decides on a random
possible k.

An important feature of the algorithm is, that it never descends, i.e. it never chooses
the same k in different iterations, or in other words, it never changes the sign of an
element which has been already changed.

Let us assume there are r optimal sign vectors for a given A input matrix, and they
are denoted with z∗1, z

∗
2 ... z∗r.

If the algorithm changes the sign of an element z
(k)
j for negative, while that element is

non-negative in any of the optimal sign vectors z∗i , then from that step on, the process
converges towards a suboptimal z, because that sign will never be changed again during
the run. Thus it is proved that if R is used as the input instead of P , the decision on k
in the jth step will be different in the 2nd or 3rd cases, and this leads to a suboptimal
result.

4.2 Algorithm

4.2.1 Steps

We present in this section the steps of the maximization process that computes the right
sign vectors.

Step 1 Choose an initial sign vector z1 = 1n and define the vector w1 as follows:
w1 = Pz1

Step 2 Choose the kth index of the component in wj, where k = arg max{i | w(i)
j ·z

(i)
j <0} |w

(i)
j |.

Step 3 Take z1 and change the sign of it’s kth component to create z2.

Step 4 Repeat the whole procedure from Step 1 with using the newly created z2, until
the signs of all corresponding components in wj and zj will be the same.

Step 5 Choose zj as the proper sign vector z for A.

4.2.2 Pseudocode

The pseudocode of these steps is described in Algorithm 2.
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Algorithm 2: FindSignV ector(A)

Data: A
Result: the corresponding z sign vector for A

j = 1 ;1

k = 1;2

maxValue = 0, bestIndex = 0;3

zT
1 =

[
1 1 ... 1

]n
;4

compute P := setDiagNull(AAT ) // set 0 the diagonal elements in AAT ;5

compute w1 = Pz1 ;6

repeat7

if j > 1 then8

wj = wj−1 − 2 · col(P, bestIndex) // col() returns the column with9

index bestIndex from P;

maxValue = 0;10

bestIndex = 0;11

for k = 1 to n do12

if (w
(k)
j · z

(k)
j < 0) then // w

(k)
j means the kth component in wj13

if maxValue <|w(k)
j | then14

maxValue = w
(k)
j ;15

bestIndex = k ;16

else17

k = k + 1 ;18

19

if maxValue != 0 then20

zj+1 := changeSign(bestIndex, zj) // change the sign of element with21

index "bestIndex" in zj ;
j = j + 1;22

23

until maxValue = 0 ;24

return zj25

The search space of sign vectors if Ω = {2n} since the possible values of z are 1 and
-1. In the worst case the value of z will be changed n times and the algorithm will
take linear time to compute the correct values of z. This explained by the fact that we
start by the initial sign vector 1n and in each step we change the sign of one element.
Changed elements will not be updated again. The experiment of Figure 4.1 shows that
in an average case the algorithm takes n

2
steps to find the sign vector. The values of the

x-axis and the y-axis are a power of k = 103.

4.3 Computation of z

4.3.1 Using 2− d Array to store P

We propose to use a 2-dimensional array to store matrix P . We have following run time
and space complexities:

Space complexity: The matrix P is calculated as AAT , with all of the elements
in the diagonal set to 0. This implementation uses 2-dimensional arrays to represents
matrices. Hence P is an n× n square matrix (n equals to the number of rows in A), the
space complexity increases quadratically with the number of rows of the input matrix
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A.

Stored object Space complexity
A n ·m
z n
P n2

w n
Total space complexity: n2 + n · (m+ 2)

Table 4.1: Space complexity of 1− d array

If the elements are stored in floats, the used memory space is: (n2+n·(m+2))·4 byte. In
Table 4.2, we give an example how the space increases for input matrices with increasing
number of rows and fixed number of columns.

n×m Space complexity
10000× 5 400, 28 MB
20000× 5 ∼ 2, 8 GB
30000× 5 ∼ 3, 6 GB
40000× 5 ∼ 6, 4 GB

...
...

Table 4.2: Memory used for 2− d array

Run time complexity:
Line 4 - initialize zj : n steps

Line 5 - computeP(Ai) : n2m
2

+ n steps
Line 6 - compute w1 = Pz1 : n2steps
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Loop 7-24: x-times: in worst case x = n, average: x = n
2

Line 9 - compute wj : n steps
Loop 12-19 : 6n steps

Total complexity: n+ n2m
2

+ n+ n2 + x · (n+ 6n) = n2m
2

+ n2 + 2n+ x · 7n steps

Total worst case complexity: n2m
2

+ 8n2 + 2n steps =O(n
2m
2

+ n2 + n)

Average complexity: n2m
2

+ 4.5n2 + 2n steps = O(n
2m
2

+ n2 + n)

The high memory complexity inspired us to use another data structure to store P .

4.3.2 Using 1− d Array to store P

This implementation follows the same pseudocode, but aims to reduce the memory
complexity of the previous implementation.

Space complexity: This implementation exploits the symmetric property of P and
that the diagonal contains only 0 values. We store only the necessary part of P in a
1-dimensional array. It means, that instead of n2 elements, only n2

2
−n elements have to

be stored. In order, to identify the element of P in the 1-dimensional array, we give an
index to the elements, what is calculated from their row index and column index in the
matrix form of P . However, the computation of wj = Pzj needs more time, because of
the index calculation used to access P .

Objects need to be stored Space complexity
A n ·m
z n

P n2

2
− n

w n

Total space complexity: n2

2
+ n · (m+ 1)

Table 4.3: Space complexity of 1− d array

If the elements are stored in floats, the space needed is the following: (n
2

2
+ n · (m +

1)) · 4 byte. Table 4.4 summarizes the space complexity for given input matrices with
increasing number of rows and fixed number of columns.

n×m Space complexity
10000× 5 200, 24 MB
20000× 5 ∼ 0, 8 GB
30000× 5 ∼ 1, 8 GB
40000× 5 ∼ 3, 2 GB

...
...

Table 4.4: Memory Used for 1− d array
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Run time complexity:
Line 4 - initialize zj : n steps

Line 5 - computeP(Ai) : (n2−n)m
2

steps
Line 6 - compute w1 = Pz1 : 3n2steps
Loop 7-24: x-times: in worst case x = n, average: x = n

2

Line 9 - compute wj : 3n steps
Loop 12-19 : 6n steps

Total complexity: n + (n2−n)m
2

+ 3n2 + x · (3n + 6n) = n + n2m
2
− nm

2
+ 3n2 + x · 9n

steps.
Total worst case complexity: n2m

2
+ 12n2 − nm

2
+ n steps = O(n

2m
2

+ n2 − nm
2

+ n)

Total average case complexity: n2m
2

+ 7.5n2− nm
2

+n steps = O(n
2m
2

+n2− nm
2

+n)

The 1−d data structure reduced the space complexity, but the memory needed is still
high. Our goal to reduce the space complexity to make it linear. We propose to change
the algorithm 2 in order not to store anymore matrix P .

4.3.3 Without storing P

The idea of this implementation is, that we don’t really need to store P at all, because
all information contained in P can be calculated on the fly from original matrix A. In
the previous implementations, we were using P to be able to compute the vector w in
the subalgorithm FindSignV ector(). It means, that we used P in the following two
steps:

• To compute the initial w1 = Pz1, where z1 is the initial sign vector containing
only 1 values.

• To compute the following wj = wj−1 − 2 · col(P, k).

Matrix P is computed out of R by setting its diagonal elements to 0. The rij element
in R is calculated exactly with multiplying the ith row-vector of A , i.e., ai), with the
transpose of the jth row vector of A, i.e., aT

j ). Therefore, we can write P as the following:

P =



0 a1 · aT
2 · · · a1 · aT

i · · · a1 · aT
n

a2 · aT
1 0 · · · a2 · aT

i · · · a2 · aT
n

...
... · · · ... · · · ...

ai · aT
1 ai · aT

2 · · · 0 · · · ai · aT
n

...
... · · · ... · · · ...

an · aT
1 an · aT

2 · · · an · aT
i · · · 0


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Computation of w1

The initial w1 = Pz1, where zT
1 =

[
1 1 · · · 1

]n
. This means that the components of

w1 will be the sum of the components in the corresponding row of P :

w1 =



0 + a1 · aT
2 + · · ·+ a1 · aT

i + · · ·+ a1 · aT
n

a2 · aT
1 + 0 + · · ·+ a2 · aT

i + · · ·+ a2 · aT
n

...
ai · aT

1 + ai · aT
2 + · · ·+ 0 + · · ·+ ai · aT

n
...

an · aT
1 + an · aT

2 + · · ·+ an · aT
i + · · ·+ 0


=



a1 · (0 + aT
2 + · · ·+ aT

i + · · ·+ aT
n )

a2 · (aT
1 + 0 + · · ·+ aT

i + · · ·+ aT
n )

...
ai · (aT

1 + aT
2 + · · ·+ 0 + · · ·+ aT

n )
...

an · (aT
1 + aT

2 + · · ·+ aT
i + · · ·+ 0)


We can transform the formula as the following:

w1 =



a1 · (aT
1 + aT

2 + · · ·+ aT
i + · · ·+ aT

n )− a1 · aT
1

a2 · (aT
1 + aT

2 + · · ·+ aT
i + · · ·+ aT

n )− a2 · aT
2

...
ai · (aT

1 + aT
2 + · · ·+ aT

i + · · ·+ aT
n )− ai · aT

i
...

an · (aT
1 + aT

2 + · · ·+ aT
i + · · ·+ aT

n )− an · aT
n


Let’s take s = (aT

1 +aT
2 +· · ·+aT

i +· · ·+aT
n ) is a constant vector. s has to be calculated

only once instead of n times. The computational complexity of calculating s is O(nm).
Rewriting the formula with using s gives the following:

w1 =



a1 · s− a1 · aT
1

a2 · s− a2 · aT
2

...
ai · s− ai · aT

i
...

an · s− an · aT
n


(4.8)

The computational complexity of calculating w1 is O(2nm). After computing the
initial w1, we show how to compute the rest of wj{1<j≤n} values.

Computation of wj

As described above, wj = wj−1−2 · col(P, k), so we have to find the formula which gives
us the kth column of P directly from the input matrix A. Using the equation (4.3.3),
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we can write the kth column of P as follows:

a1 · ak

a2 · ak
...

ai · ak
...

an · ak


Having wj = wj−1 − 2 · col(P, k), it follows:

wj = wj−1 − 2 ·



a1 · aT
k

a2 · aT
k

...
ai · aT

k
...

an · aT
k


=



w1
j−1 − 2 · a1 · aT

k

w2
j−1 − 2 · a2 · aT

k
...

wi
j−1 − 2 · ai · aT

k
...

wn
j−1 − 2 · an · aT

k


(4.9)

The computational complexity of calculating wj using the formula (4.9) is O(nm).

Pseudocode

Space complexity: Because we don’t compute P in this implementation, only the
following objects are stored:

Objects need to be stored Space complexity
A n ·m
s m
z n
w n

Total space complexity: n · (m+ 2) +m

Table 4.5: Space complexity of the final implementation

If the elements are stored in floats, the needed memory space is (n·(m+2)+m)·4 byte.
Thus, the memory used by this implementation increases linearly with size of the input
matrix.
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Table 4.6: Memory need

n×m Space complexity
10000× 5 ∼ 0, 28 MB
20000× 5 ∼ 0, 56 MB
30000× 5 ∼ 0, 84 MB
40000× 5 ∼ 1, 12 MB

...
...

100000× 5 ∼ 2, 8 MB
...

...

Computational complexity:
Line 4 - initialize zj : n steps = O(n)
Line 5 - compute s : nm steps = O(nm)
Line 6 - compute w1 : nm = O(nm)
Loop 7-24: x-times: worst case x = n, average x = n

2

Line 9, 10 - compute wj : nm steps = O(nm)
Loop 12-19 : 6n steps

Total complexity: n+ 2nm+ x · (nm+ 6n) steps
Total worst case complexity: n+2nm+n ·(nm+6n) steps = n2m+6n2 +2nm+n=
O(n2m+ n2 + nm+ n) steps
Average complexity: n + 2nm + n

2
· (nm + 6n) steps = n2m

2
+ 3n2 + 2nm + n=

O(n
2m
2

+ n2 + nm+ n) steps

4.4 Comparison of Different Data Structures

Figure 4.2 shows a graphical computational complexity comparison of the three imple-
mentations where x-axis represents the number of rows of the input matrix and y-axis
represents the measured computational time in milliseconds. The values of the two axes
are a power of k = 103. The first and second implementations could not finish their com-
putation with input matrices containing respectively more rows than 10000 and 20000
and generated an out of memory error. We use four time series for to compute the run
time of the decomposition (m = 4).

Using the final implementation, the total complexity of centroid decomposition algo-
rithm of an input matrix An×m is the follows :
Loop 4-19: l − times
Line 6 - B = bi : m steps O(m)
Line 7 - V = vi : n steps O(n)
Line 9 - append(B,bi) : (mn+m) stepsO(mn+m)
Line 10 - append(V,vi) : (nm+ n) steps=O(nm+ n)
Line 13 - findSignVector(Ai) - in average case n2m

2
+ 3n2 + 2nm+ n
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- in worst case n2m+ 6n2 + 2nm+ n
Line 14 - compute ci : nm steps=O(nm)
Line 15 - compute vi : 2m steps=O(m)
Line 16 - compute bi : nm steps=O(nm)
Line 17 - compute Ai−1 : nm steps=O(nm)

Total in average case: m+ n+ (l− 1) · (2nm+m+ n) + l · (n2m
2

+ 3n2 + 2nm+ n) =

l ·O(n
2m
2

+ n2 + nm+ n+m)

4.5 Running Example

Let’s take the example of matrix A =

1 −1
0 1
1 0

, we illustrate the computation of the

Centroid Decomposition of A. The number of columns m = 2, that’s why 2 centroid
factors will be extracted. In what follows we assume that A1 := A.

I. Extraction of the first centroid factor

First, we look for a corresponding sign vector for A1 with using the above described
FindSingV ector(A) algorithm. The computation of R1 gives the following:

R1 = A1A
T
1 =

 2 −1 1
−1 1 0
1 0 1



Matrix P1 is the same as R1 with 0 on its diagonal: P1 =

 0 −1 1
−1 0 0
1 0 0


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Step 1 Choose an initial sign vector z1 and compute the vector w1 as follows: w1 = Pz1

First iteration: z1 =

1
1
1

, w1 =

 0
−1
1


Second iteration: z2 =

 1
−1
1

 w2 =

 2
−1
1


Step 2 Choose the kth index of the component in wj, where k = arg max{i | w(i)

j ·z
(i)
j <0} |w

(i)
j |.

First iteration: k = 2
Second iteration: We don’t have elements with different signs. Jump to Step 5

Step 3 Take z1 and change the sign of it’s kth component to create z2.

First iteration: z2 =

 1
−1
1


Step 4 Repeat the whole procedure from Step 1 with using the newly created z2, until

the signs of all corresponding components in wj and zj will be the same.

Step 5 Choose zj as the proper sign vector z for A.

Second iteration: The proper sign vector is found: z2 =

 1
−1
1


As we found the sign vector z we can calculate the first centroid factor v1 (which will

be the first column of factor matrix V ). Using the formula (3.4), we have the following:

v1 =
AT

1 z

‖AT
1 z‖

=

[ √
2
2

−
√
2
2

]
Since we obtained the first centroid factor, we can calculate the first loading vector

b1 (which will be the first column of the loading matrix B). Using the equation (3.5),
we have the following:

b1 = A1v1 =


√

2

−
√
2
2√
2
2


We have the first centroid factor and the loadings respective to it. Now we subtract the
“information” along the first centroid factor v1 from A1, in order to be able to find the
second best centroid factor. This step is equivalent with a rank reduction on matrix A1.
We are using the formula (3.6).

A2 = A1 − A1v1v
T
1 =

0 0
1
2

1
2

1
2

1
2


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II. Extraction of the second centroid factor

We compute the second centroid factor from A2. Thus, we repeat all of the steps of
the algorithm on A2. We start by computing the proper sign vector with respect to A2.
The computation of R2 gives the following:

R2 =

0 0 0
0 1

2
1
2

0 1
2

1
2


We Construct P2 out of R2:

P2 =

0 0 0
0 0 1

2

0 1
2

0


Step 1 First iteration: z1 =

1
1
1

, w1 =

0
1
2
1
2


Step 2 First iteration: We don’t have elements with different signs. Jump to Step 5

Step 5 First iteration: The proper sign vector is found: z1 =

1
1
1


Using the computed sign vector, we calculate the second centroid factor and loading

and loading vector:

v2 =
AT

2 z

‖AT
2 z‖

=

[√
2
2√
2
2

]
and

b2 = A2v2 =

 0√
2
2√
2
2


The algorithm terminates and we obtain the Centroid Decomposition of the original

matrix A = BV T as follows:1 −1
0 1
1 0

 =


√

2 0

−
√
2
2

√
2
2√

2
2

√
2
2

[ √22 √
2
2

−
√
2
2

√
2
2

]

We can also write the decomposition in the following form: A = b1v
T
1 + b2v

T
2 :1 −1

0 1
1 0

 =


√

2

−
√
2
2√
2
2

[ √22−√2
2

]
+

 0√
2
2√
2
2

[√22√
2
2

]
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5 Missing Values Recovery

5.1 Method

The proposed recovery algorithm is based on an iterative application of the Centroid
Decomposition method. In every iteration of the algorithm, a dimensionality reduction
is applied: only k < m factors are computed, where m is the number of columns in ma-
trix A. We compute the difference in every step between the Frobenius norm (Property
4 of Appendix) [7] of the currently obtained recovery matrix and the previous one. The
algorithm iterates until this difference is smaller than a threshold value ε < 10−5. We
consider that the reference time series contains the missing block that will be recovered
and that test time series are used to recover the missing values in reference time series.
Algorithm 3 describes the recovery process.

Algorithm 3: Recovery Process

Input: Sref : reference time series with imputed missing values
Input: {Stest1 ,Stest2 . . .Stestn}: set of test time series
Input: f : number of factors
Input: R: set of timestamps of missing values

Output: Mi: matrix of recovered values

i = 1 ;1

j = 1;2

M = [Sref |Stest1|Stest2 . . .Stestn ];3

repeat4

Bi, Vi = CentroidDecomposition(Mi, f);5

bi = col(Bi, 1) // col(Bi, 1) returns first column of Bi;6

vi =row(Vi, 1) // row(Vi, 1) returns first row of Vi;7

x = bi · vi ;8

foreach j ∈ R do9

Mi+1[j, 1] = x[j] ;10

// Mi+1[j, 1] means the element in jth row,1st column of Mi+1;
// x[j] means the element in jth row of vector x ;

i = i+ 111

until |(‖Mi −Mi−1‖F )| < ε ;12

return Mi13
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5.2 Recovery in Shifted Time Series

We construct synthetic shifted time series in order to check the accuracy of the proposed
recovery technique. The constructed time series are periodic functions, e.g., sine, tri-
angle, square, etc. We drop a block of 100 values from a reference time series and we
recover it using our technique. We use the Mean squared error (MSE) to measure the
recovery accuracy as follows:

MSE =
1

n

n∑
i=1

(M̂i −Mi)
2

Where M̂i is the vector of recovered values and Mi is the vector of the real values. We
describe in what follows the result of a bunch of experiments we ran using different setups
of synthetic time series. We enumerate the main factors that influence the accuracy of
the recovery. We compute for each experiment the MSE to measure the accuracy of the
recovery. The plotted graphs have the following characteristics:

• The x-axis represents the timestamps and

• The y-axis the represents the observed values and the recovered ones

• The thin black line represents the original values of the reference time series.

• The blue line represents the test time series. If more test time series are used for
the recovery, they are represented with green and orange lines.

• The red bold line represents the recovered values of the reference time series.

5.2.1 Impact of the length of time shift

In the experiment of Figure 5.1, we perform the recovery using a shifted test time series
with respect to the reference time series. The two time series have the same shape, i.e.,
sine wave. We increase the time shift in the three results of Figure 5.1. In Figure 5.1(a),
we show the result of recovery with a time shift equal to 10. In Figure 5.1(b), we show
the result of recovery with a bigger time shift equal to 18 and in Figure 5.1(c) with a
time shift equal to 25. The three figures show that the recovery imitates the shape of
test time series where the missing block is. The smaller the length of time shift is, the
more accurate the recovery is. Figure 5.1(c) shows also that if the length of the time
shift is high, the amplitude of the original values is less accurately recovered.

5.2.2 Impact of the amplitude

a) Different amplitudes between two time series: In the experiment of Figure 5.5,
we perform the recovery using shifted test time series and a reference time series with
different amplitude. In Figure 5.2(a) the test time series has a higher amplitude than the
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Figure 5.1: Impact of the length of shift

reference time series. The amplitude of the missing block is not accurately recovered. In
Figure 5.2(b) the reference time series has a higher amplitude than the test time series.
The amplitude of the missing block is not accurately recovered.
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Figure 5.2: Impact of the amplitude

b) Different amplitudes within the same time series: In the experiment of Fig-
ure 5.3, we perform the recovery using shifted test time series and a reference time series.
Goal of this experiment is to test the impact of the different amplitudes within the same
time series. In Figure 5.3(a) the test time series has same amplitude along the whole
time series. In Figure 5.3(b) the test time series contains a higher peak i.e., it has dif-
ferent amplitudes within itself. Although the assessment based on mean squared error
find the recovery accuracy in Figure 5.3(b) better, it is seen that the amplitude of the
reference time series are recovered more accurate. If we take a longer history from both
time series the impact of the extreme higher peak will reduced, see Figure 5.3(b)

5.2.3 Impact of the shape of test time series

In the experiment of Figure 5.4, we perform the recovery using a shifted test time series
and a reference time series with different shape. The result of Figures 5.4(a), 5.4(b) and
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(c) Different amplitudes within the same time se-
ries taking longer history

Figure 5.3: Impact of length of history for the different amplitudes within the same time
series

5.4(c) show that the recovered values always imitates the shape of the test time series.

5.2.4 Impact of the number of time series

In the experiment of Figure 5.5, we perform the recovery with increasing number of test
time series. Test time series are aligned to each other. The result of Figures 5.5(a),
5.5(b) and 5.5(c) shows that the recovery imitates the shape of the test time series. If
more than one test time series are used, the amplitude of the recovered block is smaller
than the originally one.

5.2.5 Impact of the number of factors

In the experiment of Figure 5.6, we perform the recovery using three test time series and
increased the number of factors used for the recovery. The best case is obtained for one
used factor as shown in Figure 5.6(a).
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(a) Recovery using test time series
”sine”
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(b) Recovery using test time series
”triangle”
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(c) Recovery using test time series
”square”

Figure 5.4: Impact of the the shape of test time series
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(a) Recovery using one test TS
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(b) Recovery using two test TS
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(c) Recovery using three test TS

Figure 5.5: Impact of the number of time series

5.2.6 Interpretation of results

The experiments that we ran yield us to draw some conclusions about the recovery
accuracy of the proposed recovery techniques. The main conclusions are the following:

• The recovered values imitate the shape of test time series where the missing block
is.

• The smaller the shift is, the more accurate is the amplitude of the recovered values.

• The longer the history of the time series is, the less the effect of extreme values is
in the recovery.
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(a) Recovery using 1 factor
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(b) Recovery using 2 factors
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(c) Recovery using 3 factors

Figure 5.6: Impact of the number of time series
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6 Conclusion

We have presented in this report a graphical recover tool that incorporates the Centroid
Decomposition method in order to perform the recovery of missing values in hydrological
time series and display it. The implemented tool offers additional functionalities such
as to display the entire history of time series and to show the result of the Centroid
Decomposition of input matrices. We presented different possibilities to implement the
Centroid Decomposition. We described analytical results about the scalability of our
technique that has linear space complexity and is able to perform the recovery of time
time series containing up to 100’000 values in less than 5 minutes. We applied the
recovery techniques for time series that are shifted in time. The experiments we ran
show satisfactory results in case of time series with small time shifts. But, the accuracy
of our techniques deteriorates with bigger time shifts. We listed the cases where the
recovery gives good results in time series shifted in time. We used the Mean Square
Error to measure the recovery accuracy of our technique. This measure turned out to
be not effective if the technique recovers the same shape of original block but shifted
in time. A future direction of this work is propose an effective accuracy measure that
could work in the case where the result of the recovery is shifted in time. A more
extensive comparison with other recovery techniques is thought to be an interesting
point to investigate. Last but not least, proposing a formula that takes as input the
time series and the length of the time shift and predicts the shape of the recovery could
be part my final Master thesis.
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Appendix

A. Properties

Property 1 Two vectors are orthogonal to each other if their inner product equals
zero. An orthogonal matrix is a square matrix with real entries whose columns and
rows are orthogonal unit vectors.

Property 2 The normalized vector of x is a vector in the same direction but with
norm 1.

Property 3 The norm of the n-dimensional vector x is denoted as ‖x‖ and equals to
the scalar value

√
x21 + x22 + ...+ x2n, where x1, x2...xn are the components of x.

Property 4 The Frobenius Norm of a matrix A ∈ Rn×m, denoted with ‖A‖F is

defined by the equation ‖A‖F =
√∑n

i=1

∑m
j=1 |aij|2
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[4] Khayati, M., and Böhlen, M.H., : REBOM: Recovery of Blocks of Missing Values
in Time Series, in COMAD, 2012

[5] Chu, M.T., and Funderlic, R.E., : The Centroid Decomposition: Relationships Be-
tween Discrete Variational Decompositions and SVDs, in SIAM J. Matrix Analysis
and Applications, 2002

[6] Fodor, I.,K., :A survey of dimension reduction techniques, Technical report, 2002.

[7] Meyer, C.D., :Matrix Analysis and Applied Linear Algebra, Book, SIAM publisher,
2001.

37


