
Improving the Performance of Region

Quadtrees

Facharbeit im Nebenfach Informatik
Supervised by: Prof. Dr. Michael Böhlen, Anton Dignös

Marius Wolfensberger
Zürich, Schweiz

08-915-795

Department of Informatics - Database Technology
Binzmühlstrasse 14
CH-8050 Zurich

02. 04. 2013

Contents

List of Figures II

List of Tables II

Abstract 1

1 Introduction 2
1.1 Background of Quad- and Octrees 2
1.2 Scope of the Study . 2

2 Definition of Quadtrees 4

3 Decomposition Methods 6
3.1 Coverage-Based Splitting . 6
3.2 Density-based Splitting . 7

4 Quadtree Variants 9
4.1 Regular Quadtree . 9

4.1.1 MX-CIF Quadtree . 9
4.1.2 Disadvantages of MX-CIF Quadtrees 11

4.2 Loose Quadtree . 12
4.3 Comparison . 14

5 Conclusion 17

References 18

I

List of Figures

1 The Example of a simple Region Quadtree 4
2 Block Decomposition induced by an MX-CIF Quadtree 7
3 Overlapping Polygons with density-based Splitting 8
4 Regular Quadtree Example . 10
5 Large Accumulation of Points in a Quadtree 10
6 Disadvantage of Regular Quadtrees 11
7 Loose Quadtree Example . 12
8 Di↵erent Factors for k . 13
9 The Problem of longer Verlet Lists 14
10 Octree / Loose Octree Comparison 15
11 Histogramm of an Octree / Loose Octree Comparison 15

List of Tables

1 The average Number of Neighbours per Sphere for a completed
Packing of 10’000 Spheres . 16

II

ABSTRACT

Abstract

The worldwide dispersal of spatial databases and higher requirements regard-

ing the speed of these systems have led to the demand of new techniques of

indexing spatial data for faster data access.

This study will focus on a way to increase the speed of spatial indexing, intro-

ducing quadtrees as a popular and widespread data structure for the partition-

ing of objects and identifies its di�culties with the positioning of objects in

the tree. A comparison with the lesser known loose quadtree shows that this

data structure is able to overcome the disadvantages of the regular quadtree.

To improve the e�ciency of the partitioning performed by a quadtree, al-

ternative ways of halting the decomposition process have been defined, such

as coverage-based splitting which restricts the number of quadtree blocks that

contain an object or density-based splitting that restricts the number of objects

which can be covered by a quadtree block. This study discusses the advantages

of these methods and analyses di�culties implementing these decomposition

rules.

1

1 INTRODUCTION

1 Introduction

1.1 Background of Quad- and Octrees

During the recent decades the availability of spatial data has greatly ex-
panded. With the use of spatial databases such as GIS1 in sensitive areas
like security systems and control centres, the requirements levied on the per-
formance of these systems have increased dramatically. In this context, ex-
tensive research has been conducted on designing e�cient data structures to
permit a high performance spatial searching for instance using range queries.
Therefore quadtrees for two-dimensional data and octrees as their counter-
part for three dimensions have been introduced. [Kothuri et al., 2002]

Quadtrees are hierarchical data structures based on the principle of recursive
decomposition of the environment embedding each object into blocks, until
a predefined condition is satisfied. [Samet, 1984; Samet, 2005]

However, ordinary quadtrees have a few disadvantages which are reducing
the e↵ectiveness of the partitioning. A key problem consists in the strong
spatial dependency of the objects when they are placed into a node2. In or-
der to counter this prejudice, several new variants have been introduced such
as the loose quadtree, which enlarges the nodes’ bounding box [Ulrich, 2000].

Quadtrees need well defined decomposition methods to determine when to
halt for an e�cient partitioning. Therefore several decomposition methods
have been defined, such as density-based splitting that restricts the number
of objects that are covered by a quadtree block, or coverage-based splitting
that delimits the number of quadtree blocks that contain an object.

1.2 Scope of the Study

The demand for such new quadtree-variants and decomposition methods as
well as the innovative character of this subject lead to the following research
questions:

• What are the advantages and disadvantages of the di↵erent
decomposition methods presented in this thesis?

1
Geographic Information Systems

2
Each node represents a square block in the quadtree, called the node’s bounding box

covering a part of the indexed space

2

1 INTRODUCTION

• Do loose quadtrees generate added value in spatial indexing
compared to regular quadtrees?

The goal of this work is to give an overview about the regional quadtree
and to introduce di↵erent state-of-the-art quadtree variants with their ad-
vantages and disadvantages. It will be outlined in which situations the loose
quadtree outperforms the regular quadtree. This work may serve as a basis
for decision-making whether the loose quadtree provides a good alternative
in a given application.

This thesis is organized as follows: Section 2 gives the definition of the term
quadtree. Section 3 sets its focus on the di↵erent decomposition methods,
giving an introduction of how to improve the e�ciency of this data structure.
Section 4 illustrates the strengths and weaknesses of regular quadtrees, intro-
ducing the loose quadtree as an alternative which is able to overcome these
drawbacks. These insights will be used then in the conclusion to demonstrate
the acquired cognitions.

The theories and conclusions presented in this thesis are equally valid for
quadtrees as well as octrees, unless otherwise stated.

3

2 DEFINITION OF QUADTREES

2 Definition of Quadtrees

The term quadtree is ”used to describe a class of hierarchical data structures
whose common property is that they are based on the principle of recursive
decomposition of space” [Samet, 1984]. Quadtrees are a two-dimensional tree
data structure invented by Finkel and Bentley in 1974 originally designed to
sort spatial data [Finkel, 1974]. There are many variants of quadtrees used in
numerous application areas [Samet, 2005]. This work will focus on regional
quadtrees which are hereinafter referred to as quadtrees.

Region Quadtrees are based on a recursive subdivision of a given region
into four equal-sized quadrants at each level. The region is recursively de-
composed into four rectangular blocks until all blocks are occupied by an
object or are empty (i.e. every leaf node belongs to a region or not). Ev-
ery node of the tree corresponds to a quadrant in the dataset. Each inner
(non-leaf) node has four child-nodes where each one represents a quarter of
its parent node (referred to with geographic direction: NW, NE, SW, SE)
and all quadrants in the same level have the same size [Samet, 1984/ Fischer,
2012]. The leaf nodes correspond to the blocks, which do not require further
subdivision. [Samet, 1984; Samet, 2005]

Figure 1: A given region (a), its binary array representation (b), the block
decomposition of the region (c) and its quadtree representation (d) [Samet,
1984]

Figure 1 shows an example of a region in Figure (1a) which is represented by

4

2 DEFINITION OF QUADTREES

a quadtree in Figure (1d). Figure 1(b) shows its binary array with the size
23 ⇤ 23. The 1’s represent the elements that are in the region and the 0’s the
elements outside of it. The resulting block decomposition is shown in Figure
1(c). Note the di↵erent sizes of the blocks which contain a part of the region.
Figure 1(d) shows the region represented as a quadtree. The quadtree has
a degree of 4, which means 3 subdivisions are necessary to represent the
region [Samet, 1984]. Take into consideration that this example is kept very
simple, as there is only one object to be represented and the region boundaries
coincide exactly with the quadtree block extents.

5

3 DECOMPOSITION METHODS

3 Decomposition Methods

In quadtrees as shown in Figure 1 the decomposition process is halting, when-
ever a block is completely contained in an object or a set of objects. However,
since the boundaries of the objects don’t need to coincide in regular data sets,
this rule can’t be satisfied in general. Thus alternative ways to halt the de-
composition process are required. Therefore two methods are introduced in
this section for an e�cient partitioning [Samet, 2005]:

1. Coverage-based splitting

Restrict the number of quadtree blocks that contain an object.

2. Density-based splitting

Restrict the number of objects that are covered by a block or part of a
block.

3.1 Coverage-Based Splitting

A conventional method to implement coverage-based splitting is to set the
number of blocks that can cover an object to T = 1. In concrete terms
this means, that an object can only be part of 1 block. Usually this is the
smallest possible block that may contain an object. The MX-CIF quadtree
decomposes the region into four evenly divided blocks, so that each object
is associated with its minimum enclosing quadtree block [Samet, 2005]. The
MX-CIF quadtree will be described in more detail in Section 4.1.1.

A disadvantage when restricting the blocks that can cover an object to 1
is that the blocks tend to be rather large on average, as objects that straddle
the first split partition will automatically be placed in the root [Samet, 2005].
As the region shown in Figure 1 only consists of one polygon it would not
have been split at all using the coverage-based splitting method. Instead the
quadtree would have represented the whole region using only the root.

6

3 DECOMPOSITION METHODS

Figure 2: A collection of rectangles and the block decomposition induced by
its MX-CIF quadtree (a) and its tree representation (b) [Samet, 2005]

Figure 2 shows an example of an MX-CIF quadtree using coverage-based
splitting. More than one object is associated per node, for instance the
objects 3, 4 and 5 are all part of block E, yet all objects are only part of
one block. Notice that for example object 2 on level 0 (the root) is smaller
than other objects appearing on the second level, due to its position. The
MX-CIF quadtree and its drawbacks will be discussed in further detail in
chapter 4.1.2.

3.2 Density-based Splitting

Density-based splitting is defined, that a block is decomposed whenever it
covers more than T (T � 1) objects (or parts of them). The case T = 1
means that the decomposition will halt whenever each block contains one or
zero objects. Such rules are known as bucketlike decompositions. Notice that
this decomposition rule does not split the block if it contains more than T
objects as such a rule would be di�cult to satisfy, since blocks usually con-
tain portions of many objects rather than many entire objects. [Samet, 2005]

Density-based splitting works well when the polygons are disjoint. However,
when the dataset contains overlapping or adjacent polygons, density-based
splitting can lead to problems. Overlapping can occur for example if you
calculate a bu↵er zone3 around a polygon dataset or in tra�c networks.

3
Area around objects with a defined distance

7

3 DECOMPOSITION METHODS

Figure 3: An example of overlapping polygons where density-based splitting
using T = 2 will never halt. The block is represented by the external blue
square, whereas the three squares inside the block represent the objects.
[Samet, 2005]

Figure 3 shows an overlapping polygon configuration that will never halt.
Assuming T = 2, the block containing the three polygons is not split when
inserting the third polygon. The situation that all the blocks will be part of
T or fewer polygons will never occur. [Samet, 2005]

In geographic information systems the most common case of polygon data
are adjacent polygons e.g. land coverage. Using density-based splitting with
adjacent polygons the case that the decomposition will not halt due to over-
lapping polygons is not possible anymore. However, infinite decompositions
are still possible if a map has a vertex where more than T polygons are
incident. There are several ways to overcome this problem, for example to
decompose the block just once if it is part of more than T polygons using
a PMR quadtree which has a tree structure that is sensitive to the order in
which the polygons are inserted. This solution is not discussed here in detail.
[Samet, 2005]

8

4 QUADTREE VARIANTS

4 Quadtree Variants

As mentioned in section 2, there are numerous variants of quadtrees. Most
of them are particularly suited for a specific field of operation as for example
spatial indexing, image-encoding and many more [Samet, 2005]. This chapter
introduces two variants of region quadtrees and gives a comparison.

4.1 Regular Quadtree

4.1.1 MX-CIF Quadtree

In an MX-CIF quadtree, all objects associated to a specific node, must be
contained completely within the node’s bounding box. It decomposes the
underlying space into four equally sized blocks at each level, so each object is
associated to the smallest possible block that can entirely contain the object,
i.e., the minimum enclosing quadtree block [Samet, 2005]. An object can
only be part of one single cell. The quadrant on level 0 is divided into four
quadrants with side length s1

s1 := s0/2

on level 1 where s0 corresponds to the side length at level 0 [Raschdorf et
al., 2009]. In this quadtree the side length is static and can be generalized as:

L(depth) = W/2depth

where W is the side length of the given region and depth is the number of
levels by which a node is separated from the root. The root node itself has
depth = 0 [Ulrich, 2000]

Generally an MX-CIF quadtree is generated with this algorithm [Fischer,
2012]:

1. Begin with a cell which contains all points (bounding box).

2. Divide the cell into four squares with the same size and distribute the
objects amongst the squares.

3. Divide them until you have a maximum of k points in a square or a
maximum number of levels.

9

4 QUADTREE VARIANTS

Figure 4: An example of a regular quadtree with point data [Burad, 2006]

Insertion of an object into an MX-CIF quadtree is done by traversing the
tree. Beginning with the root, the insertion algorithm checks whether the
object fits into one of its four child nodes without intersecting another node.
If this holds, the object descends the tree to the corresponding child node.
Otherwise the object is inserted in the present parent node. This guarantees
that all objects are placed as deep as possible into the tree. [Raschdorf et
al., 2009]

The quadtree encloses its object completely so none of the adjacent nodes
have to be searched for overlapping objects [Raschdorf et al., 2009]. Figure
5 shows that large accumulations of objects only have a limited influence on
the overall structure of the quadtree. [Fischer, 2012]

Figure 5: A large accumulation of points in a quadtree [Fischer, 2012]

10

4 QUADTREE VARIANTS

4.1.2 Disadvantages of MX-CIF Quadtrees

The MX-CIF quadtree is very simple to implement and usually provides
a good performance, especially with well distributed values [Samet, 1984].
However, this quadtree has a great disadvantage: An object intersecting the
boundaries at level 0 will be placed automatically into the root node no
matter its size. Figure 6 shows that objects of the exact same size may be
stored on di↵erent levels depending on their positions. Thereby they reduce
the e�ciency of the spatial operations, due to a reduction in the ability to
decrease the times the objects have to be taken into consideration when
traversing the tree. [Samet, 2008; Ulrich, 2000; Raschdorf et al., 2009].

Figure 6: All of the objects have the same size, yet they are on di↵erent levels
(marked grey/black), due to their position on the partitioning line. [Ulrich,
2000]

There are various ways to approach the problem that objects with the same
diameter can be placed on di↵erent levels [Ulrich, 2000; Samet, 2008]:

- Split the objects on the partitioning planes and classify these individu-
ally thereby receiving additional polygons which need to be connected
using extra storage.

- Reference the object by more than one node, so they are referenced by
child nodes on either side of a node. This increases the administrative
e↵ort as the algorithm needs to handle redundancy since the number
of references to an object is replicated.

Both approaches have their disadvantages and lead to a more complex im-
plementation. Therefore, in the next section another quadtree structure is
introduced that addresses these disadvantages by expanding the bounding
area, i.e., the loose quadtree.

11

4 QUADTREE VARIANTS

4.2 Loose Quadtree

Not every data may fit as good as the point data from Figure 4 into a quadtree
node where it is intrinsic, that objects do not cross the boundary lines of the
nodes. For objects with a spatial extension other solutions are required. The
loose quadtree and the cover fieldtree method adjust the nodes bounding area
by ”loosening” the boundary, but leaving the hierarchy and the centre of the
nodes as they are [Ulrich, 2000; Samet, 2009]. Cover fieldtrees were devel-
oped to represent spatial objects in geographic information systems, whereas
loose quadtrees are used in the context of game programming applications.
This work uses these expressions interchangeably.

In the conventional quadtree the edge has a length L, whereas in the loose
quadtree the edge has the length kL, where k is a factor > 1. The formula
for the edge length of a loose quadtree is

L(depth) = k ⇤W/(2depth)

where k determines how much the edges are expanded. This node expansion
causes the objects to be placed much deeper into the tree compared to MX-
CIF quadtrees.

Figure 7: An example of a loose quadtree [Fischer, 2012]

Figure 7 shows an example of a loose quadtree. In a regular quadtree the
polygon would have been placed in the parent node despite the small size.
However, here the south-east cell is ”loosen” to fit the entire polygon. The
bounding node is still a square. As we can see, with loose bounding squares
smaller objects will fit within deeper levels of the tree, making the size of an
object more important for its level than its position.

The main challenge using loose quadtrees is to find a good factor for k.
If the factor is too small the root node can be overfilled with small poorly
partitioned objects and will su↵er the same problems as MX-CIF quadtrees.

12

4 QUADTREE VARIANTS

Using a factor too large will result in excessively loose bounding lengths and
therefore will have too much overlapping between nodes on one level. [Ul-
rich, 2000 / Samet, 2005]. This leads to longer so-called Verlet lists Lv(�),
containing all the neighbours of an object � in a node v that have outer
boundaries overlapping the outer boundary of v. [Raschdorf et al., 2009].

Ulrich suggests the factor k=2 as a ”useful all-around value” [Ulrich, 2000]
which is widely accepted as the ideal value [Samet, 2009]. With k=2 an
object with diameter d necessarily fits into the nodes of level l with an inner
boundary length of

d s(in)l := s0/2l

where s(in)l is the side length of the inner boundary at level l and s0 is the
side length of the root. At the same time the factor k=2 is not causing too
much overlap, therefore preventing the quadtree from having a long Verlet
lists of neighbours [Raschdorf et al., 2009].

Figure 8: Di↵erent factors for k. The blue square shows the node’s bounding
box. Left: regular quadtree with k = 1, the object is placed in the root.
Middle: loose quadtree with factor k = 2, the object is placed in the NW-
child node of the root. Right: loose quadtree with factor k = 3.5, the object
is allocated in level 3 [Examples generated with Brabec et al., 2012]

Figure 8 shows the e↵ects of factor k. Without ”loosening” the boundaries
as shown in the left picture, the object is placed in the root as it crosses
the coordinate plane of the first level. In the middle image, which shows the
”ideal” value k = 2, the node is placed in the north-west-node of the root
and overlaps only one other node (north-east). In the right image with a
factor k = 3.5 the object is allocated very deep in the tree and overlaps 5
other nodes.

13

4 QUADTREE VARIANTS

Figure 9: An example to show the enlargement of Verlet lists with a bigger
factor k [Example generated with Brabec et al., 2012]

Figure 9 shows the drawback if k is too large. Given a spatial query, which
is searching for objects in the north-east node, the regular quadtree only
searches in one node. However if you expand the bounding box with k=2

(indicated with the blue line), the query needs to check all 4 nodes whether
they contain objects in the north-east node. The higher the factor k is chosen,
the longer are the resulting Verlet list, which means more nodes have to be
checked.

4.3 Comparison

Figure 10 is an excellent example to show the di↵erences using regular and
loose octrees. 50’000 spheres of di↵erent sizes were inserted into a regular
octree and an octree with loose boundaries. The darkness of the color speci-
fies the level in the quadtree. The darker the color, the lower the level (black
spheres are placed in the root node). The boundary lines are easily visible
in the regular octree as the spheres crossing a low level coordinate plane are
placed on a lower level. Regarding the loose octree, the black lines have dis-
appeared. The spheres with bigger sizes are on a lower level than the other
spheres and the overall average level is much higher.

14

4 QUADTREE VARIANTS

Figure 10: A comparison of the dense packing of 50’000 spheres with a regular
octree (left) and a loose octree (right). The darker the color, the lower the
level [Raschdorf et al., 2009]

Raschdorf compared the performance of these di↵erent structures comparing
samples of 10’000 spheres using monodisperse4 and polydisperse5 packings.
The histograms in Figure 11 show the distribution of the spheres among the
levels of the regular and the loose octree.

Figure 11: Distribution of spheres among octree and loose octree levels in
the final packings, averaged over 10 simulation runs. [Raschdorf et al., 2009]

The results are very distinct and show a similar pattern as in Figure 10.
While the objects from the original octree are mainly distributed on the first
few levels in both test cases, the objects in the loose variant reside mainly
within the last levels. In the monodisperse test with the loose variant there
are no spheres on the levels 0-3 as their diameter is smaller than the length
of the inner boundary. Therefore it is apparent that the main allocation in

4
A collection of objects with the same size

5
A collection of objects with an inconsistent size

15

4 QUADTREE VARIANTS

the regular octree is based on the position, while the loose octree allocates
the spheres predominant according to their size [Raschdorf et al., 2009].

Table 1: The average number of neighbours per sphere for a completed pack-
ing of 10’000 spheres, [Raschdorf et al., 2009]

Table 1 shows that compared to the regular octree the loose octree has about
40 times less neighbours in average to check on possible overlap with both
kinds of packings, making it the only suitable choice in these cases.

However, Ulrich stated, that the loose variant is not always a guaranteed
improvement of the performance. His approach was, to compare the perfor-
mance of typical quadtree applications such as frustum culling6 and collision
detection with a regular and a loose octree. He mentions that it depends
mainly on the circumstances whether such a modification is necessary. Espe-
cially for situations with a large number of interactions and dynamic objects
he observed di↵erences in the performance which underline the advantages
of the loose modification. On the other hand in the test with frustum culling
the loose variant returned fewer possible visible objects, yet had to check
more nodes leading to a balance in performance di↵erences. [Ulrich, 2000].

Despite of the many disadvantages, regular quadtrees do have one advan-
tage over their loose counterpart which was shown in Figure 9. Their nodes
cover exactly the same region as their descendants, while loose quadtrees
nodes overlap their siblings on the same level, therefore most space is cov-
ered by more than one node. However, the advantages of the loose quadtree
outweigh its drawbacks. Most of the objects are on a deeper level ensuring
much more precise results with shorter Verlet lists [Raschdorf et al., 2009].

6
Line-of-sight analysis

16

5 CONCLUSION

5 Conclusion

Quadtrees have found use in many diverse applications such as geographic
information systems and game applications for instance in order to detect
collision, spatial indexing and line-of-sight analysis. This study discussed
the disadvantages of common MX-CIF quadtrees in combination with line
and polygon objects. It was established, that the main disadvantage consists
in the allocation of objects in the tree, which depends more on the object’s
position than on its size since small objects crossing a certain coordinate
plane are automatically inserted in the corresponding level, decreasing the
overall performance.

This work has shown that the loose quadtree resolves this drawback and
therefore provides added value without compromising important properties
of the MX-CIF quadtree. It can be applied not only for monodisperse, but
for polydisperse packings too [Raschdorf et al., 2009], which is an important
factor regarding geographic information systems as line and polygon data
of real world objects always have a polydisperse structure. The factor k=2
is widely accepted as a reasonable compromise between poorly partitioned
objects and long Verlet lists.

The presented decomposition methods are useful enhancements to the quadtree
systems to improve the e�ciency and the functionality. Coverage-Based split-
ting for example leads us to the MX-CIF quadtree and its loose variant.
Nevertheless, both methods must be used with caution as coverage-based
splitting can lead to large blocks and an imprudent use of density-based
splitting can create situations where the decomposition will never halt.

Since the demands in performance in game applications and geographic in-
formation systems continuously rises, these modifications provide a powerful
alternative to the regular variant. However, whether it is appropriate to use
the loose modification or a presented splitting method must be determined
on a case by case basis. In situations where large numbers of interacting
and dynamic objects occur, the loose quadtree is a rather good option to in-
crease the overall performance, making it a powerful alternative to the classic
quadtree. [Ulrich, 2000]

17

REFERENCES

References

Brabec, F., Samet, H. ”Cover fieldtree and loose quadtree” (demo).
http://donar.umiacs.umd.edu/quadtree/rectangles/loosequad.html, (2012).
Viewed: 31.03.2013.

Burad, A. ”Advanced data structures” http://multimediadb.blogspot.ch/
2006/03/advanced-data-structures.html, (2006). Viewed: 06.03.2013.

Finkel, R., Bentley, J. ”Quad trees a data structure for retrieval on
composite keys.” Acta informatica 4.1: 1-9, (1974).

Fischer, M. ”Algorithmen für hochkomplexe Virtuelle Szenen.” Heinz
Nixdorf Institut, Universität Paderborn, (2012).

Kothuri, R., Ravadi, S., Abugov, D. ”Quadtree and R-tree indexes
in oracle spatial: a comparison using GIS data.” Proceedings of the
2002 ACM SIGMOD international conference on Management of data.
ACM, (2002).

Raschdorf, S., and M. Kolonko. ”Loose octree: a data structure
for the simulation of polydisperse particle packings.” (2009).

Samet, H. ”The quadtree and related hierarchical data structures.”
ACM Computing Surveys (CSUR) 16.2: 187-260, (1984).

Samet, H. ”Foundations of multidimensional and metric data struc-
tures.” Morgan Kaufmann, (2005).

Samet, H. ”A sorting approach to indexing spatial data.” Interna-
tional Journal of Shape Modeling 14.1: 15-37, (2008).

Ulrich, T. ”Loose octrees.” Game Programming Gems 1: 434-442,
(2000).

18

