
MSc Thesis

Computing Apps Frequently
Installed Together over Very
Large Amounts of Mobile

Devices

Martin Spielmann
Basel, BS, Switzerland

Matriculation Number: 2008-055-519

Departement of Informatics
Prof. Dr. Michael Böhlen

supervised by
Prof. Dr. Michael Böhlen
and Christian Ammendola

September 16th, 2015

Acknowledgments
I wish to express my sincere thanks to Prof. Dr. Michael Böhlen for giving me
the opportunity to write this master thesis at the Database Technology Group
of the University of Zurich and for his support in many meetings. Moreover,
my sincere gratitude goes to my supervisor, Christian Ammendola, and also
the team of 42 matters AG, who supported me throughout the entire work with
enthusiastic encouragement and careful critique, and for making the experiments
using AWS possible by providing a liberal budget.

Last but not least, I would like to thank my family and friends. Especially
for the careful counter-checking and support in this thesis, my thanks go to:
Lena Asal, Gabriel Müller, Jonas Spielmann, and Simone Zuber.

Abstract

Knowing Apps frequently installed together is valuable for applications in the
field of app recommendations and targeted advertising. In this work, a dis-
tributed algorithm based on Apache Spark is developed to find the apps most
frequently installed together on a vast amount of mobile devices. The algorithm
is optimized by understanding Spark’s execution model and the characteristics
of the input data. An available input dataset of 500’000 devices was examined
by the distribution of its apps and app pairs. Furthermore, the algorithm was
tested extensively on different cluster configurations and with differently sized
input data to investigate both scalability and affordability.

Zusammenfassung

Zur passenden Empfehlung von Apps und zur zielgerichteten Einblendung von
Werbung ist es wertvoll zu wissen, welche Apps oft zusammen installiert sind. In
dieser Arbeit wurde ein verteilter Algorithmus auf Basis von Apache Spark im-
plementiert, der die am meisten zusammen installierten Apps auf einer grossen
Menge von mobilen Geräten findet. Der Algorithmus wurde durch das Verständ-
nis des Ausführungsmodels von Spark und der Eigenschaften der Eingangsdaten
bezüglich seiner Leistung optimiert. Dafür wurde ein verfügbares Datenset von
über 500’000 Geräten im Bezug auf die Verteilung der Apps und App Paare
untersucht. Desweiteren zeigen Experimente die Skalierbarkeit des Algorithmus
auf unterschiedlichen Clustern und mit unterschiedlich grossen Eingangsdaten.

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Problem Definition - Top-K . 6

1.2.1 Frequency Score . 7
1.2.2 Dependency Score . 7

1.3 Preconditions and System Architecture 9
1.4 Related Work . 10

2 Fundamentals 11
2.1 Spark Infrastructure . 11
2.2 Apache Spark . 12

2.2.1 Resilient Distributed Datasets (RDD) 12
2.2.2 Execution Model . 15
2.2.3 Shuffle Operations . 16
2.2.4 Caching . 17
2.2.5 Broadcast Variables . 17

2.3 Test Data . 17
2.3.1 Meta Data . 17

3 Algorithm 19
3.1 Design . 19
3.2 Implementation . 20

3.2.1 Base Probability Calculation 23
3.3 Analysis . 24

3.3.1 Execution . 24
3.3.2 Complexity . 25

4 Optimization and Experiments 30
4.1 Integral Optimizations . 30

4.1.1 Package name mapping 30
4.1.2 Wide dependency avoidance 30

4.2 Performance Experiments . 31
4.2.1 Input Sizes . 31
4.2.2 Different values of k . 32
4.2.3 Cluster Size . 35

4.3 Pair Filtering . 35
4.3.1 Proof of Concept . 36
4.3.2 Metric . 37

1

4.3.3 Frequency Score . 37
4.3.4 Dependency Score . 39

4.4 App filtering . 39

5 Summary and Future Work 42
5.1 Challenges and Future Work . 43

5.1.1 Testing . 43
5.1.2 Performance and Optimization 44
5.1.3 Further Topics . 44

Bibliography 46

Appendices 47

A Technical Documentations 48
A.1 Starting a Spark Program . 48
A.2 Debugging a Spark Program . 49

B Source Code 50
B.1 Frequency Score . 50
B.2 Dependency Score . 52
B.3 Pair and App Filter . 53
B.4 Top-K Equality . 56

2

List of Figures

1.1 Illustration of the system architecture as given for the thesis. . . 9

2.1 Underlying infrastructure of Spark, independent from the cluster
manager [5] . 12

2.2 DAG of example Spark program from listing 2.1. In the program
two RDDs have no name because the transformations are directly
chained. In the figure they are simply marked as "RDD". 16

3.1 Basic algorithm RDD operations 19
3.2 Example of the basic algorithm with frequency score and k = 1 . 20
3.3 Algorithm splitting in stages . 24
3.4 Basic algorithm example with two partitions/tasks 26
3.5 Relation |A| and |DP | on a log-log plot. Shows the worst case

|DP | = |A|2 and the fit of testdata samples |DP | = |A|1.462. . . 29

4.1 Performance relation between the algorithm with and without
package name mapping . 31

4.2 Performance relation between the algorithm in two stages and
three stages with the sames hardware setting 32

4.3 Algorithm with three stages instead of two. k = 1 33
4.4 Algorithm performance with different sized input datasets. 34
4.5 Algorithm performance with different k and the 100k dataset on

the same cluster shown on a lin-log plot. 34
4.6 Experiments with different sized clusters, showing the relation

between the number of executors and the performance in devices
per second and executor (d

s·e). 35
4.7 Pair filtering test. Runtime for the 100k testdata subset with

different ratio of pairs filtered out. 36
4.8 App-pairs in the 1k dataset. Coloring for K = 10 while applying

the frequency score. The axes correspond to the base probability
of the unique apps in the pair. Pairs in top-k and with P (a) <
P (b) are marked with a black circle. 38

4.9 App-pairs in the 1k dataset. Coloring for K = 10 while applying
the dependency score. The axes correspond to the base base
probability of the unique apps in the pair. 40

4.10 Histogram of base probabilities of all distinct apps in the 5k test-
data subset. 41

4.11 Performance relation for different f with app filtering, depen-
dency score, and k = 10. 41

3

List of Tables

3.1 Upper limit of RDD sizes . 25
3.2 Data characteristics of the testdata subsets. All numbers are

rounded to two digits after the decimal point. 28

4.1 Algorithm performance with differently sized input datasets. The
performance is indicated as devices per second (ds). 32

4.2 Results of a frequency based pair-filtering tests with frequency
score on two testdata subsets . 39

4

Chapter 1

Introduction

42matters AG, a company based in Zurich, is active in the field of market intel-
ligence for Google Play and App Store. Its services are based on the analysis of
market offerings and the elaborate knowledge it has about app users and their
demographics. Some services of 42matters are based on the knowledge of which
apps are frequently installed together. In this thesis, a distributed algorithm
based on Apache Spark and running on a Apache Hadoop cluster is developed
to find the apps most frequently installed together on a vast amount of mobile
devices.

In the following subsections, the motivation, the formal problem definition
and the technical preconditions of this thesis are introduced.

In chapter 2, the technical fundamentals are given for the later development
of the algorithm. In that chapter the essential terms for the understanding of
the following chapters are introduced.

In chapter 3, theoretical aspects as well as the implementation of the de-
veloped algorithm for computing the top-k app pairs most frequently installed
together are presented. The analysis builds the foundation for further optimiza-
tions.

In chapter 4, performance experiments and several optimizations of the al-
gorithm are discussed.

Chapter 5 outlines the contributions of this thesis and explains the main
challenges and open ends for further work.

1.1 Motivation
The knowledge of apps which are frequently installed together is valuable in
multiple situations. Basically, it can be an indicator that users interested in one
of the apps are possibly interested in the other app as well. Two applications,
both part of 42matters’s products, are:

App Recommendation The knowledge that an app A is frequently installed
with app B indicates app B to be a good candidate for recommendations
for users which already have app A installed (and vice versa). Thus, it
allows for personalized recommendations. The recommendation of apps
to users of mobile devices in turn has several motivations, such as the

5

improvement of their engagement with the device itself or the enhancement
of their user experience. Providers of digital distribution platforms for
apps (app stores) and telephone companies branding their mobile devices
have a use for recommendation data.

Targeted Advertising Targeted Advertising has the goal of placing adver-
tisements as efficiently as possible. In this field, the knowledge of apps
frequently installed together is valuable from two perspectives: To success-
fully promote an app to potential users and to create more appropriately
targeted advertisements inside of apps.

42matters has collected a lot of information about the combination of apps
which are installed on mobile devices with the Android OS. As data from 42mat-
ters shows, the Google Play app-store lists more than 1.5 million apps. In a
worst case, there exist a total of 1.5 million squared app pairs, which would
make finding the apps most frequently installed together a challenge regarding
both time and memory. The number of apps as well as the number of available
data of devices is constantly growing. This motivates the need of a scalable and
affordable solution to find the apps most frequently installed together in a prac-
tical time frame. 42matters predicts the availability of data from more than
100 million devices and has the need to recompute the apps most frequently
installed together in one day to keep their model up to date.

1.2 Problem Definition - Top-K
In this thesis the apps most frequently installed together are defined as the
top-k apps. k represents the number of sought apps for every other app. The
challenge of finding the top-k apps in a set of devices is called top-k problem.

In this section, a formal definition of the top-k apps is provided. For these
purposes, the following definitions are made:

M := set of all existing apps

D ⊆M := set of apps on a single device

The input data is a list of devices, denoted as ∆ = {D1, D2...Dq}, the
multiset of sets of installed apps on q devices. Let A = {a1, a2...an} =

⋃q
i=1 Di

be the set of all n apps installed on the devices in ∆. This means that every
device in ∆ is a subset of A: D ⊆ A, and every A is a subset of M : A ⊆M .

A tuple of two apps (b, c) is called app-pair. The number of installations of
an app-pair (b, c) on the same device over all devices in ∆ is:

installs(b, c) = |{D ∈ ∆|b, c ∈ D}| ∈ N0, b, c ∈ A

Additionally, we define score : A2 → R as a function which allocates a real num-
ber to every pair of apps. This score encodes the meaning of "most frequently
installed together" and allows to have different definitions of the term. Two
definitions used in this thesis will be presented in section 1.2.1 and 1.2.2.

6

Top-K The goal of the algorithm is to find k ∈ N apps for every app a ∈ A in
a specific input dataset ∆, with the highest score of all apps which are installed
at least once together with a on one device, also called the top-k apps of a.
Along the former definitions, this means finding for every app a set R ⊆ A with
|R| = k, for which for all elements b ∈ A−R holds that

score(a, b) ≤ min{score(a, c)|c ∈ R}

The result of the algorithm is a set T with tuples of all n apps from the input
data ∆ together with the set of their top-k apps:

T = {(a1, R1), (a2, R2), ..., (an, Rn)}

1.2.1 Frequency Score
The most straightforward score is the verbal application of "most frequently
installed together". In this case the score of two apps is the number of devices
in a input dataset ∆ with both apps installed, defined as:

score(a, b) := frequencyScore(a, b) = installs(a, b) a, b ∈ A

Example For the input data Λ = {{a1, a2, a3}, {a2, a3, a4}, {a1, a2}} 1 and
k = 1, we have D1 = {a1, a2, a3}, D2 = {a2, a3, a4}, D3 = {a1, a2} and A =
{a1, a2, a3, a4}. The following table shows frequencyScore(a, b) = installs(a, b)
for every combination of two apps occurring at least once:

a1 a2 a3 a4
a1 2 1
a2 2 2 1
a3 1 2 1
a4 1 1

T is now the set of tuples of every app together with a set of k = 1 apps with
the highest score. In the example, for every app in the columns the one app
with the highest value can be picked. For this example multiple solutions exist,
because for some apps multiple combinations with other apps are occurring
equally often, e.g. a2 occurs twice with a1 and a3. One possible solution is:

T = {(a1, {a2}), (a2, {a1}), (a3, {a2}), (a4, {a2})}

1.2.2 Dependency Score
Few apps have many installations and a vast amount of apps has only few. This
leads to a strongly biased result of the top-k problem with the frequency score.
If an app is installed very often (e.g. WhatsApp or Facebook) it has a high
probability to be in the top-k of apps with few installations. The dependency
score takes this factor into account and scores pairs of apps higher if they are
more often installed together than it can be expected by their particular base

1In a real application, ax would be the app identifier for an app. In Android apps, this is
a package name such as "com.facebook.katana" or "com.whatsapp"

7

probability. To define the base probability, we first define the frequency of an
app. It is the number of installations of a specific app a in the input dataset ∆:

frequency(a) = |{D|a ∈ D,D ∈ ∆}|

The base probability of an app a ∈ A in the input dataset ∆ is the number
of devices in ∆ with the app divided by the number of all devices in ∆:

P (a) =
frequency(a)

|∆|

The probability of a specific app-pair (a, b) in ∆ is the number of devices with
both apps installed divided by the number of all devices:

P (a ∩ b) =
installs(a, b)

|∆|

Two events x and y are independent if the probability of them occurring together
is equal to the product of their individual probability: P (x ∩ y) = P (x) · P (y).
From this formula the following rule for an app-pair (a, b) can be inferred:

P (a ∩ b)

P (a) · P (b)

> 1 more often installed together than expected
= 1 as often installed together as expected
< 1 less often installed together than expected

This formula is defined as the dependency score. The goal of the top-k algorithm
with the dependency score is to find for every app a in ∆ the k apps which are
the most frequently installed together more often than expected in ∆ by their
base probability. With the above definitions, we get:

score(a, b) := dependencyScore(a, b) =
P (a ∩ b)

P (a) · P (b)

=
installs(a, b)

frequency(a) · frequency(b)
a, b ∈ A

Example For the same input data Λ = {{a1, a2, a3}, {a2, a3, a4}, {a1, a2}}
and k = 1, it is D1 = {a1, a2, a3}, D2 = {a2, a3, a4}, D3 = {a1, a2}. Again, we
can infer A = a1, a2, a3, a4. First we count the frequency of all apps in A:

a a1 a2 a3 a4
frequency(a) 2 3 1 1

Based on these frequencies and the numbers of values of installs(a, b) already
computed for the example in the last chapter, the dependency scores can be
calculated:

a1 a2 a3 a4
a1 1/3 1/2
a2 1/3 2/3 1/3
a3 1/2 2/3 1
a4 1/3 1

8

As in the former example we can now infer the result R:

T = {(a1, {a3}), (a2, {a3}), (a3, {a4}), (a4, {a3})}

Compared to the frequency score it is noticeable that a2 is not the top (because
k = 1) app of any other app. The reason for this is that a2 is installed on every
device (frequency(a2) = |∆|), so it is expected to be installed often with every
other app.

1.3 Preconditions and System Architecture
Alongside the given problem defined in the former chapter as the challenge, the
following conditions and parts of the system are given for the specified reasons.

Amazon AWS
Slave

Slave

Slave

Slave

Master

EMR Hadoop Cluster with Spark

S3

Result

Input Data

Figure 1.1: Illustration of the system architecture as given for the thesis.

Distributed Algorithm As the amount of available apps |M | and the size of
available input data ∆ is constantly growing, so is the required effort to
find the apps most frequently installed together. The necessity of finding
a good solution of the top-k problem follows the limited scalability of a
non-distributed solution.

Designed and implemented for Apache Spark2 Apache Spark as a clus-
ter computing framework promises fast large-scale data processing, based
on a unique in-memory approach. Additionally, it has a very compact and
clear interface. Both factors lead to the decision of using Spark to develop
and implement the top-k problem. The required Spark fundamentals are
described in section 2.2.

Data from and to S3 3 The Amazon S3 (Simple Storage Service) by Amazon
Web Services (AWS) is used to store the input and output dataset. S3
provides cheap storage capacities for diverse data and is reachable through
web service interfaces like REST and SOAP. S3 is used by many systems
of 42matters, so its use ensures the solution to be highly compatible with
the systems of 42matters.

2http://spark.apache.org/
3https://aws.amazon.com/de/S3/

9

Use of Elastic MapReduce4 Elastic MapReduce (EMR) is a service by AWS
providing clusters of multiple virtual machines with a ready-to-use Spark
environment. EMR allows the creation of clusters with a dynamic number
of differently equipped machines in short time. Clusters can be shut down
at any time and are priced at an hourly rate. EMR clusters are also
prepared to interact with data on S3. For these reasons, EMR is a good
choice for developing and testing different configurations as well as for
productive purposes (only charged for hardware while calculating the top-
k apps).

1.4 Related Work
The finding of frequent itemsets has been recognized by many researches as an
important topic especially from a database perspective [1]. Hereby the Apriori
algorithm attracts a lot of research attention [2] [3], also in the field of distributed
systems [4]. The main application of the Apriori algorithm is association rule
learning. The main difference to the present top-k problem is that in association
rule learning only strong rules are desired, but the top-k problem is looking for
k combinations of every app with other apps, no matter what the frequency of
the combinations are.

4https://aws.amazon.com/de/elasticmapreduce/

10

Chapter 2

Fundamentals

The algorithm to solve the top-k problem as it will be introduced in chapter
3 is based on technologies as they are presupposed in section 1.3. The current
chapter lays out the basics of the technologies as they are required to under-
stand the subsequent work. Section 2.1 describes the concept of the underlying
infrastructure as it is used by Apache Spark. Apache Spark itself, as the under-
lying framework of the algorithm, is described in section 2.2. Finally, section
2.3 describes the form of the available test data and how it is stored in AWS
S3.

2.1 Spark Infrastructure
Spark programs are running on a set of independent processes on a cluster of
multiple processors and machines, called nodes. The processes are started and
managed by a cluster manager1.

Depending on the used cluster manager and its configuration, the underlying
infrastructure, which is executing Spark programs, may differ substantially. The
abstraction shown in figure 2.1 can be understood as a common foundation
independent from the cluster manager.

A Spark application is coordinated by the driver program (called driver).
The driver is running on a node on the cluster (also calles master)2 and splits
the program into individual tasks, which are executed independently. The n
processes provided by the cluster manager are denoted as executors and mostly
executed on their own node in the cluster, so called slaves. The number of
executors is statically assigned to a Spark program3. An executor is providing
resources for i in parallel running tasks - it has i taskslots (in figure 2.1 denoted
as "TS"). The tasks are running in their own thread in the executor process.
i, the number of taskslots per executor depends on the configuration of Spark
and the cluster manager. A single task may be running on multiple CPUs. All
tasks running on the same executor can access a common cache. This means

1Spark supports Mesos, YARN or a standalone cluster manager
2With YARN as the cluster manager it is possible to run the driver outside of the cluster
3Since Spark Version 1.2 it is possible to dynamically allocate resources as executors to

Spark. This option is not active per default. Its activation is reasonable if multiple applications
are running on one cluster.

11

Driver Program

Executor1

TS11 TS12 TS1... TS1i

Cache

Executor2

TS21 TS22 TS2... TS2i

Cache

Executor...

TS...1 TS...2 TS...... TS...i

Cache

Executorn

TSn1 TSn2 TSn... TSni

Cache

Figure 2.1: Underlying infrastructure of Spark, independent from the cluster man-
ager [5]

that the driver is coordinating the execution of n · i parallel running tasks at
maximum.

2.2 Apache Spark
Apache Spark (below denoted as Spark) is a cluster computing framework which
is used to design and implement the algorithm in this thesis. Spark provides
high-level APIs for several languages4 which are used to implement algorithms.
Spark executes these programs in an optimized manner on the underlying clus-
ter. Even though this chapter explains the core concepts independent of the used
API, in chapter 3 the Python API is used to implement the top-k algorithm.

To understand Spark as it is used in this thesis, two aspects have to be
discussed: In section 2.2.1 Resilient Distributed Datasets (RDD) and their util-
isation are explained. RDDs are an abstracted collection of distributed items.
Section 2.2.2 explains the execution model of Spark, this means the way a Spark
program is executed on a cluster.

2.2.1 Resilient Distributed Datasets (RDD)
Resilient Distributed Datasets (RDD) are the primary abstractions used by
Spark. They are originally proposed in [6]. An RDD is a non-writable, dis-
tributed collection of data items. An RDD is created by loading data from a
stable storage such as a hard drive or by a transformation of an other RDD.
A Spark program is developed by defining one or more RDD by loading data
from solid storage and then deriving consequential RDDs via transformations.
On these RDDs so-called actions are applied which return data to the driver or

4As of version 1.4 APIs for Java, Scala, Python and R are available

12

save data to stable storage. The data items in a RDD may be arbitrary objects,
depending on the used API 5. Some operations of Spark (actions as well as
transformations) are only applicable on key-value RDDs, a type of RDDs with
some special properties All items in a key-value RDD consist of two elements,
a key and a value. The following sections explain the operations used in this
thesis. More operations are available but not used. [7][8]

Data Loading

An RDD can be created either by loading data from a distributed storage sys-
tem6 like S3 (see 1.3) or HDFS 7 or by sending data from the driver. Both
operations are applied on the SparkContex object which is provided by the
Spark environment.

parallelize(Seq[T]) Seq[T]→ RDD[T]
This function creates an RDD with elements from the driver, which are pro-

vided as a sequence of arbitrary items Seq[T]. parallelize is used mainly for
testing purposes without much data.

textF ile(PATH) TextF ile→ RDD[U]
This function creates a new RDD by loading a text file from a distributed

storage like S3 or HDFS 8. Every line of the file becomes a item in the RDD.
textFile function is used in this thesis to read the input dataset.

Transformations

All transformations transform one or more RDDs to a new RDD. The following
transformations are essential for the proposed top-k algorithm.

map(f : T → U) RDD[T]→ RDD[U]
map is the most basic transformation. It transforms an RDD of type T to a

RDD of type U . The function f defines how the elements are transformed from
T to U .

mapV alues(f : T → U) RDD[(K,T)]→ RDD[(K,U)]
mapValues is used for key-value RDDs instead of map if the keys should

not be changed. The use of mapValues instead of map allows some further
optimizations at runtime.

flatMap(f : T → Seq[U]) RDD[T]→ RDD[U]
This transformation increases the number of items in an RDD. The function

f defines how the elements are transformed from T to Seq[U], a sequence of
multiple elements of type U .

5For example: In Python, arbitrary Python objects can be used
6A distributed storage system is a stable storage where data is stored on multiple nodes

and can be read or written in parallel from multiple nodes.
7Hadoop Distributed File System (HDFS) is a distributed storage system, also provided

on Elastic MapReduce cluster.
8Local file systems are possible but not recommended because of the inability to read the

data in parallel by different executors.

13

reduceByKey(f : (V, V)→ V) RDD[(K,V)]→ RDD[(K,V)]
reduceByKey can only be applied on key-value RDDs. It decreases the number

of items in an RDD. All elements with the same key K are reduced to one item.
f defines how two values of items with the same key are combined to a value of
the same type V .

groupByKey() RDD[(K,V)]→ RDD[(K,Seq[V])]
Similar to reduceByKey, this function combines all items with the same key

to one new value. In contrast, the values with the same keys are not combined
with an individual function but linked to a sequence Seq[V].

combineByKey(f1 : V → U, f2 : U × V → U, f3 : U2 → U) RDD[(K,V)]→ RDD[(K,U)]
This transformation is the most complex to use. It combines multiple values
of a key-value RDD with the same key to a new value of a different type. f1
defines the creation of a new value of type U from a single value of type V . f2
defines how the other values of type V are integrated in the already existing
new value and f3 defines how multiple values of type U are being combined.

distinct() RDD[T]→ RDD[T]
This transformation eliminates redundant values in an RDD. It may decrease

the number of items in an RDD.

Action

Actions are operations on RDDs not deriving a new RDD. All actions either
return data to the driver or export it to a stable storage.

count() RDD[T]→ Long
count returns the number of elements in a RDD to the driver.

collect() RDD[T]→ Seq[T]
collect returns the whole RDD with all elements to the driver. Similar to the

transformation parallelize, this action is only used for small RDDs.

saveAsTextF ile(path : String)
This action writes all elements of an RDD to a text file in a given directory

in S3 or HDFS 9. Every object is converted to a string10 and written on their
own line.

Example

Listing 2.1 shows an example of a short Spark program implemented with the
Python API of Spark. The Program reads a textfile and counts the frequency
of each word in the file.

9Local filesystems are also possible
10By calling toString or equivalent functions in the particular API language.

14

1 textFileRDD = spark . t e x tF i l e (INPUT_PATH)
wordCountsRDD = textFileRDD . flatMap (lambda l i n e : l i n e . s p l i t (" ")) \

3 .map(lambda word : (word , 1)) \
. reduceByKey (lambda x , y : x + y) \

5 wordCountsRDD . saveAsTextFi le (OUTPUT_PATH)

Listing 2.1: Example of a Spark program

Firstly, an RDD is created by loading the file at INPUT_PATH with the
function textFile. Then, via three consecutive transformations new RDDs are
created. flatMap splits each line11 into single words. After this transformation
the RDD is a huge wordlist. map creates a key-value RDD by mapping every
word to an element where the word is the key and the value is "1". reduceByKey
reduces all elements with the same key (all instances of the same words) to a
single element while summing up their values (frequency). Lastly, the wordlist
is saved to a stable storage at OUTPUT_PATH.

2.2.2 Execution Model
The distributed processing in Spark is a result of splitting the items in an
RDD into smaller subsets, called partitions. These partitions are processed
simultaneously in as many taskslots as possible (see 2.1). The main program
(e.g. as shown in listing 2.1) is running on the driver. Any operations on an RDD
are deferred until an action is executed. At this point, returning values (e.g.
count) to the driver or saving data to a stable storage (e.g. saveAsTextFile)
is necessary. For this reason, Spark creates a lineage graph of the RDD as a
directed acyclic graph (DAG). RDDs constitutes the nodes and transformations
the edges. Spark classifies two different types of dependencies between two
RDDs [8]:

Narrow Dependencies Every partition depends on only one partition of the
previous RDD. The map transformation leads to a narrow dependency,
for example. Only one item of the previous RDD is used to create an
element in the new RDD, so only one partition is needed to create a new
partition.

Wide Dependencies One or more partitions depend on more than one parti-
tion of the previous RDD. For example, the reduceByKey transformation;
every key of the complete previous RDD (and so all partitions of it) is
reduced to one item.

Based on the DAG, the execution of an action is split by the driver into so-
called stages. Stages are then executed sequentially one after another. Thereby
a stage covers as many transformations of RDD as possible which are related
by narrow dependencies. Thus the boundaries of a stage are the narrow depen-
dencies.

All transformations within a stage are narrow dependencies and can be pro-
cessed directly and consecutively on a single partition in a taskslot. At the
transition to a new stage at a wide dependency the rearrangement (see 2.2.3) of
data is necessary. Thus, the processing of one single partition in a single stage

11Each line of the text file becomes one item in the RDD.

15

input text file

textF ileRDD

RDD

RDD

wordCountRDD

output text file

textF ile

flatMap

map

reduceByKey

saveAsTextF ile

Stage1

Stage2

Figure 2.2: DAG of example Spark program from listing 2.1. In the program two
RDDs have no name because the transformations are directly chained. In the figure
they are simply marked as "RDD".

is the smallest unit of calculation, called task. While executing an action, the
driver sends tasks to the executors which executes the tasks in a taskslot. From
this follows that there exists one task per stage and partition. The amount of
partitions emerging while rearranging the data at a wide dependency can be
configured. When a new RDD is created by reading data from a stable stor-
age one block is building one partition. The effectiveness of the parallelization
depends amongst others on the configured number of partitions emerging at
wide dependencies; it should be at least equal to the number of taskslots in the
cluster.

2.2.3 Shuffle Operations
The previous chapter explains the different handling of narrow and wide de-
pendencies. These wide dependencies induce a rearrangement of data over all
partitions in an RDD, called a Shuffle. For example, the reduceByKey trans-
formation generates a new RDD by bringing all elements with the same key
together. For this purpose all elements on all partitions have to be consid-
ered, because it is possible that not every element with the same key is in
the same partition. Operations used in this thesis which lead to a Shuffle are
combineByKey and reduceByKey. A Shuffle operation involves many resources:
Data has to be serialized, written to disk and sent over the network. Regard-
ing a specific Shuffle operation, the tasks prior to the transformation with the
wide dependency are called map tasks and are organizing the data. The tasks
after the transformation are called reduced tasks and are aggregating the data.
Because the work done in Shuffle operations often accounts for a large part of

16

the runtime of a Spark program, Shuffle operations are an important focal point
of further Spark development. Essentially, the map tasks are sorting their re-
sulting elements based on the target partition and writing them to an over all
tasks on a executor consolidated file for every target partition. Subsequently,
the reduce tasks are receiving their prepared data and aggregating them. [7]

2.2.4 Caching
As visible in figure 2.1, every executor manages its own cache. This is imple-
mented by the ability to flag an RDD as persistent12. If after such a flagging an
action on the RDD itself or a derived RDD is executed and the RDD has to be
calculated, its concrete data is kept in memory by the executors. This enables
the fast reuse of RDDs. [8]

2.2.5 Broadcast Variables
In operations like map the transformation of single elements is done with a
function in the used API language (see the Python lambda functions in listing
2.1). These functions are serialized by Spark per task and then sent to the
executors. All variables used in these functions are also serialized and available
on the executors. With a broadcast variable, data can be sent to all executors
and then used in functions. Hereby, it can be prevented that the same data is
serialized and sent to executors again and again for every task.

2.3 Test Data
In this thesis, a dataset with data from 500’000 (called 500k test dataset) de-
vices was used to implement and test the algorithm. The data was collected
by 42matters and contains data from devices all over the world. The data is
provided by 42matters on Amazon S3 as a text file. Every line of the text file
represents one device and is encoded in JSON13. An example for a single de-
vice is illustrated in listing 2.2. The field "id" is a unique identifier of the app,
"apps" is the list of all apps installed on the device, and "pn" is the package
name of an app, used as an app identifier. Additional metadata for every app
installation is also part of the dataset but was not used in this thesis.

2.3.1 Meta Data
For further optimizations of the algorithm, additional metadata for many apps
is available. 42matters collected this data by crawling the official website of
Google Play. The metadata is also accessible on S3 in a single text file with one
JSON encoded dataset per line. As an example, listing 2.3 shows all available
metadata for an app with the package name "com.poynt.android".

12In Python the function cache() is used to flag an RDD as persistent
13JavaScript Object Notation, RFC 7159

17

1 {
" id " : "549 df753−d1a0−4a99−8110−846 e6c93 fe39 "

3 "apps" : [
{"pn" : "canvasm .myo2" } ,

5 {"pn" : "com . android . chrome" } ,
{"pn" : "com . android . vending" } ,

7 {"pn" : "com . andymstone . metronome" } ,
{"pn" : "com . beyond in f i n i t y . t e t r o c r a t e " } ,

9 % more apps
]

11 }

Listing 2.2: Example of one device in 500k test data. The line has been formatted
with line breaks and blanks for better representation.

1 {
" ra t i ng " : 4 .033398151397705 ,

3 " lang " : "en" ,
"package_name" : "com . poynt . android " ,

5 " c r e a t o r " : "Poynt Inc " ,
"downloads_min" : 5000000 ,

7 " category " : "Travel & Local " ,
" cat_int " : 23 ,

9 "downloads_max" : 10000000 ,
" ve r s i on " : " 2 . 4 . 6 " ,

11 "version_update_timestamp" : 1418169600000 ,
" cat_type" : 0 ,

13 " rat ingsCount " : 26257
}

Listing 2.3: Example of metadata for app with package name "com.poynt.android".

18

Chapter 3

Algorithm

In this chapter, first the basic algorithm to solve the top-k pairs problem in
Spark is developed conceptually and concretely. Afterwards the algorithm is
analysed by its execution in spark and its complexity.

3.1 Design

∆ RDD1 RDD2 RDD3 RDD4 T
tex

tF
ile

fla
tM

ap

com
bin

eB
yK

ey

map
sav

e

Figure 3.1: Basic algorithm RDD operations

A basic graph of RDD operations for the algorithm is shown in figure 3.1. As
defined in 1.2, ∆ represents the input data and T the result. The 5 operations
are defined as the following:

1. textF ile The input data is read from a distributed dataset like HDFS, Cas-
sandra or Amazon S3. The resulting RDD RDD1 consists of q elements
D1, D2...Da as sets of installed apps on a specific device.

2. flatMap In every set of installed apps D all possible pairs a, b ∈ D, a 6= b
of apps are created and returned as a tuple (a, b). The result is a multiset
containing all pairs as often as they are occurring all over the devices. a,
as the first element, is handled by spark as the key and b as the value of
an element. So, RDD2 is a key-value-RDD.

3. combineByKey All values of elements in RDD2 with the same key (app a
of the former operation) are combined to one value. The resulting RDD
RDD3 contains an element for every app a, with a as the key and a set of
tuples of the form (b, n) as value in which n is the number of installations
of app b with a.

4. map In this operation the top-k pairs for every app are selected either based
on the frequency or the dependency score. If the frequency is selected, for

19

every value in the elements of RDD3 only the k tuples with the largest n
in (b, n) are kept. Otherwise the dependency score is calculated first for
every tuple with the formula from 1.2.21 an then used to pick k tuples
with the largest score.

5. save The data is written to a persistent storage system as the input data
was read in the first operation.

Figure 3.2 illustrates the algorithm with ∆ = {{a1, a2, a3}, {a2, a3, a4}, {a1, a2}}
and k = 1. The example evidently shows that the top-k pair problem may have
multiple solutions. For example, both, (a4, {a2}) and (a4, {a3}) are possible
elements of the result set, because a4 is installed exactly once with a2 and once
with a3.

∆ = {{a1, a2, a3}, {a2, a3, a4}, {a1, a2}}

{a1, a2, a3}, {a2, a3, a4}, {a1, a2}RDD1

(a1, a2), (a2, a1), (a1, a3), (a3, a1), (a2, a3), (a3, a2), (a2, a3),
(a3, a2), (a2, a4), (a4, a2), (a3, a4), (a4, a3), (a1, a2), (a2, a1)

RDD2

(a1, {(a2, 2), (a3, 1)}), (a2, {(a1, 2), (a3, 2), (a4, 1)}), (a3, {(a1, 1),
(a2, 2), (a4, 1)}), (a4, {(a2, 1), (a3, 1)})RDD3

(a1, {a2}), (a2, {a1}), (a3, {a2}), (a4, {a2})RDD4

T = {(a1, {a2}), (a2, {a1}), (a3, {a2}), (a4, {a2})}

textFile

flatMap

combineByKey

map

save

Figure 3.2: Example of the basic algorithm with frequency score and k = 1

3.2 Implementation
The actual algorithm implementation is created for the Python interface of
Spark. The complete scripts can be found in Appendix B. Below, the main

1The base probabilities frequency(a) of all a ∈ A are precomputed in a separate step
previous to the actual algorithm

20

parts regarding the operations described in the former chapter are listed and
discussed in order of their execution.

∆ → RDD1 Data loading and preparation The input data is prepared
as a newline-delimited JSON file 2 in Amazon S3 as it is described in 2.3.
The package names, used as identifier for apps, are URL like strings (e.g.
’com.facebook.katana’). To shrink the amount of data which is processed in
further steps, part of the data preparation is to append an integer-mapping for
package names. Listing 3.1 shows how data loading, JSON parsing, and the
integer-mapping of package names are implemented.

RDD1 = sc . t e x tF i l e (INPUT_PATH)
2 RDD1 = RDD1.map(lambda x : [x [’ pn ’] f o r x in j son . l oads (x) [’ apps ’]])

. cache ()

4 app_l i s t = RDD1. flatMap (lambda x : x) . d i s t i n c t () . c o l l e c t ()
pn_int_l i st = sc . broadcast (d i c t ((n , i) f o r i , n in enumerate (

app_l i s t)))
6 int_pn_l ist = sc . broadcast (d i c t (z ip (pn_int_l i st . va lue . va lue s () ,

pn_int_l i st . va lue . keys ())))

8 RDD1 = RDD1.map(lambda x : [pn_int_l i st . va lue [y] f o r y in x])

Listing 3.1: Data loading and preparation

On line 2, Spark’s functionality to cache elements of an RDD (see chapter
2.2.4 is used. Without invoking the ’cache()’ function, the former map transfor-
mation and data loading would be executed twice: once for the creation of the
app list on line 4 and once the application of the package name integer-mapping
on line 8. Line 6 creates a package name-integer dictionary as a Spark broadcast
variable, which is afterwards used in the transformation on line 8 to apply the
mapping.

RDD1 → RDD2 Pair creation The pair creation is implemented in a func-
tion that gets a list of app identifiers (installed apps on one device) and returns
a list of tuples for all pairs of identifiers ((a, b) and (b, a)) in this list. This
function is later on used with the Spark flatMap-transformation on line 9 to
create RDD2 which holds an element for every pair of two apps installed to-
gether amongst all devices. RDDs with Python tuples as elements are treated
as key-value RDDs by Spark, whereby the first element of the tuple is the key
and the second element is the value. This renders key-value operations possible
on RDD2.

de f p a i r s I nL i s t (e lements) :
2 pa i r s = []

f o r i in xrange (0 , l en (e lements)) :
4 f o r j in xrange (i + 1 , l en (e lements)) :

p a i r s . append ((e lements [i] , e lements [j]))
6 pa i r s . append ((e lements [j] , e lements [i]))

r e turn pa i r s
8

RDD2 = RDD1. flatMap (p a i r s I nL i s t)

Listing 3.2: Pair creation

2http://jsonlines.org/

21

RDD2 → RDD3 Pair combination The combination of all apps (respec-
tively app identifiers) which are installed together with a specific app is done
with the Spark transformation combineByKey. CombineByKey transforms a
key-value RDD into another key-value RDD with another type of values while
combining all values with the same key: RDD[(K,V)] → RDD[(K,W)]. In
this case, K and V are integers (app identifiers) and W is a Python defaultdict3
containing app identifiers (integers) as keys and frequencies as values (integers).
For example the elements (a1, a2), (a1, a5), (a1, a2), (a1, a6) should be combined
as (a1, {a2 : 2, a5 : 1, a6 : 1}).

1 de f createCombiner (f i r s t P a i r) :
pa i rD i c t = d e f a u l t d i c t (i n t)

3 pa i rD i c t [f i r s t P a i r] = 1
return pa i rD i c t

5

de f mergeValue (pa i rDict , newpair) :
7 pa i rD i c t [newpair] += 1

return pa i rD i c t
9

de f mergeCombiners (pairDictA , pairDictB) :
11 r e s = pairDictB . copy ()

f o r app , counter in pairDictA . i t e r i t em s () :
13 r e s [app] += counter

re turn r e s
15

RDD3 = RDD2. combineByKey (createCombiner , mergeValue , mergeCombiners
)

Listing 3.3: Pair combination

As listing 3.3 shows, the combineByKey function requires three arguments:

createCombiner creates the values of type W out of the first value V for a
unique key K. In this case this means instancing a python defaultdict and
inserting the value "1" for the first app identifier as the key.

mergeValue adds another value of type V to a value of type W , if it already
exists for a specific K. Here it just increments the value (frequency) for
the app identifier by one. The default for not existing keys in a Python de-
fualtdict of type ’int ’ is "0", therefore the frequency of a new app identifier
is set to "1".

mergeCombiners combines two values of type W . In this case it sums up the
frequencies of two defaultdicts for corresponding keys (app identifiers).

RDD3 → RDD4 Pair selection To select the top-k pairs the ’heapq ’ module
of the Python Standard Library is used4.

de f sor tAndSe lect (pa i rD i c t) :
2 topK = heapq . n l a r g e s t (K, pa i rD i c t . i t e r i t em s () , key=lambda x : x

[1])
r e turn topK

4

RDD4 = RDD3. mapValues (sor tAndSe lect)

Listing 3.4: Pair selection

3Available in the collections module as of version Python version 2.5
4https://docs.python.org/2/library/heapq.html

22

In the dependency score version, the score has to be calculated for every app
combination, which is directly done in the lambda statement. Therefore, over-
all app frequencies are calculated in an earlier step and saved together with
the package name-integer mapping. The whole relevant python script can be
reviewed in the appendix.

RDD4 → T Data saving Before the result is saved to a storage system, it is
encoded to the desired JSON string.

1 de f l i s tToJson (dev i ce) :
see Appendix A

3

RDD4.map(l i s tToJson) . saveAsTextFi le (OUTPUT_PATH)

Listing 3.5: Data saving

3.2.1 Base Probability Calculation
For the dependency score and as basis for some optimization approaches in-
troduced in chapter 4 the base probabilities are needed. In these cases, the
implementation of its calculation takes place at the creation of RDD1 showed
in listing 3.1. This part of code is replaced by the code in listing 3.6.

RDD1 = sc . t e x tF i l e (INPUT_PATH)
2

RDD1 = RDD1.map(lambda x : [x [’ pn ’] f o r x in j son . l oads (x) [’ apps ’]])
. cache ()

4

num_of_devices = RDD1. count ()
6

app_frequency_l ist = RDD1 \
8 . f latMap (lambda x : map(lambda x : (x , 1) , x)) \

. reduceByKey (lambda x , y : x + y) \
10 . mapValues (lambda x : f l o a t (x) / num_of_devices) \

. col lectAsMap ()
12 pn_int_l i st = {}

int_pn_l ist = {}
14 f o r index , app in enumerate (app_frequency_list . i t e r i t em s ()) :

pn_int_l i st [app [0]] = (index , app [1])
16 int_pn_l ist [index] = (app [0] , app [1])

18 pn_int_l i st = sc . broadcast (pn_int_l i st)
int_pn_l ist = sc . broadcast (int_pn_l ist)

20

RDD1 = RDD1.map(lambda x : [pn_int_l i st . va lue [y] [0] f o r y in x])

Listing 3.6: Base probability calculation implemented while creating RDD1

At the point where in listing 3.1 the app list is created, in listing 3.6 on
line 7 a chain of transformations is calculating the base probability of every
app. Firstly, with the flatMap and reduceByKey transformation the frequency
of every app is counted and then it is divided by the number of devices in a map-
Values transformation to get the base probability. Finally, the key-value RDD
is collected on the driver with the collectAsMap action. As a result, for every
package name as a key the Python dictionary "app_frequency_list" contains
the corresponding base probability as a value. The loop at line 14 then creates

23

the dictionaries for the package name-integer mapping with the base probabil-
ities as a addition. Theses dictionaries are then distributed to all executors
with a Spark broadcast variable. As a consequence, the base probabilities are
available on every executor.

3.3 Analysis
To develop possible approaches for the algorithm optimization, it is essential
to understand the way it is executed by Spark. Through the abstraction of
RDDs, some fundamental ways in which data is processed, stored and trans-
ferred are hidden. Chapter 3.3.1 dissect the way Spark executes the algorithm
using the terms described in chapter 2.2. Afterwards, chapter 3.3.2 analyses the
characteristic numbers with an influence on the runtime of the algorithm.

3.3.1 Execution
The algorithm, the way it is implemented in chapter 3.2 as a python script, is
executed on the driver node on a cluster. Thereby a lineage graph of RDDs
is constructed as long as no actions are executed on a RDD. The first action
inducing cluster work is collect() (see listing 3.1, line 4). At this point, the input
data is loaded and processed by the executors, and a list of distinct package
names is finally send to the driver. This process is not explicitly discussed here,
because it its relevance for the program’s overall runtime costs is minimal.

The actual work is done when saveAsTexFile (see listing 3.5, line 4) is ex-
ecuted at the end of the program. At this point, the result should be written
to an external storage point and it therefore has to be calculated first. In other
words, data processing cannot be deferred any longer.

∆ RDD1 RDD2 RDD3 RDD4 T

tex
tF
ile

fla
tM

ap

com
bin

eB
yK

ey

map
sav

e

Stage1 Stage2

Figure 3.3: Algorithm splitting in stages

Spark splits the lineage graph into two individual stages which are serially
processed by the executors (see figure 3.3). combineByKey as a transformation
with wide dependencies indicates the boundary of the two stages5. Then, it
splits the workload of one stage into smaller chunks, so-called tasks. Every task
processes one partition of elements. The number of partitions at the first stage
is defined by the number of blocks the input file has on the storage system (S3).
At the second stage it depends on the configuration of the cluster6

5Elements with the same key must come together on one executor, therefore the data has
to be shuffled.

6The number of partitions emerging at wide dependencies can be configured in Spark,
per default it is the number of available taskslots. It is also possible to individually set the
minimum number of partitions while applying a transformation.

24

RDD # Elements Avg. Size per Element Size RDD
RDD1 |∆| |M | |M | |∆|
RDD2 |M |2 |∆| 2 2 |M |2 |∆|
RDD3 |M | 1 + 2 |M | |M |+ 2 |M |2
RDD4 |M | 1 + k |M |+ k |M |

Table 3.1: Upper limit of RDD sizes

Figure 3.4 on page 26 shows an example with two tasks per stage. In a
Shuffle, elements are distributed over the partitions with a simple hash code 7.
While executing the program, the number of partitions in Stage1 and Stage2
most likely vary: the number of partitions in Stage1 is given by the number of
blocks of the input data on S3.

3.3.2 Complexity
Both time and space complexity of a spark program are closely related to the
execution model of spark and the subjacent cluster. As a simplified approach,
the amount and size of RDD elements at the time of execution are taken in this
section to get a deeper insight in the overall time complexity of the discussed
algorithm.

Due to the strong dependency between the RDD numbers (number of ele-
ments and size) and the input data ∆, this chapter takes two perspectives. The
worst case argues to an upper limit in an analytical manner and the average
case models the numbers on the basis of experiments with testdata.

Worst Case

In the worst case, all existing apps are installed on all devices in the input data.
This means that if M is the set of all existing apps we have that D = A = M
for all D ∈ ∆. In this case, all app-pairs (a, b) for a, b ∈ A, a 6= b are appearing
on every device D ∈ ∆. Table 3.1 shows the upper bounds of all RDDs.

We can assume that input data is available for many more than two devices,
so that |∆| >> 2. Thus the largest RDD is RDD2 in the worst case.

If we assume that not every app is installed on every device but just an equal
sized subset of all apps, so |D| = q, q < |A| and D ⊂ A for all D ∈ ∆ and still
every possible app-pair is appearing, the size of RDD2 shrinks in the worst case
to 2q2 |∆|.

Average Case

The worst case scenarios of the former chapter are not a good foundation to
predict the algorithm’s costs in real cases, because the numbers strongly depend
on the input data’s characteristics. For instance, only a small part of all possible
app-pairs is actually occurring, so that the number of pairs in reality is much
smaller than |A|2. To enable better assumptions about the calculation cost of
large input datasets ∆, the testdata was analysed to model a connection between

7Partitioning with a hash means the determination of the partition of an element by the
formula: partition = hash(data)modnumOfPartitions. hash() is a simple hash function, and
mod stands for the modulo operation.

25

Λ = {{a1, a2, a3}, {a2, a3, a4}, {a1, a2}}

{a1, a2, a3}RDD11 {a2, a3, a4}, {a1, a2} RDD12

(a1, a2), (a2, a1), (a1, a3),
(a3, a1), (a2, a3), (a3, a2)

RDD21
(a2, a3), (a3, a2), (a2, a4), (a4, a2),
(a3, a4), (a4, a3), (a1, a2), (a2, a1)

RDD22

(a1, {(a2, 2), (a3, 1)}),
(a2, {(a1, 2), (a3, 2), (a4, 1)})RDD31

(a3, {(a1, 1), (a2, 2), (a4, 1)}),
(a4, {(a2, 1), (a3, 1)}) RDD32

(a1, {a2}), (a2, {a1})RDD41 (a3, {a2}), (a4, {a2}) RDD42

T = {(a1, {a2}), (a2, {a1}), (a3, {a2}), (a4, {a2})}

load data load data

flatMap flatMap

combineByKey combineByKey

flatMap flatMap

save data save data

Stage1

Stage2

Task11 Task12

Task21 Task22

Figure 3.4: Basic algorithm example with two partitions/tasks

26

the input data and the sizes of RDDs. For this purpose, it is assumed that the
characteristics of a new input dataset are equal to the ones of the used dataset
(see 2.3).

To analyze the relations between the size of the input data and the expected
size of the RDDs, the test dataset was used to create smaller datasets of several
sizes. These datasets were then analysed by a spark program for the most
important characteristics wich are used in the chapters below. Table 3.2 on
page 28 shows the result of the analysis.

RDD1 Number of Apps per Device This RDD contains one element per
device in ∆. Every element contains a number of app identifiers of installed
apps. The average amount of installed apps over all 500′000 devices is 59.95
(SD = 37.61). Based on this, a good estimator for the size of RDD1 is ∆ · 60.

RDD2 Number of App-Pairs RDD2 contains one element for every pair of
two apps which are installed together on one device. Many pairs are occurring
multiple times, because the specific combination of two apps is occurring on
several devices. The number of all such app-pairs would be the sum of squares
of the number of apps on a device over all devices. This number highly depends
on the characteristics of the distribution of the number of apps on a device,
which we do not know. For this reason, the numbers of the 500k dataset are
used to estimate the average number of pairs on one device: the number of pairs
on the whole dataset can be calculated by multiplying the number of distinct
pairs by the average of their quantity. The result divided by the number of
devices gives the desired result:

#distinct pairs · avg. of pair-occurences
#devices

=
224297359 · 5.38

500000
≈ 2413.5

As an implication, the number of elements in RDD2 can be estimated as
2413.5 |∆| and so the size of the whole RDD as 4826.88 |∆|.

RDD3 Number of distinct Apps and distinct App-Pairs The size of
RDD3 depends on the amount of distinct apps and app-pairs. The amount of
distinct apps means |A|, the number of different apps installed on all devices.
Distinct app-pairs DP means the set of all pairs of apps which are installed
together at least once all over the devices, so DP = {(a, b)| installs(a, b) ≥ 1}
for all a 6= b, a, b ∈ A. RDD3 contains one element per distinct App. For
every distinct app-pair two elements in RDD3 (element with the key of the two
elements in the pair) are growing by two (app identifier and frequency). This
leads to the following formula to calculate the size of RDD3:

size of RDD3 = |A|+ 4 · |DP |

The number of distinct apps |A| installed on devices in a input dataset ∆
is upper limited by the number of existing apps |M |, it is |A| ≤ |M |. If all
existing devices would be in the input dataset and every existing app has at
least one installation then |A| = |M |. Since in real use only a subset of all
devices is present, it can be assumed that |A| < |M |. We can presume that the
number of distinct apps is increasing with every additional device in a dataset,

27

#
A
pp

s
pe

r
D
ev
ic
e

#
D
is
ti
nc
t
A
pp

O
cc
ur
re
nc
es

#
A
pp

-P
ai
r
O
cc
ur
rr
en
ce
s

N
am

e
#

D
ev
ic
es

A
vg

.
SD

#
D
is
ti
nc
t
A
pp

s
A
vg

.
SD

#
D
is
ti
nc
t
P
ai
rs

A
vg

.
SD

1k
10
40

60
.9
7

36
.4
9

14
40
1

4.
4

32
.1
0

15
11
17
0

1.
68

8.
84

2k
19
93

59
.5

38
.2
7

21
68
6

5.
47

49
.4
9

26
86
43
4

1.
79

12
.3
6

3k
29
57

59
.1
6

36
.9
8

28
90
7

6.
05

63
.2
9

36
36
76
3

1.
91

15
.7
1

5k
50
39

60
.5
5

36
.1
4

40
80
0

7.
48

92
.6
5

56
91
62
9

2.
12

22
.1
4

10
k

99
78

60
.4
1

38
.8
6

65
78
9

9.
16

14
2.
52

11
11
79
43

2.
23

30
.5
4

20
k

19
87
6

59
.5

36
.4
6

95
87
2

12
.3
4

23
5.
54

17
82
38
79

2.
62

48
.1
1

50
k

50
09
6

59
.9
9

37
.6
8

16
47
05

18
.2
5

45
4.
67

39
65
90
76

3.
06

81
.9
1

10
0k

10
00
98

59
.9
2

37
.0
6

23
64
22

25
.3
7

75
8.
70

66
40
54
22

3.
61

12
6.
62

20
0k

19
98
11

59
.9
7

37
.8
8

33
46
17

35
.8
1

12
70
.9
1

11
61
19
71
9

4.
18

19
0.
47

30
0k

30
03
04

59
.9
5

37
.5
9

40
49
15

44
.4
6

17
38
.1
2

15
54
89
09
2

4.
66

24
7.
77

40
0k

40
02
76

59
.9
5

37
.6
4

46
03
59

52
.1
2

21
72
.7
1

19
18
83
42
8

5.
04

29
7.
28

50
0k

50
00
00

59
.9
5

37
.6
1

50
73
72

59
.0
8

25
84
.5
3

22
42
97
35
9

5.
38

34
3.
35

T
ab

le
3.

2:
D
at
a
ch
ar
ac
te
ri
st
ic
s
of

th
e
te
st
da

ta
su
bs
et
s.

A
ll
nu

m
be

rs
ar
e
ro
un

de
d
to

tw
o
di
gi
ts

af
te
r
th
e
de
ci
m
al

po
in
t.

28

but that this increase diminishes because a larger subset of all possible apps |M |
is already in ∆. The growth is limited by |M |. Because the number of distinct
apps can easily be calculated, we can take |A| as an input parameter for further
analysis.

In contrast, the number of distinct app-pairs |DP | in a specific input dataset
cannot be easily calculated. This makes a further analysis of the relation be-
tween the known number of distinct apps |A| and the unknown number of dis-
tinct app-pairs |DP | beneficial. In the worst case, all apps are installed at
least once with every other app, so that installs(a, b) ≥ 1 for a 6= b and all
a, b ∈ A. For the test data this is not even remotely the case. In the 500k
dataset there are 507 372 distinct apps and p = 227 297 359 app-pairs. So, only
p/ |A|2 = 8.71× 10−2% of the possible pairs are actually occurring. Figure 3.5
shows the relation with the data from table 3.2 on a plot with logarithmic scales
on both axes. The green line represents a least squares fit of the function y = xb

on the testdata: |DP | = |A|1.462. The function was chosen as a generalization
of the worst case |DP | = |A|2. As an implication we can now give an estimator
for the size of RDD3: |A|+ 4 · |A|1.462.

RDD4 Dependency of K From RDD3 to RDD4 the K best scored entries in
every list in RDD3 are selected. As a consequence, the size of RDD4 is |A| ·K.

104 105 106
106

107

108

109

|A| - #distinct apps

|D
P
|-

#
di
st
in
ct

ap
p-
pa

ir
s

testdata fit
worst case

testdata samples

Figure 3.5: Relation |A| and |DP | on a log-log plot. Shows the worst case |DP | =
|A|2 and the fit of testdata samples |DP | = |A|1.462.

29

Chapter 4

Optimization and
Experiments

This chapter examines the algorithm developed in the last chapter regarding its
performance. Section 4.1 explains influential optimizations already implemented
and presents experiments to test their effectiveness. In section 4.2, conducted
performance experiments are analysed to gain insights in the practical scalability
of the algorithm. The last two sections present two different approaches for
further optimizations.

4.1 Integral Optimizations
The algorithm developed in chapter 3 implements some optimizations and pre-
vents some common pitfalls of programs implemented in Spark. Two important
issues are discussed in this chapter.

4.1.1 Package name mapping
The implementation of the algorithm as shown in chapter 3.2 maps the package
names to integers in the beginning and maps the integers back to the package
name before it writes the result. This has two benefits: The amount of pro-
cessed data is minimized whilst the predictability is maximized. The additional
costs of collecting all distinct package names (see listing 3.1, line 4) are by far
compensated by the savings of the further steps of the program. The amount
of time gained was tested with subsets of the 500k testdata up to 100k on a
cluster with a EC2 m1.xlarge (4 cores, 15 GB memory, 8 EC2 compute units)
instance as master and a c3.xlarge instance as slave (4 cores, 7.5 GB, 14 EC2
compute units). Figure 4.1 shows performance while calculating the result for
both implementations.

4.1.2 Wide dependency avoidance
Multiple combinations of spark transformations are possible to find a solution
for the top-k problem. Some may be more obvious, especially when the use of
the more complex combineByKey transformation is omitted. Figure 4.3 shows

30

0 0.2 0.4 0.6 0.8 1

·105

40

60

80

Devices

D
ev
ic
es

pe
r
Se

co
nd

(d s
)

with mapping
without mapping

Figure 4.1: Performance relation between the algorithm with and without package
name mapping

such an alternative option with the same setting as the example in figure 3.4.
In a first step, the individual pairs are summed up in a reduceByKey trans-
formation and are then combined by the respective app in the pair with the
groupByKey transformation. During the execution, this implementation leads
to three consecutive stages instead of two. The reason for this is that both
transformations, reduceByKey and groupByKey, are creating wide dependen-
cies between RDDs so that a shuffle of data between partitions is necessary.
The difference was tested with small subsets of the 500k testdata on a cluster
with a EC2 m1.xlarge (4 cores, 15 GB memory, 8 EC2 compute units) instance
as master and a c3.xlarge instance as slave (4 cores, 7.5 GB, 14 EC2 compute
units). Figure 4.2 shows the performance of both implementations. The lower
complexity of the two stage approach is reflected by an about two times better
performance.

4.2 Performance Experiments
To test the performance of the algorithm several experiments were conducted.
Their goal is to investigate the scalability of the algorithm. For this reason,
the implementation was run with differently sized input datasets on the same
cluster. Additional experiments were conducted to investigate the algorithms’
performance for different values of k and for different cluster configurations.

4.2.1 Input Sizes
The tests were conducted on different sized subsets of the test dataset on a
cluster with a EC2 c3.xlarge (4 cores, 7.5 GB, 14 EC2 compute units) instance
as master and three c3.2xlarge (8 cores, 15 GB, 28 EC2 compute units) instance
as slave. For the test, k was set to 10, a common value for app recommendations.
Figure 4.4 and table 4.1 show the results of this test.

31

0 1 2 3 4 5

·104

40

60

80

Devices

D
ev
ic
es

pe
r
Se
co
nd

(d
/s
)

two stages
three stages

Figure 4.2: Performance relation between the algorithm in two stages and three
stages with the sames hardware setting

Frequency Score Dependency Score
Devices Runtime [s] Performance [ds] Runtime [s] Performance [ds]
1040 14 74.286 16 65.000
100098 336 297.911 440 227.495
199811 678 294.706 946 211.217
300304 1086 276.523 1380 217.612
500000 1995 250.627 2280 219.298

Table 4.1: Algorithm performance with differently sized input datasets. The perfor-
mance is indicated as devices per second (d

s
).

Due to the additional effort of calculating the base probabilities, the de-
pendency score version is constantly slower than the frequency score version.
The much poorer performance for the 1k dataset can be explained with over-
head costs for the start up, which become irrelevant with larger datasets. The
datasets of more practical relevance with 100’000 and more devices showed a
more or less stable performance with the dependency score and a slightly de-
creasing performance with the frequency score. The convergence of dependency
and frequency score performance could be the consequence of a higher overhead
at the dependency score originating from the additional actions for calculating
the base probabilities.

4.2.2 Different values of k
The parameter k of the top-k problem accomodates different values depending
on the application of the result. For example, 42 matters uses the algorithm
with k > 100 to preselect interesting app combinations and then processes the
result with other methods. For this reason the relation between k and the
performance of the algorithm is an interesting aspect, which is also examined
with an experiment. The experiment was conducted with the the 100k dataset

32

Λ = {{a1, a2, a3}, {a2, a3, a4}, {a1, a2}}

{a1, a2, a3}RDD11 {a2, a3, a4}, {a1, a2} RDD12

({a1, a2}, 1), ({a1, a3}, 1), ({a2, a3}, 1)RDD21
({a2, a3}, 1), ({a2, a4}, 1),
({a3, a4}, 1), ({a1, a2}, 1)

RDD22

({a1, a2}, 2), ({a1, a3}, 1)RDD31 ({a2, a3}, 2), ({a2, a4}, 1), ({a3, a4}, 1) RDD32

(a1, (a2, 2)), (a2, (a1, 2)),
(a1, (a3, 1)), (a3, (a1, 1))

RDD41
(a2, (a3, 2)), (a3, (a2, 2)), (a2, (a4, 1)),
(a4, (a2, 1)), (a3, (a4, 1)), (a4, (a3, 1))

RDD42

(a1, {(a2, 2), (a3, 1)}),
(a2, {(a1, 2), (a3, 2), (a4, 1)})RDD51

(a3, {(a1, 1), (a2, 2), (a4, 1)}),
(a4, {(a2, 1), (a3, 1)}) RDD52

(a1, {a2}), (a2, {a1})RDD61 (a3, {a2}), (a4, {a2}) RDD62

T = {(a1, {a2}), (a2, {a1}), (a3, {a2}), (a4, {a2})}

load data load data

flatMap flatMap

reduceByKey reduceByKey

flatMap flatMap

groupByKey groupByKey

flatMap flatMap

save data save data

Stage1

Stage2

Stage3

Task11 Task12

Task21 Task22

Task31 Task32

Figure 4.3: Algorithm with three stages instead of two. k = 1

33

0 1 2 3 4 5

·105

50

100

150

200

250

300

Devices

D
ev
ic
es

pe
r
Se

co
nd

(d s
)

frequency score
dependency score

Figure 4.4: Algorithm performance with different sized input datasets.

on a cluster with a EC2 c3.xlarge (4 cores, 7.5 GB, 14 EC2 compute units)
instance as master and three c3.2xlarge (8 cores, 15 GB, 28 EC2 compute units)
instance as slave. The program was executed with k = 1, 10, 100, 1000 and for
the frequency and dependency score. The results are visible on figure 4.5 with
a log scale on the abscissa.

100 101 102 103

200

220

240

260

280

300

k

D
ev
ic
es

pe
r
Se
co
nd

(d s
)

frequency score
dependency score

Figure 4.5: Algorithm performance with different k and the 100k dataset on the
same cluster shown on a lin-log plot.

The experiment showed that the performance is affected only little by dif-
ferent values of k inside a practical relevant range lesser than thousand. For
example, with the dependency score the performance loss in devices per second
is 13.2% when k = 1000 instead of k = 1 for the tested scenario.

34

4.2.3 Cluster Size
The number of executors determines the number of tasks which can be computed
in parallel. More executors lead to more but smaller partitions which therefore
can be processed in less time. Still, the relation between the number of executors
and the performance of the algorithm is not inversely proportional for one main
reason: If an RDDs data is distributed on more executors, then more networking
is necessary at Shuffle operations. Additionally, more tasks lead to a larger
overhead. On the other side, too few executors and partitions lead to more
memory pressure and the executors have to spill data to the local disk1. To
examine the effect of different number of executors, the algorithm was executed
on different EMR clusters. All clusters had a EC2 c3.xlarge (4 cores, 7.5 GB, 14
EC2 compute units) instance as master and one to three c3.2xlarge (8 cores, 15
GB, 28 EC2 compute units) instance as slave. Thus, the algorithm was tested
on clusters with 8, 16, and 32 executors. Figure 4.6 shows the results of the
experiment.

10 15 20 25 30

14

15

16

17

18

19

Executors

D
ev
ic
es

pe
r
Se

co
nd

an
d
E
xe
cu
to
r
(

d s
·e
)

100k
200k

Figure 4.6: Experiments with different sized clusters, showing the relation between
the number of executors and the performance in devices per second and executor (d

s·e).

As the plot shows, the best performance per executor could be reached on
the cluster with 16 executors. 8 executors as well as 32 executors lead to a
poorer performance. In the case of 8 executors data was spilled to disk, because
the partitions were too big to fit into the memory. In the case of 32 executors
the additional networking lead to a poorer performance.

4.3 Pair Filtering
The example on figure 3.2 shows that from RDD2 to RDD3 a lot of pairs are
created which are not part of the final result. In the example, a1 is combined

1Spark implements an external sorting algorithm which if necessary spills data to the local
disk while aggregating data in reduce tasks.

35

with a2 and a3, but only a2 is part of RDD4 and the result set, because k = 1,
so only the best scored app is demanded. In the 500k testdata we have p =
224′297′359 distinct pairs and |A| = 507′372 distinct apps, if k = 10, the result
will include 10 other apps per distinct app, so only |A|∗kp ≈= 2.26% distinct
pairs are part of the result set. In this chapter, the idea of filtering out specific
pairs at the point of their creation, based on the base probability, is discussed.
To calculate all base probabilities (see chapter 1.2.2) in a dataset, no app-pairs
have to be build, so the costs are relatively low. The base probabilities P (a) of
all apps in a ∈ A are calculated first, and then used to decide whether a pair
may be skipped at the moment of its creation.

In section 4.3.1 a proof of concept is made to tests the cost savings with pair
filtering. In section 4.3.2, a metric is introduced to evaluate the approach. And
finally, section 4.3.3 and 4.3.4 discuss and test pair filtering with the frequency
and dependency score.

4.3.1 Proof of Concept

0 0.2 0.4 0.6 0.8

600

800

1,000

1,200

1,400

Filter ratio

R
un

ti
m
e
in

Se
co
nd

s

Figure 4.7: Pair filtering test. Runtime for the 100k testdata subset with different
ratio of pairs filtered out.

The possible benefit of pair filtering is shown by an experiment. For the cal-
culation of the 100k testdata subset, a filtering based on the hash of the pair was
implemented. The program was executed while filtering different percentages
of the pairs on a cluster with a EC2 m1.xlarge (4 cores, 15 GB memory, 8 EC2
compute units) instance as master and a c3.xlarge instance as slave (4 cores,
7.5 GB, 14 EC2 compute units). Figure 4.7 shows the results of this test. The
test shows that the runtime may drop around 30% if half of the pairs could be
filtered out. The final benefit also depends on the additional costs of deciding
whether a pair is filtered out or not.

36

4.3.2 Metric
To test the correctness of different results, a new metric called top-k equality
is introduced. The metric is defined as a function topKEquality : L, score →
[0, 1] ∈ Q, where L is the result of a specific top-k problem. The metric must
address the fact that the top-k problem may have multiple correct solutions.
For this reason along T a Q is defined as the union of all possible solutions of
the top-k algorithm:

Q = {(a1, O1), (a2, O2), ..., (an, On)}

Every Oi referred to ai is defined as the set of all apps c ∈ A with a score(ai, c)
greater or equal to the minimum score in one equivalent Ri, this means that
|Oi| ≥ k and for every element b ∈ Oi holds that

score(ai, b) ≥ min{score(ai, c)|c ∈ Ri}

For a new result set L = {(a1, U1), (a2, U2), ..., (an, Un)} we define w as the ratio
of apps included in U wich are also in O:

w =
|U ∩O|
|U |

The metric is no defined as the arithmetic mean of all w:

topKEquality(L, score) :=
1

n

n∑
i=1

|Ui ∩Oi|
|Ui|

If topKEquality(L, score) = 1, then L is a correct result for the top-k problem.
Generally, topKEquality(L, score) = v means that v of the top-k apps in L are
correct.

For the example in section 1.2.1, it holds that

O = (a1, {a2}), (a2, {a1, a3}), (a3, {a2}), (a4, {a2, a3})}

So if we take as an example the result set

L = {(a1, {a1}), (a2, {a3}), (a3, {a2}), (a4, {a1})}

then it is

topKEquality(L, frequencyScore) =
1

4
(
0

1
+

1

1
+

1

1
+

0

1
) =

1

2

This means that half of the top-k apps in L are correctly classified with respect
to the well defined top-k problem with the frequency score.

4.3.3 Frequency Score
To get an idea of how the base probabilities of apps in an app-pair are related to
the presence of this app-pair in the top-k, figure 4.8 shows all app-pairs of the
1k data set with k = 10. Every app pair (c, d) is represented as two points. The
first point at (P (c), P (d)) is turquoise if d is in the top-k of c, and the second

37

point (P (d), P (c)) is turquoise if c is in the top-k of d. It is noticeable that most
of the top-k pairs are in the top-left corner, so that P (a) ≤ P (b)2. All pairs in
the top-k with P (a) > P (b) are highlighted with a black circle, of 143988 top-k
pairs only 2963. This means, if pairs with P (a) > P (b) are skipped (about 42%),
the result T would only slightly differ while the costs for calculation strongly
decrease.

Figure 4.8: App-pairs in the 1k dataset. Coloring for K = 10 while applying the
frequency score. The axes correspond to the base probability of the unique apps in
the pair. Pairs in top-k and with P (a) < P (b) are marked with a black circle.

The approach of filtering pairs was added in the implementation of the al-
gorithm from 3.2. To test the results, a spark program was implemented which
calculates the top-k equality of a result. The implementation was then tested
on a cluster with an EC2 c3.xlarge (4 cores, 7.5 GB, 14 EC2 compute units)
instance as master and three c3.2xlarge (8 cores, 15 GB, 28 EC2 compute units)
as slaves. Table 4.2 shows the results of this test. The filtering of pairs caused
a significant increase of the runtime whereas the correctness of results is pre-
served. Of 83044 apps in the 15k dataset only 55 do have an incorrect top-k list

2The stripes of points are the result of the the fact that just few apps have a high base
probability. Therefore, most of the points are in the bottom left corner.

3These numbers and figure 4.8 are created by generating data about app-pairs with a Spark
program and analysing them with Matlab.

38

5k 50k 100k
Performance without filtering in [ds] 86.201 219.298 268.817

Performance with filtering [ds] 98.039 320.513 387.597
Top-k equality 0.999895 0.999898 0.999907
Ratio of incorrect top-k lists 6.623e− 4 6.337e− 4 6.218e− 4

Table 4.2: Results of a frequency based pair-filtering tests with frequency score on
two testdata subsets

(40800 apps and 26 wrong lists for 5k). This means that frequency based pair
filtering may be a good approach to decrease costs of finding the top-k apps in
a large dataset, depending on the required quality of the result.

4.3.4 Dependency Score
The same principle as for figure 4.2 with frequency score was used to create
figure 4.9 with dependency score. The pattern of top-k points is dramatically
different. The same filter as for the frequency score would miss about 29% of
the top-k pairs and lead to a insufficient top-k equality. For this reason the filter
proposed in the previous chapter can not be applied when using the dependency
score.

4.4 App filtering
As already mentioned before, the most apps have just a few installations and
just a few apps have many installations. To illustrate this relation, the 5k test
data is used. In the 5k dataset the amount of apps on |∆| = 5039 devices is
|A| = 40800. The app with the highest frequency4 is installed on 5027 devices,
so its base probability is P (a) = 5027

5039 = 0.99762. On the other hand, 26234,
that is 26234

40800 ≈ 64.3% of all apps are installed only once and therefore have a
base probability of (a) = 1

40800 ≈ 0.00019845. The histogram on figure 4.10
shows the base probability distribution of all apps in |A| from the 5k testdata
set. The histogram impressively shows that few apps are installed often.

If the frequency of an app in ∆ is very low its top-k have a very poor sig-
nificance. If for example the frequency score is used and an app is installed
only once, then the top-k app for this app will be a random subset of all apps
installed on the one device together with the app. For this reason the skipping
of apps with a low base probability leads to a result with a greater significance
whilst it also decreases the costs of calculating the result. Skipping of apps
correspondingly decreases the number of apps for which the top-k apps is cal-
culated with a specific dataset. In some applications it is preferable to have a
bad result instead of no result. For this reason the app filter is implemented
together with a new parameter f . f is the minimum frequency an app a must
have in ∆ to be considered, f ≤ frequency(a).

The app filter is implemented in while RDD1 is created.
App filtering was then tested on a cluster with a EC2 c3.xlarge (4 cores, 7.5

GB, 14 EC2 compute units) instance as master and three c3.2xlarge (8 cores, 15
4The package name of this app is ’com.google.android.gms’. The app is called part of the

Google Play Service SDK and pre-installed on every Device with apps from Google.

39

Figure 4.9: App-pairs in the 1k dataset. Coloring for K = 10 while applying the
dependency score. The axes correspond to the base base probability of the unique
apps in the pair.

GB, 28 EC2 compute units) instance as slave. Figure 4.11 shows the results of
this test. f = 2 lead to a decreased runtime of about 13%, f = 5 to savings of
around 21% and f = 20 to savings of around 34%. Corresponding to the test,
the savings tend to slightly decrease with larger datasets, especially for high f .

40

Base Probability - P(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

q
u
en

cy

×10
4

0

1

2

3

4

Figure 4.10: Histogram of base probabilities of all distinct apps in the 5k testdata
subset.

0.5 1 1.5 2

·105

250

300

350

400

Devices

P
er
fo
rm

an
ce

in
D
ev
ic
es

pe
r
Se
co
nd

f = 1
f = 2
f = 5
f = 20

Figure 4.11: Performance relation for different f with app filtering, dependency
score, and k = 10.

41

Chapter 5

Summary and Future Work

In this thesis, the challenge of finding the apps most frequently installed together
in a large number of devices was formally defined as the top-k problem. With
the frequency and the dependency score as a module of the top-k problem, two
different versions of the problem were examined.

Based on Apache Spark, an algorithm was developed and implemented which
solves the top-k problem for both scores and arbitrary input datasets.

To understand the algorithms’ execution, Spark’s execution model was in-
vestigated and illustrated with an abstraction independent of the underlying
cluster manager. On this basis the execution of the algorithm has been under-
stood and analysed. The analysis of the existing input data has shown that the
algorithm has to manage about n1.462 app pairs in an input dataset, where n is
the number of apps. This means a much lower complexity than the expected n
squared app pairs in the worst case.

To test the performance of the algorithm, experiments were conducted. On
an EMR cluster provided by AWS billed with $1.313 per hour1 the processing
of a dataset with 500’000 devices has been done in 33:15 minutes using the
frequency score. This means that the costs can be estimated as about $0.1455
per 100’000 devices2.

Based on the knowledge of the input data, further optimizations were imple-
mented and tested. To check the quality of optimizations which are modifying
the result of the algorithm, a new metric called top-k equality was introduced.
The metric was used to test pair filtering, a well-working optimization approach
with the frequency score. Pair filtering lead to a performance gain of more than
40% in experiments. Additionally, the complete filtering of pairs with low fre-
quencies lead to another essential performance gain. As a combined example:
the same data as in the former paragraph with pair filtering and app filtering
with f = 5 is processed in 17:50 minutes. This means a performance gain of
more than 45% and a cost decrease to $0.078 per 100’000 devices.

1Prices for AWS services are published online. EMR costs are visible at https://aws.
amazon.com/elasticmapreduce/pricing/.

2When perusing these calculations, it has to be taken into account that EMR clusters
are billed on an hourly base; this means that a full hour has to be paid even if the cluster
is terminated after 30 minutes. It has also to be taken into account, that the costs do not
linearly scale up with the devices.

42

https://aws.amazon.com/elasticmapreduce/pricing/
https://aws.amazon.com/elasticmapreduce/pricing/

5.1 Challenges and Future Work
The system architecture as preconditioned creates a very broad field of possible
optimizations. The actual runtime of a Spark program on an EMR cluster
depends on many factors like software versions and on configurations of different
modules like Spark itself and the cluster manager. Besides, the interactions
between Spark and the cluster manager and between different languages like
Scala (Spark) and Python (Scala API) make understanding the different cost
factors to a very challenging task.

Before the main challenges are summarized in the following subsections,
some pitfalls which were uncovered in the work for this thesis are explained:

AWS Budget For this thesis a liberal budget provided by 42matters was used
to run tests and experiments on AWS infrastructure. Nevertheless, it is
important to mention that experiments and testing on a cluster causes
costs which have to be planned carefully. As the work for this thesis has
shown, Spark runs stable if the slave nodes have at least 15 GB memory.
This means that suitable tests with Spark programs cannot be made with
cheap AWS instances, because they do not have enough memory.

Development Cycle of Used Technologies The work in this thesis highly
depends on established software and services with a fast paced develop-
ment cycle. The advantage of this situation is that a big community of
different actors is improving the used technologies. For example, a new
Spark version could bring a faster type of object serialization in Python
which accelerates every Spark program using the Python API. In contrast,
the fast development cycles brings with them the risk of highly integrated
optimizations stop working soon after they have been developed, when
new versions of the underlying technologies are released.

Developing on a Cluster The development of an algorithm with Spark run-
ning on a cluster is made further complicated by the fact that logs are
often distributed over the cluster. This makes tracking down the source
of a problem challenging. Additionally, errors are often not propagated
up the stack, so multiple levels in the system have to be addressed to find
an error. Because of this, it is a good idea to carefully study the system
architecture and to write scripts to collect the most important logs.

5.1.1 Testing
The experiments in this thesis were done with a dataset of 500’000 devices at
maximum. The tendencies of the results can be used to create estimators for
larger datasets, but must not be overrated. Despite the investigation of the
execution model, a lot of work is still hidden by Spark internals3. This leads to
difficulties in predicting the behaviour of Spark programs and restricts the use
of the results. Future work could make use of the extensive knowledge about the
data presented in this thesis and create large synthetic test datasets to conduct

3One example for this is the Shuffle operation. Although it is often a bottleneck in Spark
programs, it was not examined in every detail for this thesis, because it is enhanced in most
subsequent versions of Spark and therefore frequently changes in its details.

43

elaborate performance tests. The results could then be used to predict AWS
costs for 42matters when their available data grows.

5.1.2 Performance and Optimization
In the work for this thesis, many promising fields for further optimization were
found, but could not be pursued in detail. The following list introduces three
such fields:

Domain Knwoledge The algorithm proposed in this thesis is a very common
solution for the top-k problem. Its optimizations depend on the structure
and characteristics of the input data. If the concrete use of the result
is known, further optimizations of the algorithm may be possible. An
example for a basic domain specific optimization is app filtering, explained
in section 4.4.

Spark and Cluster Configuration Spark and its underlying infrastructure
allow many different configurations. For instance, Spark allows the set-
ting of parameters to ajust its handling of memory, network connections,
cache and more4. These settings have a strong influence on the runtime
of any program running on Spark. For example: If the amount of parti-
tions emerging at a wide dependency does not fit the specific cluster, the
consequence is a very suboptimal parallelization. Some experiments for
this thesis showed that a higher number of partitions than executors often
leads to less runtime.

Meta Data Based Filtering As introduced in section 2.3.1, additional meta
data is available for many apps. An interesting approach would be to use
this data to skip apps or app pairs which have no influence over the result
in a similar way to the pair filtering approach in section 4.3. For example,
one hypothesis could be that apps with a one star rating in the app store
are never occurring in the top-k of other apps.

Scala or Java Spark API With the proposed algorithm a lot of time is used
to serialize and deserialize objects with Pythons cPickle library, as a basic
profiling showed. One would expect that the use of Spark’s Scala or Java
API could accelerate the algorithm, because their serialization has a better
performance. This assumption could be checked in future work.

5.1.3 Further Topics
Besides testing and optimizations two other possible topics of future work emerged:

Cost Optimization on AWS The infrastructure provided byAWS is charged
at hourly rates. For instance, this means that a EMR cluster costs the
same amount of money no matter whether it is running 61 minutes or 120
minutes. A further cost optimization idea is to use the extensive knowl-
edge about the algorithm to chose a cluster configuration that makes use
of the hourly rated infrastructure insofar as the cluster can be determined
shortly before the next running hour has to be paid.

4Spark’s many configuration parameters can be found at https://spark.apache.org/
docs/latest/configuration.html

44

https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/latest/configuration.html

Other Distributed Frameworks The use of Spark for finding the apps most
frequently installed is not questioned in this thesis. It is well possible
that a solution for the top-k problem implemented for other distributed
programming models and frameworks (e.g. Apache Flink) may better
fit the requirements of 42matters and other users. One reason for the
choice of Spark was its in-memory approach; but the advantages of this
approach could not have been used, because for the top-k problem no
iterative calculation with the same dataset have to be done.

45

Bibliography

[1] M.-S. Chen, J. Han, and P. S. Yu, “Data mining: An overview from a
database perspective,” Knowledge and data Engineering, IEEE Transac-
tions on, vol. 8, no. 6, pp. 866–883, 1996.

[2] C. Yadav, S. Wang, and M. Kumar, “An approach to improve apriori
algorithm based on association rule mining,” in Computing, Communica-
tions and Networking Technologies (ICCCNT), 2013 Fourth International
Conference on, IEEE, 2013, pp. 1–9.

[3] R. Chang and Z. Liu, “An improved apriori algorithm,” in Electronics
and Optoelectronics (ICEOE), 2011 International Conference on, IEEE,
vol. 1, 2011, pp. V1–476.

[4] R. Sumithra and S. Paul, “Using distributed apriori association rule and
classical apriori mining algorithms for grid based knowledge discovery,”
in Computing Communication and Networking Technologies (ICCCNT),
2010 International Conference on, IEEE, 2010, pp. 1–5.

[5] (Aug. 2015). Cluster mode overview, [Online]. Available: https://spark.
apache.org/docs/latest/cluster-overview.html.

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, vol. 10, 2010.

[7] (Jul. 2015). Spark programming guide, [Online]. Available: https : / /
spark.apache.org/docs/latest/programming-guide.html.

[8] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing,” in Proceedings of
the 9th USENIX conference on Networked Systems Design and Implemen-
tation, USENIX Association, 2012.

[9] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning Spark:
Lightning-Fast Big Data Analysis. " O’Reilly Media, Inc.", 2015.

[10] (Jul. 2015). Spark 1.3.1 python api docs, [Online]. Available: http://
spark.apache.org/docs/1.3.1/api/python/.

[11] S. Ryza. (2015). How-to: Tune your apache spark jobs (part 1), [Online].
Available: http://blog.cloudera.com/blog/2015/03/how-to-tune-
your-apache-spark-jobs-part-1/.

46

https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/programming-guide.html
https://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/1.3.1/api/python/
http://spark.apache.org/docs/1.3.1/api/python/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-1/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-1/

Appendices

47

Appendix A

Technical Documentations

The following two sections show the main steps used to develop the programs
for this thesis.

A.1 Starting a Spark Program
Spark programs are developed locally and then send to a EMR cluster. With
a EMR Step they are started on the EMR Cluster. The following steps can be
pursued to run a Spark program on a EMR cluster. The steps assume that an
SSH keyfile to access the EMR cluster is available at $SSH_KEY.

1. Start the EMR cluster with the desired configuration via AWS console in
an internet browser1. The experiments in this thesis have shown that the
machines should have at least 15 GB of main memory to stably run Spark
programs. Choose Spark as a pre-installed framework on the cluster.

2. Wait until the AWS console shows the status read. Then lookup theMaster
Public DNS, Jobflow ID and the Region of the cluster on the cluster detail
page on the AWS console.

3. Use Secure copy to upload the Python program to the master:
scp -i $SSH_KEY $LOCAL_FILE_PATH \
hadoop@$MASTER_PUBLIC_DNS:$SERVER_FILE_ PATH

4. Add an EMR Step which starts the spark-submit script at the master
which in turn starts the Spark program. Having a well configured AWS
Command Line Interface installed is a precondition2. Use Secure copy to
upload the Python program to the master:
aws emr add-steps –cluster-id $JOBFLOW_ID –steps \
Name=ASparkStep, \
Jar=s3://$REGION.elasticmapreduce/libs/script-runner/script-runner.jar, \
Args=[/home/hadoop/spark/bin/spark-submit,–master,yarn-client, \
$SERVER_FILE_PATH],ActionOnFailure=CONTINUE

1 https://aws.amazon.com/elasticmapreduce/
2https://aws.amazon.com/cli/

48

https://aws.amazon.com/elasticmapreduce/
https://aws.amazon.com/cli/

5. Optionally add more EMR Steps by repeating the last step. Then wait
until all steps are Completed or Failed.

6. Terminate the cluster at the AWS console. Not terminating a cluster leads
to unnecessary costs.

A.2 Debugging a Spark Program
While a cluster is running, different useful information about the cluster and
the Spark program are available.

Web Interface While a Spark program is running, a web interface providing
information about action, stages and tasks is available. It can be reached
under $MASTER_PUBLIC_DNS:4040. The same information of already
finished Spark programs is available by the history server, its adress is
$MASTER_PUBLIC_DNS:18080.

Log files Useful log files are available at different places. The most impor-
tant once are collected on the HDFS of the cluster and can be viewed at
$MASTER_PUBLIC_DNS:9026.

To get access to the different web interfaces SSH tunneling with dynamic port
forwarding to the master node has to be established. Additionaly, the internet
browser has be configured using this tunnel when accessing the $MASTER_-
PUBLIC_DNS. AWS provides extensive documentation for these purposes3.

3http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-web-
interfaces.html

49

Appendix B

Source Code

The main Python Programs developed in the work for this thesis are printed in
this appendix. A technical documentation how the programs can be started on
an EMR cluster can be found at appendix A.

B.1 Frequency Score
The following Python program for Spark was used to find the top-k apps with
the frequency score:

1 from pyspark import SparkContext , SparkConf
from c o l l e c t i o n s import d e f a u l t d i c t

3 import j son
import cStr ingIO

5 import heapq

7 # Input Parameters
INPUT_PATH = "s3 : / / . . . "

9 OUTPUT_PATH = "s3 : / / . . . "
K = 10

11

I n i t i a t e SparkContext
13 conf = SparkConf () . setAppName("AppsFrequent ly Insta l l edTogether ")

sc = SparkContext (conf=conf)
15

Lambda −> RDD1, Data load ing and preparat i on
17 RDD1 = sc . t e x tF i l e (INPUT_PATH)

19 RDD1 = RDD1.map(lambda x : [x [’ pn ’] f o r x in j son . l oads (x) [’ apps ’]])
. cache ()

21 app_l i s t = RDD1. flatMap (lambda x : x) . d i s t i n c t () . c o l l e c t ()
pn_int_l i st = sc . broadcast (d i c t ((n , i) f o r i , n in enumerate (

app_l i s t)))
23 int_pn_l ist = sc . broadcast (d i c t (z ip (pn_int_l i st . va lue . va lue s () ,

pn_int_l i st . va lue . keys ())))

25 RDD1 = RDD1.map(lambda x : [pn_int_l i st . va lue [y] f o r y in x])

27 # RDD1 −> RDD2, Pair c r e a t i on
de f p a i r s I nL i s t (e lements) :

29 pa i r s = []
f o r i in xrange (0 , l en (e lements)) :

50

31 f o r j in xrange (i + 1 , l en (e lements)) :
p a i r s . append ((e lements [i] , e lements [j]))

33 pa i r s . append ((e lements [j] , e lements [i]))
r e turn pa i r s

35

RDD2 = RDD1. flatMap (p a i r s I nL i s t)
37

RDD2 −> RDD3, Pair combination
39 de f createCombiner (f i r s t P a i r) :

pa i rD i c t = d e f a u l t d i c t (i n t)
41 pa i rD i c t [f i r s t P a i r] = 1

return pa i rD i c t
43

de f mergeValue (pa i rDict , newpair) :
45 pa i rD i c t [newpair] += 1

return pa i rD i c t
47

de f mergeCombiners (pairDictA , pairDictB) :
49 r e s = pairDictB . copy ()

f o r app , counter in pairDictA . i t e r i t em s () :
51 r e s [app] += counter

re turn r e s
53

RDD3 = RDD2. combineByKey (createCombiner , mergeValue , mergeCombiners
)

55

RDD3 −> RDD4, Pair s e l e c t i o n
57 de f sor tAndSe lect (pa i rD i c t) :

topK = heapq . n l a r g e s t (K, pa i rD i c t . i t e r i t em s () , key=lambda x : x
[1])

59 r e turn topK

61 RDD4 = RDD3. mapValues (sor tAndSe lect)

63 # RDD4 −> T, Data sav ing
de f l i s tToJson (dev i ce) :

65 j s onS t r i n g = cStr ingIO . Str ingIO ()
j s onS t r i n g . wr i t e (’ {"package_name " :" ’)

67 j s onS t r i n g . wr i t e (int_pn_l ist . va lue [dev i c e [0]])
j s onS t r i n g . wr i t e (’ " ," p a i r s_ l i s t " : [’)

69 f i r s t = True
f o r pa i r in dev i ce [1] :

71 i f f i r s t :
f i r s t = False

73 j s onS t r i n g . wr i t e (’ {"pn " :" ’)
e l s e :

75 j s onS t r i n g . wr i t e (’ ,{"pn " :" ’)
j s onS t r i n g . wr i t e (int_pn_l ist . va lue [i n t (pa i r [0])])

77 j s onS t r i n g . wr i t e (’ "} ’)
j s onS t r i n g . wr i t e ("] } ")

79 r e turn j s onS t r i n g . ge tva lue ()

81 RDD4.map(l i s tToJson) . saveAsTextFi le (OUTPUT_PATH)

83 sc . stop ()

python–frequency–score.py

51

B.2 Dependency Score
The following Python program for Spark was used to find the top-k apps with
the dependency score:

1 from pyspark import SparkContext , SparkConf
from c o l l e c t i o n s import d e f a u l t d i c t

3 import j son
import cStr ingIO

5 import heapq

7 # Input Parameters
INPUT_PATH = "s3 : / / . . . "

9 OUTPUT_PATH = "s3 : / / . . . "
K = 10

11

I n i t i a t e SparkContext
13 conf = SparkConf () . setAppName("AppsFrequent ly Insta l l edTogether ")

sc = SparkContext (conf=conf)
15

Lambda −> RDD1, Data load ing and preparat i on
17 RDD1 = sc . t e x tF i l e (INPUT_PATH)

19 RDD1 = RDD1.map(lambda x : [x [’ pn ’] f o r x in j son . l oads (x) [’ apps ’]])
. cache ()

21 # Generate l o c a l d i c t i ona ry with package names as keys
and app f r e qu en c i e s as va lue s .

23 num_of_devices = RDD1. count ()

25 app_frequency_l ist = RDD1 \
. flatMap (lambda x : map(lambda x : (x , 1) , x)) \

27 . reduceByKey (lambda x , y : x + y) \
. mapValues (lambda x : f l o a t (x) / num_of_devices) \

29 . col lectAsMap ()
pn_int_l i st = {}

31 int_pn_l ist = {}
f o r i , n in enumerate (app_frequency_list . i t e r i t em s ()) :

33 pn_int_l i st [n [0]] = (i , n [1])
int_pn_l ist [i] = (n [0] , n [1])

35

Broadcast the d i c t i o n a r i e s
37 pn_int_l i st = sc . broadcast (pn_int_l i st)

int_pn_l ist = sc . broadcast (int_pn_l ist)
39

RDD1 = RDD1.map(lambda x : [pn_int_l i st . va lue [y] [0] f o r y in x])
41

RDD1 −> RDD2, Pair c r e a t i on
43 de f p a i r s I nL i s t (e lements) :

p a i r s = []
45 f o r i in xrange (0 , l en (e lements)) :

f o r j in xrange (i + 1 , l en (e lements)) :
47 pa i r s . append ((e lements [i] , e lements [j]))

p a i r s . append ((e lements [j] , e lements [i]))
49 r e turn pa i r s

51 RDD2 = RDD1. flatMap (p a i r s I nL i s t)

53 # RDD2 −> RDD3, Pair combination
de f createCombiner (f i r s t P a i r) :

55 pa i rD i c t = d e f a u l t d i c t (i n t)
pa i rD i c t [f i r s t P a i r] = 1

52

57 r e turn pa i rD i c t

59 de f mergeValue (pa i rDict , newpair) :
pa i rD i c t [newpair] += 1

61 r e turn pa i rD i c t

63 de f mergeCombiners (pairDictA , pairDictB) :
r e s = pairDictB . copy ()

65 f o r app , counter in pairDictA . i t e r i t em s () :
r e s [app] += counter

67 r e turn r e s

69 RDD3 = RDD2. combineByKey (createCombiner , mergeValue , mergeCombiners
)

71 # RDD3 −> RDD4, Pair s e l e c t i o n
de f sor tAndSe lect (e) :

73 g l oba l num_of_devices

75 appA = e [0]
pa i rD i c t = e [1]

77 appAFrequency = int_pn_l ist . va lue [appA] [1]

79 # s e l e c t the K elements with the l a r g e s t s co r e
topK = heapq . n l a r g e s t (K, pa i rD i c t . i t e r i t em s () , \

81 key=lambda appB : (f l o a t (appB [1]) / num_of_devices) / f l o a t (
appAFrequency∗ int_pn_l ist . va lue [appB [0]] [1]))
r e turn (appA , topK)

83

RDD4 = RDD3.map(sortAndSe lect)
85

RDD4 −> T, Data sav ing
87 de f l i s tToJson (dev) :

j s onS t r i n g = cStr ingIO . Str ingIO ()
89 j s onS t r i n g . wr i t e (’ {"package_name " :" ’)

j s onS t r i n g . wr i t e (int_pn_l ist . va lue [dev [0]] [0])
91 j s onS t r i n g . wr i t e (’ " ," p a i r s_ l i s t " : [’)

f i r s t = True
93 f o r p in dev [1] :

i f f i r s t :
95 f i r s t = False

j s onS t r i n g . wr i t e (’ {"pn " : ’)
97 e l s e :

j s onS t r i n g . wr i t e (’ ,{"pn " : ’)
99 j s onS t r i n g . wr i t e (int_pn_l ist . va lue [i n t (p [0])] [0])

j s onS t r i n g . wr i t e (’ "} ’)
101 j s onS t r i n g . wr i t e ("] } ")

re turn j s onS t r i n g . ge tva lue ()
103

RDD4.map(l i s tToJson) . saveAsTextFi le (OUTPUT_PATH)
105

sc . stop ()

python–dependency–score.py

B.3 Pair and App Filter
The following Python program implements the app and pair filter approaches
with the frequency score:

53

from pyspark import SparkContext , SparkConf
2 import j son

import cStr ingIO
4 import heapq

from c o l l e c t i o n s import d e f a u l t d i c t
6

Input Parameters
8 INPUT_PATH = "s3 : / / . . . "
OUTPUT_PATH = "s3 : / / . . . "

10 K = 10
F = 5

12

I n i t i a t e SparkContext
14 conf = SparkConf () . setAppName("AppsFrequentlyInstal ledTogether_FS")

sc = SparkContext (conf=conf)
16

Lambda −> RDD1, Data load ing and preparat i on
18 RDD1 = sc . t e x tF i l e (INPUT_PATH)

20 RDD1 = RDD1.map(lambda x : [x [’ pn ’] f o r x in j son . l oads (x) [’ apps ’]])
. cache ()

22 # Generate l o c a l d i c t i ona ry with package names as keys
and app f r e qu en c i e s as va lue s .

24 num_of_devices = RDD1. count ()
min_base_probabil ity = f l o a t (F) / num_of_devices

26

app_frequency_l ist = RDD1 \
28 . f latMap (lambda x : map(lambda x : (x , 1) , x)) \

. reduceByKey (lambda x , y : x + y) \
30 . mapValues (lambda x : f l o a t (x) / num_of_devices) \

. col lectAsMap ()
32 pn_int_l i st = {}

int_pn_l ist = {}
34 f o r i , n in enumerate (app_frequency_list . i t e r i t em s ()) :

pn_int_l i st [n [0]] = (i , n [1])
36 int_pn_l ist [i] = (n [0] , n [1])

38 # Broadcast the d i c t i o n a r i e s
pn_int_l i st = sc . broadcast (pn_int_l i st)

40 int_pn_l ist = sc . broadcast (int_pn_l ist)

42

F i l t e r based on F and the P(a)
44 de f mapAndFilter (dev) :

apps = []
46 f o r appPN in dev :

v = pn_int_l i st . va lue [appPN]
48 i f v [1] >= min_base_probabil ity :

apps . append (v [0])
50 r e turn apps

52 RDD1 = RDD1.map(mapAndFilter)

54 # RDD1 −> RDD2, Pair c r e a t i on
de f p a i r s I nL i s t (e lements) :

56 pa i r s = []
f o r i in xrange (0 , l en (e lements)) :

58 f o r j in xrange (i + 1 , l en (e lements)) :
j e = elements [j]

60 jeP = int_pn_l ist . va lue [j e] [1]
i e = elements [i]

54

62 ieP = int_pn_l ist . va lue [i e] [1]
i f (jeP >= ieP) :

64 pa i r s . append ((i e , j e))
i f (jeP <= ieP) :

66 pa i r s . append ((je , i e))

68 r e turn pa i r s

70 RDD2 = RDD1. flatMap (p a i r s I nL i s t)

72 # RDD2 −> RDD3, Pair combination
de f createCombiner (f i r s t P a i r) :

74 pa i rD i c t = d e f a u l t d i c t (i n t)
pa i rD i c t [f i r s t P a i r] = 1

76 r e turn pa i rD i c t

78 de f mergeValue (pa i rDict , newpair) :
pa i rD i c t [newpair] += 1

80 r e turn pa i rD i c t

82 de f mergeCombiners (pairDictA , pairDictB) :
r e s = pairDictB . copy ()

84 f o r app , counter in pairDictA . i t e r i t em s () :
r e s [app] += counter

86 r e turn r e s

88 RDD3 = RDD2. combineByKey (createCombiner , mergeValue , mergeCombiners
)

90 # RDD3 −> RDD4, Pair s e l e c t i o n
de f sor tAndSe lect (pa i rD i c t) :

92 topK = heapq . n l a r g e s t (K, pa i rD i c t . i t e r i t em s () , key=lambda x : x
[1])
r e turn topK

94

RDD4 = RDD3. mapValues (sor tAndSe lect)
96

RDD4 −> T, Data sav ing
98 de f l i s tToJson (dev) :

j s onS t r i n g = cStr ingIO . Str ingIO ()
100 j s onS t r i n g . wr i t e (’ {"package_name " :" ’)

j s onS t r i n g . wr i t e (int_pn_l ist . va lue [dev [0]] [0])
102 j s onS t r i n g . wr i t e (’ " ," p a i r s_ l i s t " : [’)

f i r s t = True
104 f o r p in dev [1] :

i f f i r s t :
106 f i r s t = False

j s onS t r i n g . wr i t e (’ {"pn " : ’)
108 e l s e :

j s onS t r i n g . wr i t e (’ ,{"pn " : ’)
110 j s onS t r i n g . wr i t e (int_pn_l ist . va lue [i n t (p [0])] [0])

j s onS t r i n g . wr i t e (’ "} ’)
112 j s onS t r i n g . wr i t e ("] } ")

re turn j s onS t r i n g . ge tva lue ()
114

116 RDD4.map(l i s tToJson) . saveAsTextFi le (OUTPUT_PATH)

118 sc . stop ()

python–frequency–pairfilter–appfilter.py

55

B.4 Top-K Equality
To calculate the top-k equality two programs were used. The first program
created the extended solution Q (see 4.3.2) for a specific input dataset and the
second one calculated the top-k equality by comparing a arbitrary result with
Q:

from pyspark import SparkContext , SparkConf
2 import j son

import cStr ingIO
4 from c o l l e c t i o n s import d e f a u l t d i c t

from i t e r t o o l s import imap , i z i p , t e e
6 from operator import i t emge t t e r

8 # Input Parameters
INPUT_PATH = "s3 : / / . . . "

10 OUTPUT_PATH = "s3 : / / . . . "
K = 10

12

I n i t i a t e SparkContext
14 conf = SparkConf () . setAppName("

AppsFrequent lyInsta l ledTogether_createQ")
sc = SparkContext (conf=conf)

16

Lambda −> RDD1, Data load ing and preparat i on
18 RDD1 = sc . t e x tF i l e (INPUT_PATH)

20 RDD1 = RDD1.map(lambda x : [x [’ pn ’] f o r x in j son . l oads (x) [’ apps ’]])
. cache ()

22 app_l i s t = RDD1. flatMap (lambda x : x) . d i s t i n c t () . c o l l e c t ()
pn_int_l i st = sc . broadcast (d i c t ((n , i) f o r i , n in enumerate (

app_l i s t)))
24 int_pn_l ist = sc . broadcast (d i c t (z ip (pn_int_l i st . va lue . va lue s () ,

pn_int_l i st . va lue . keys ())))

26 RDD1 = RDD1.map(lambda x : [pn_int_l i st . va lue [y] f o r y in x])

28 # RDD1 −> RDD2, Pair c r e a t i on
de f p a i r s I nL i s t (e lements) :

30 pa i r s = []
f o r i in xrange (0 , l en (e lements)) :

32 f o r j in xrange (i + 1 , l en (e lements)) :
p a i r s . append ((e lements [i] , e lements [j]))

34 pa i r s . append ((e lements [j] , e lements [i]))
r e turn pa i r s

36

RDD2 = RDD1. flatMap (p a i r s I nL i s t)
38

RDD2 −> RDD3, Pair combination
40 de f createCombiner (f i r s t P a i r) :

pa i rD i c t = d e f a u l t d i c t (i n t)
42 pa i rD i c t [f i r s t P a i r] = 1

return pa i rD i c t
44

de f mergeValue (pa i rDict , newpair) :
46 pa i rD i c t [newpair] += 1

return pa i rD i c t
48

de f mergeCombiners (pairDictA , pairDictB) :
50 r e s = pairDictB . copy ()

f o r app , counter in pairDictA . i t e r i t em s () :

56

52 r e s [app] += counter
re turn r e s

54

RDD3 = RDD2. combineByKey (createCombiner , mergeValue , mergeCombiners
)

56

"""
58 This func t i on r e tu rn s a l i s t with the n l a r g e s t e lements from the

datase t de f ined by ’ i t e r a b l e . ’ ’
’ key ’ s p e c i f i e s a func t i on o f one argument that i s used to ex t r a c t

a comparison
60 key from each element in the i t e r a b l e

62 The s o l u t i o n a l s o i n c l ud e s a l l e lements equal to the n−th element .

64 Adapted by
https : // github . com/apache/ spark /blob /branch−1.3/python/pyspark/

heapq3 . py
66 """

de f n largest_extended (n , i t e r a b l e , key) :
68 de f count (s t a r t=0 , s tep=1) :

n = s t a r t
70 whi le True :

y i e l d n
72 n += step

74 de f _siftdown_max (heap , s ta r tpos , pos) :
newitem = heap [pos]

76 whi le pos > s t a r tpo s :
parentpos = (pos − 1) >> 1

78 parent = heap [parentpos]
i f parent < newitem :

80 heap [pos] = parent
pos = parentpos

82 cont inue
break

84 heap [pos] = newitem

86 de f _siftup_max (heap , pos) :
endpos = len (heap)

88 s t a r tpo s = pos
newitem = heap [pos]

90 ch i l dpo s = 2∗pos + 1 # l e f tmos t ch i l d po s i t i o n
whi le ch i l dpo s < endpos :

92 r i gh tpo s = ch i l dpo s + 1
i f r i gh tpo s < endpos and not heap [r i gh tpo s] < heap [

ch i l dpo s] :
94 ch i l dpo s = r i gh tpo s

heap [pos] = heap [ch i l dpo s]
96 pos = ch i l dpo s

ch i l dpo s = 2∗pos + 1
98 heap [pos] = newitem

_siftdown_max (heap , s ta r tpos , pos)
100

de f heappop_max(heap) :
102 l a s t e l t = heap . pop ()

i f heap :
104 return i tem = heap [0]

heap [0] = l a s t e l t
106 _siftup_max (heap , 0)

e l s e :
108 return i tem = l a s t e l t

57

r e turn return i tem
110

de f heappush_max(heap , item) :
112 heap . append (item)

_siftdown_max (heap , 0 , l en (heap)−1)
114

in1 , in2 = tee (i t e r a b l e)
116 i t = i z i p (imap (key , in1) , count (0 , −1) , in2)

h = []
118 f o r i in i t :

heappush_max(h , i)
120 r e s = []

l a s t = heappop_max(h)
122 r e s . append (l a s t)

whi l e h :
124 next = heappop_max(h)

i f l en (r e s) < n or next [0] == l a s t [0] :
126 l a s t = next

r e s . append (l a s t)
128 e l s e :

break
130 r e s = map(i t emge t t e r (2) , r e s)

132 r e turn r e s

134 de f sor tAndSe lect (pa i rD i c t) :
topK = nlargest_extended (K, pa i rD i c t . i t e r i t em s () , key=lambda x :
x [1])

136 r e turn topK

138 RDD4 = RDD3. mapValues (sor tAndSe lect)

140 # RDD4 −> T, Data sav ing
de f l i s tToJson (dev) :

142 j s onS t r i n g = cStr ingIO . Str ingIO ()
j s onS t r i n g . wr i t e (’ {"package_name " :" ’)

144 j s onS t r i n g . wr i t e (int_pn_l ist . va lue [dev [0]] [0])
j s onS t r i n g . wr i t e (’ " ," p a i r s_ l i s t " : [’)

146 f i r s t = True
f o r p in dev [1] :

148 i f f i r s t :
f i r s t = False

150 j s onS t r i n g . wr i t e (’ {"pn " : ’)
e l s e :

152 j s onS t r i n g . wr i t e (’ ,{"pn " : ’)
j s onS t r i n g . wr i t e (int_pn_l ist . va lue [i n t (p [0])] [0])

154 j s onS t r i n g . wr i t e (’ "} ’)
j s onS t r i n g . wr i t e ("] } ")

156 r e turn j s onS t r i n g . ge tva lue ()

158 RDD4.map(l i s tToJson) . saveAsTextFi le (OUTPUT_PATH)

160 sc . stop ()

python–createQ.py

from pyspark import SparkContext , SparkConf , Ma r sha l S e r i a l i z e r
2 import j son

4

DATASET_PATH = "s3 : / / . . . "
6 Q_PATH = "s3 : / / . . . "

58

8 # Local f i l ename to wr i t e the r e s u l t s
RESULT_OUTPUT_PATH = " / . . . "

10

conf = SparkConf () . setAppName("
AppsFrequentlyInsta l ledTogether_topKEqual i ty ")

12 sc = SparkContext (s e r i a l i z e r=Mar sha l S e r i a l i z e r () , conf=conf)

14 f = open (RESULT_OUTPUT_PATH, "wb")

16 equa l i tyCounter = sc . accumulator (0)
numberOfIncorrectTopKLists = sc . accumulator (0)

18

de f func (JSONLine) :
20 app_data = json . l oads (JSONLine)

re turn (app_data ["package_name"] , [x [’ pn ’] f o r x in app_data [’
p a i r s_ l i s t ’]])

22

output_A = sc . t e x tF i l e (d [0]) .map(func) . cache ()
24 output_B = sc . t e x tF i l e (d [1]) .map(func) . cache ()

26 output_AB = output_A . fu l lOu t e r Jo i n (output_B)

28 de f c a l c u l a t eEqua l i t y (AB_joined) :
g l oba l equal i tyCounter , numberOfIncorrectTopKLists

30

i f AB_joined [1] [0] == None :
32 A = se t ()

e l s e :
34 A = se t (AB_joined [1] [0])

36 i f AB_joined [1] [1] == None :
B = se t ()

38 e l s e :
B = se t (AB_joined [1] [1])

40

lenA = len (A)
42

i f lenA == 0 :
44 equa l i t y = 1

e l s e :
46 n = len (A. i n t e r s e c t i o n (B))

equa l i t y = f l o a t (n) / lenA
48

i f e qua l i t y < 1 . 0 :
50 numberOfIncorrectTopKLists += 1

52 equa l i tyCounter += equa l i t y

54 output_AB . fo r each (c a l c u l a t eEqua l i t y)
ab_size = output_AB . count ()

56

f . wr i t e ("Average Subset Ratio \n")
58 f . wr i t e ("A: {0} , l ength : {1} \n" . format (d [0] , output_A . count ()))

f . wr i t e ("B: {0} , l ength : {1} \n" . format (d [1] , output_B . count ()))
60 f . wr i t e (" Fu l l Outer Join S i z e : {0}\n" . format (ab_size))

f . wr i t e (" S im i l a r i t y : {0}\n" . format (
62 jaccardCounter . va lue / ab_size))

f . wr i t e ("Number o f i n c o r r e c t Top−K L i s t s : {0}\n\n" . format (
numberOfIncorrectTopKLists . va lue))

64 f . f l u s h ()

59

66 sc . stop ()

python–topKEquality.py

60

	Introduction
	Motivation
	Problem Definition - Top-K
	Frequency Score
	Dependency Score

	Preconditions and System Architecture
	Related Work

	Fundamentals
	Spark Infrastructure
	Apache Spark
	Resilient Distributed Datasets (RDD)
	Execution Model
	Shuffle Operations
	Caching
	Broadcast Variables

	Test Data
	Meta Data

	Algorithm
	Design
	Implementation
	Base Probability Calculation

	Analysis
	Execution
	Complexity

	Optimization and Experiments
	Integral Optimizations
	Package name mapping
	Wide dependency avoidance

	Performance Experiments
	Input Sizes
	Different values of k
	Cluster Size

	Pair Filtering
	Proof of Concept
	Metric
	Frequency Score
	Dependency Score

	App filtering

	Summary and Future Work
	Challenges and Future Work
	Testing
	Performance and Optimization
	Further Topics

	Bibliography
	Appendices
	Technical Documentations
	Starting a Spark Program
	Debugging a Spark Program

	Source Code
	Frequency Score
	Dependency Score
	Pair and App Filter
	Top-K Equality

