
Department of Informatics, University of Zürich

BSc Thesis

Temporal Filtering to Improve
Temporal Duplicate Detection

Gionata Genazzi
of Locarno, Switzerland

Matrikelnummer: 09-742-669

Email: gionata.genazzi@uzh.ch

July 24, 2015
supervised by Prof. Dr. Michael Böhlen and Pei Li

Dedicated to my family

Acknowledgements

I would like to thank Prof. Dr. Michael Böhlen for the opportunity to write my bachelor thesis
at the Database Technology Group of the University of Zürich. I thank Pei Li for her help
and feedback regarding my work. Very special thanks go to my family, my friends, and my
girlfriend.

3

Abstract

Duplicate detection studies the problem of identifying records in a given data set that refer
to the same real-world entity. A quantitative way of solving duplicate detection is to per-
form a similarity join. A large collection of algorithms performs the similarity join using
the filter-verification framework. Algorithms of this type exploit techniques as prefix filter-
ing, positional filtering, and suffix filtering to perform the join in an efficient way. However,
implementations of these algorithms ignore temporal information of records, which could be
exploited to enhance duplicate detection.

In this thesis, we refine prefix filtering, positional filtering, and suffix filtering techniques
in order to perform similarity joins utilizing also temporal information of records. Specifi-
cally, we propose three algorithms that can perform temporal similarity joins with a temporal
Jaccard similarity threshold. Experimental results show that these algorithms can improve
considerably the performance of exact temporal similarity joins with temporal Jaccard when
compared to the brute force approach.

Zusammenfassung

Duplikaterkennung (duplicate detection) ist das Finden mehrerer Repräsentationen desselben
Realweltobjekts. Die Ausführung einer similarity join stellt eine quantitative Lösung von
Duplikaterkennungsprobleme dar. Eine breite Kategorie von similarity join Algorithmen ver-
wenden das sogenannte filter-verification framework; diese Algorithmen nutzen Techniken
wie prefix filtering, positional filtering und suffix filtering mit dem Ziel similarity join ef-
fizient auszuführen. Jedoch, diese Techniken berücksichtigen nicht temporale Information
von Daten. Noch, die Verwendung von temporaler Information kann Duplikaterkennung
verbessern.

In dieser Arbeit, wir verfeinern prefix filtering, positional filtering und suffix filtering Tech-
niken, sodass sie während similarity joins temporaler Information von Daten ausnutzen kön-
nen. Wir präsentieren drei Algorithmen die temporal similarity joins Probleme lösen. Die an
realen Datensätzen durchgeführten Experimente zeigen, dass die drei vorgeschlagenen Algo-
rithmen die Effizienz von temporal similarity joins im Vergleich zum brute force Vorgehen
erheblich verbessern können.

5

Contents

1 Introduction 10

2 Related work 12
2.1 Duplicate detection . 12
2.2 String similarity join . 13
2.3 Temporal duplicate detection . 14

3 Preliminaries 15
3.1 Problem definition . 15
3.2 Similarity functions . 16
3.3 Temporal model . 18

3.3.1 Value recurrence . 19
3.3.2 Weights calculation . 20

4 Solution 22
4.1 Conversions of similarity functions . 22
4.2 Prefix filtering . 24

4.2.1 Prefix length . 26
4.2.2 Indexing prefix . 32
4.2.3 Size filtering . 33
4.2.4 Algorithm . 34

4.3 Positional filtering . 36
4.3.1 Description . 36
4.3.2 Algorithm . 36

4.4 Suffix filtering . 40

5 Experimental evaluation 43
5.1 Experiment setup . 43

5.1.1 Data set . 43
5.1.2 Algorithms . 44
5.1.3 Implementation . 45

5.2 Candidate size . 45
5.3 Running time . 47
5.4 Scalability . 49

6 Conclusions and future work 51

6

List of Figures

4.1 Prefix and suffix of records x and y. 28

5.1 DBLP-Small, Candidate size. 46
5.2 DBLP-Large, Candidate size. 46
5.3 DBLP-Small, Time. 48
5.4 DBLP-Large, Time. 48
5.5 Scalability, Time, θ = 0.8. 50

7

List of Tables

3.1 Records of the same main author. 19

5.1 Records in the experimental data set. 43
5.2 Statistics about the experimental data sets. 44
5.3 Recurrence rates for attribute "co-authors". 45
5.4 Scalability, Candidate sizes, θ = 0.8. All values are in thousands, except

column "Data set size". 49

8

List of Algorithms

4.1 TPREFIX(R, θ, pi, pp) . 35
4.2 TPOSITIONAL(R, θ, pi, pp) . 38
4.3 VERIFY(x, A, lx, pi) . 39
4.4 Insertion between Lines 5 and 6 of VERIFY() 42

9

1 Introduction
Duplicate detection is the problem of identifying records in a given data set that refer to
the same real-world entity. The problem has many names across different research areas;
some common synonyms are record matching, record linkage, data deduplication and near
duplicate detection. In particular, it arises in data integration scenarios, when data coming
from different sources lacks a common identifier.

Many methods for solving the duplicate detection problem are quantitative-based and use a
similarity function. Given two records x and y, a similarity function returns a value, named
similarity value, expressing the similarity degree between x and y. The process of finding
all pairs in a given data set with a similarity value higher than a given threshold is known as
similarity join.

A simple and raw method to perform the similarity join is based on classical brute force
approach, which compares every pair of records in the data set. An algorithm of this type is
extremely expensive and attains a quadratic time complexity. Performing similarity join in
an efficient and scalable way is a very active field of database research. A large collection of
algorithms uses the "filter-verfication" framework to perform the similarity join. This consist
in two steps: in the filter step (1), an effective filtering algorithm should prune large numbers
of non-similar pairs and generate a set of candidate-pairs that must be a superset of the final
result; in the verification step (2), the candidate pairs are verified against the chosen similarity
threshold to obtain the final result. Techniques for filtering many pairs in step (1) include
"prefix filtering" [2] [1], "positional filtering" [16] and "suffix filtering" [16].

In addition, study on temporal data sets brings new challenges to duplicate detection. In
particular, Li et al. [9] and Chiang et al. [3] showed that techniques that make use of tem-
poral information can enhance duplicate detection. However, algorithms that use temporal
information are usually computationally expensive.

This work focuses on extending prefix filtering, positional filtering and suffix filtering tech-
niques in order to perform similarity joins using also temporal information of records. We
make the following contributions:

• We extend prefix filtering, positional filtering and suffix filtering techniques to handle
the temporal Jaccard metric. This metric considers also temporal information of records
and requires a temporal model to compute temporal weights for attributes. Specifi-
cally, we propose three algorithm: TPREFIX, an algorithm that exploits prefix filtering
for computing similarity joins with temporal Jaccard; TPOSITIONAL, which extends
TPREFIX with positional filtering; and TSUFFIX, which further extends TPOSITIONAL

with suffix filtering.

• We show that these algorithms improve considerably the performance of exact similarity
joins with temporal Jaccard when compared to the brute force algorithm. In particular,

10

TSUFFIX proved to be the fastest among the three in our experiments on real-world
data sets, followed by TPOSITIONAL which proved to be only modestly slower. Finally,
TPREFIX proved to be the slowest.

• Marginally, we propose a variation of the temporal model based on recurrence rates
devised by Chiang et al. [3]. Our variation enables to calculate similarity between two
records using recurrence rates but no clustering is required.

The remaining parts of the thesis are organized as follows. The next chapter discusses
related work. Then, chapter 3 presents the problem definition and some preliminaries. In
particular, we explain the similarity metrics used in the thesis and the temporal model that we
use. In chapter 4 we illustrate the refinement of the prefix filtering, positional filtering, and
suffix filtering techniques. In this chapter we also show our algorithms to perform similarity
joins with a temporal Jaccard threshold. Finally, our experimental results are discussed in
chapter 5 and conclusions in chapter 6.

11

2 Related work

2.1 Duplicate detection
The goal of duplicate detection is to link records in the same or different datasets that refer
to the same real-world object. The problem has been studied in many research fields – the
most important are statistics, database and artificial intelligence – and has developed different
names across them. The statistics community was the first to analyze the problem more than 50
years ago under the name of record linkage or record matching. Other common synonyms are
merge-purge, data deduplication and near duplicate detection. Elmagarmid et al. [7] provide
a recent survey on this topic.

Duplicate detection contributes to reach a high information quality; a fundamental require-
ment in today’s IT-based society. In particular, it is a crucial activity when dealing with data
heterogeneity, which usually originates from integration processes of different data sources
that lack global identifiers.

Numerous techniques for duplicate detection have been developed in the past. A first dif-
ferentiation can be made between single field and multiple fields records matching techniques.
However, this is not a clear-cut separation, as many single field matching techniques are often
used as a basis for multiple fields techniques.

Duplicate detection with single field records is usually done with the aid of a similarity
function (also called similarity metric). Given two records, a similarity function returns a value
indicating the degree of similarity between them. Similarity functions for matching string
data fields can be divided into character-based, token-based and phonetic. A well-known
character-based similarity function is edit-distance, which consists in counting the number of
edit operations needed to transform a string into the other. Token-based similarity functions
first need to transform strings into sets of tokens and use a set-based similarity function (e.g.
Jaccard, overlap or cosine) to compute the similarity. A commonly used phonetic similarity
measure is Soundex. In addition, some techniques for detecting similarity of numeric data
have been also researched.

Duplicate detection with records consisting of multiple fields is more complicated. A com-
mon approach relies on training data to learn how to match the records. Techniques developed
with this approach are supervised and semisupervised machine learning, active-learning and
probabilistic matching. Other approaches include distance-based techniques, which roughly
consist in using a similarity function that do not need tuning (e.g., Jaccard), and rule-based
techniques, which uses rules developed by domain-experts to classify records. In addition,
some recent works use the temporal information of records to increase accuracy; this research
area is reviewed in more detail in section 2.3.

Focusing on efficiency, methods have been proposed to reduce the number of record com-

12

parisons needed during duplicate detection processes. These include blocking, clustering and
set joins. Methods to improve the efficiency of a single record comparison have been also
researched. Methods to improve the efficiency of duplicate detection in the context of records
with a single string field are examined closer in the next section.

The reader is referred to [7] for further references to the techniques cited in this section.

2.2 String similarity join
Given a similarity function, the process of finding all pairs in the same or different datasets
which have a similarity value higher than a given threshold is known as similarity join. Simi-
larity join is principally studied in its application on datasets composed by string data records
(single field or multiple fields tokenized and generalized). For this reason, the most common
similarity functions used in similarity join algorithms are character-based and token-based
(see section 2.1). Jiang et al. [8] provide a survey on a wide spectrum of string similarity join
algorithms and propose a classification schema.

Signature-based algorithms for computing similarity joins are the largest category and in-
clude the algorithms that we extend in this thesis. Signature-based algorithms are based on
the filter-verification framework, which consists in two steps. In the filter step (1), an ef-
fective filtering algorithm should prune large numbers of non-similar pairs and generate a
set of candidate-pairs that must be a superset of the final result. In the verification step (2),
the candidate pairs are verified against the chosen similarity metric to obtain the final re-
sult. Common filtering algorithms can be classified into four main branches: count filter-
ing (GRAMCOUNT, LISTMERGER), partition filtering (PARTENUM, PASSJOIN), neighbor-
hood filtering (FASTSS) and prefix filtering. The first algorithm to use prefix filtering was
SSJOIN [2], which focuses on enabling similarity joins inside DBMS. The technique is then
extended by the ALL-PAIRS algorithm [1], which provides a prefix filtering-based framework.
Xiao et al. [16] introduced PPJOIN, which applies positional filtering and suffix filtering prin-
ciples to further reduce the number of set joins operations needed when dealing with Jaccard,
overlap or cosine similarity functions. This is the algorithm we extend with temporal di-
mension in the thesis. Further extensions of the prefix filtering technique are EDJOIN [15],
QCHUNK [11], VCHUNG [14] and ADAPTJOIN [13].

Some non-signature algorithms that directly compute the final result of the join were also
devised. The most important are tree-based algorithms (M-TREE, TRIEJOIN) and disk algo-
rithms (LISTMERGER). In addition, algorithms based on LSH (locality-sensitive hashing) can
perform approximate similarity join. In this case, the result is not guaranteed to contain all the
similar pairs.

Other related research areas are top-k similarity join and similarity search. Top-k similarity
join refers to the problem of finding the top-k similarity pairs with the largest similarity in
a given dataset, while similarity search deals with finding the records whose similarity with
the inserted query exceeds a given threshold. The reader is referred to [8, pp. 627–630] for a
condensed survey on this topic and for further references to the algorithms cited in this section.

13

2.3 Temporal duplicate detection
Several temporal data models [10] and temporal knowledge discovery paradigms [12] have
been developed. However, these works are not focused on duplicate detection. Yakout et
al. [17] proposed behavior based linkage, which uses periodical behavior patterns of each
single entity for linking pairs of records. The behavior patterns of an entity are learned from
transaction logs recording the "actions" of the entity with respect to a given data source. The
patterns of two entities are then merged to check if a well recognized behavior (indicating that
the two entities are the same) emerges. Cohen and Strauss [5] and Cormode et al. [6] proposed
the notion of time decay in the context of data warehouses and streaming, with the goal of
reducing the effect of older tuples on data analysis. Cohen and Strauss introduced backward
decay, which measures time difference backward from the latest time, while Cormode et al.
devised forward decay, which measures time difference forward from a fixed landmark.

Li et al. [9] were the first to apply decay with the goal of duplicate detection enhancement.
They introduced the notion of agreement decay, i.e. the probability that two entities share a
common attribute in a given time interval, and disagreement decay, i.e. the probability that an
entity’s attribute will change after a given time interval. On these basis, their model assigns
different weights to the different attributes for similarity calculation. In addition, Li et al.
developed specific temporal clustering methods to further improve the process and showed
that their model has higher accuracy than models that do not use temporal information. Very
recently, Chiang et al. [3] proposed a temporal model based on the concept of entity mutation.
The model allows for a better prediction of attributes’ evolution, because it considers also the
possibility that a value could reappear over time. In addition, during the clustering phase, it
takes into account the past history of the different entities being formed. Lastly, in another
work, Chiang et al. [4] introduced the static first, dynamic second approach to cluster similar
records using a temporal model. In the thesis, we use the temporal model of Chiang et al. [3]
to calculate recurrence rates of attributes, and we adapt their entity mutation’s idea to be used
in a non-clustering scenario.

14

3 Preliminaries

This chapter gives the problem definition and defines temporal Jaccard and others similar-
ity functions that will be useful throughout the thesis. In addition, it defines the concept of
temporal model and describes our specific model choice.

3.1 Problem definition
We now define the problem of similarity join with temporal records and the notation that we
will use throughout the thesis.

Definition 1 (Temporal similarity join) Consider a set R of records. Each record x ∈ R
consist of a set of tokens x = {x1, x2, ...} drawn from a finite universe U = {u1, u2, ...} and
a timestamp x.t. Tokens in U all represent the same multi-valued attribute, which is the only
attribute of records. Consider a temporal similarity function simT (x, y) which takes as input
two records and returns a similarity value in [0, 1]. Consider threshold θ in [0, 1]. GivenR, θ,
simT (x, y) a temporal similarity join finds all pairs of records 〈x, y〉 with x, y ∈ R, such that
their similarities are greater or equal to the given threshold, i.e., simT (x, y) ≥ θ.

We want a record to be a set of tokens and not a bag. Therefore, since a token can occur
multiple times in the same record, we treat each subsequent occurrence of the same token as
a new token. This transformation enables to perform set operations (intersection, difference,
etc.) with records.

In addition, we denote by |x| the size of record x, i.e., the number of tokens in x; the same
notation applies to sets derived from operations on two or more records (e.g., |x ∪ y| denotes
the size of the union set between x and y). A global ordering O defines an ordering for all
elements of U . A record can be canonicalized by arranging its tokens according to a global
ordering O. For each distinct token u, we name document frequency the number of records
that contain u. We can use document frequency as global ordering, and we denote it by Odf .
Using Odf to canonicalize records is a heuristic for accelerating similarity joins [2]. However,
for the ease of illustration, in our examples we will use the alphabetical ordering Oa among
tokens.

Several traditional similarity functions can be transformed into temporal versions, and the
choice between one function or another is usually dependent on the application domain. In
this thesis we only consider the temporal version of the Jaccard similarity function. We name
this function "temporal Jaccard", and we denote it by JT (x, y). Thus, the specific similarity
join problem that we will solve deals with finding all pairs 〈x, y〉, such that JT (x, y) ≥ θ.
Temporal Jaccard is defined in the following section.

15

As stated in the above definition, all tokens refer to the same attribute of records. E.g.,
tokens could be titles of web pages visited by users or meals ordered by customers of a restau-
rant. In this thesis, for illustrating the temporal model and for the experimental evaluation we
use a set of records that refer to different scientific papers. Specifically, each record describes
the main author of a paper by its coauthors attribute. Then, we can tokenize the coauthors
attribute of a record and get a set of tokens of this type:

x = {”James”, ”Rodriguez”, ”Thomas”, ”Mueller”, ”John”, ”Smith”}

3.2 Similarity functions
For any two records, a similarity function returns the degree of similarity between them, com-
puted on the basis of an arbitrarily defined metric. The similarity degree is usually expressed
by a value in [0, 1], where 0 means records are completely different and 1 means they are
perfectly equal.

The thesis focuses on developing algorithms for computing similarity joins based on tem-
poral Jaccard similarity. However, in order to develop some theoretical concepts, in the fol-
lowing chapters we also employ two other similarity functions, namely overlap similarity and
Hamming distance. We describe these three similarity functions in this section.

Temporal Jaccard similarity is a variation of classical Jaccard similarity 1. What differ are
weights for intersection (agreement) and difference (disagreement) between records, which
are based on records’ temporal data.

Definition 2 (Temporal Jaccard) We denote temporal Jaccard by symbol JT . Weight for
agreement is denoted by wa, while weight for disagreement by wd. For two records x, y,
each described by a set of tokens, temporal Jaccard is defined by the following formula:

JT (x, y) =
wa|x ∩ y|

wa|x ∩ y|+ wd(|x ∪ y| − |x ∩ y|)
(3.1)

|x∩y| constitutes the number of tokens shared between x and y, while (|x∪y|−||x∩y|) is the
total number of different tokens between x and y. Weights for agreement and disagreement
are computed using labeled data (see section 3.3).

In general, agreement and disagreement weights help handling duplicate detection prob-
lems arising from ambiguity caused by between-entity temporal agreement and within-entity
temporal disagreement [3]. Between-entity temporal agreement arises when two records that
refer to different entities are very similar; e.g., two persons can have the same name. On the
other hand, within-entity temporal disagreement arises when two records that refer to the same
entity at different time points have different values. This happens because entities evolve over
time from a certain state to another; e.g., a person can change its address or its job over time.
The use of temporal information can enhance duplicate detection as shown by Li et al. [9] and

1Classical Jaccard similarity is usually denoted by J and is defined by the following formula: J(x, y) = |x∩y|
|x∪y| .

We will also use this notation in the thesis.

16

Chiang et al [3]. We cite the comprehensive definitions of between-entity temporal agreement
and within-entity temporal disagreement [3]:

Definition 3 (Between-entity temporal agreement) Between-entity temporal agreement (also
called "temporal agreement") arises when two records referring to two different entities have
identical or highly similar values on one attribute because over time one of the entities evolved
to have the same value in some attribute as that previously held by the other.

Definition 4 (Within-entity temporal disagreement) Within-entity temporal disagreement (also
called "temporal disagreement") arises when two records referring to the same entity have dis-
similar values on one attribute because over time their associated entity evolves its state on
that attribute.

The idea is to define a temporal model that, given records and their temporal information,
calculates different agreement and disagreement probabilities. Then, weights should be set
accordingly. If agreement probability is high, agreement between records should not be used
as evidence that records refer to the same entity; thus, agreement should be low weighted.
On the other hand, if disagreement probability is high, differences between records do not
imply that records refer to different entities; in this case, "penalty" for disagreement should be
reduced. The following example illustrates temporal Jaccard calculation.

Example 1 Consider two records x, y, each described by a set of tokens:

x = {A,B,C,D,E,G}
y = {A,B,D, F}

Records have temporal information (i.e., time point when they were up-to-date) denoted by xt
and yt:

xt = 2001

yt = 2005

In addition, consider a temporal model that defines functionswa(x, y) andwd(x, y). Given two
records and their temporal information, the functions return respectively agreement and dis-
agreement weights. Assume that for records above we get wa = 0.9 and wd = 0.1. The weight
for disagreement represents a "penalty" in similarity calculation; the higher the weight, the
lower is the similarity. In this example, we note that disagreement between entities shouldn’t
be taken as evidence that records refer to different entities.

Finally, temporal Jaccard similarity between x and y is computed as follows:

JT (x, y) =
0.9 · 3

0.9 · 3 + 0.1 · 4
≈ 0.87

On the other hand, the same two records give the following classical Jaccard similarity:

J(x, y) =
3

7
≈ 0.43

17

Overlap similarity is simply the size of the intersection of two records, while Hamming
distance is the size of the symmetric difference. Hamming distance does not return a value in
[0, 1] but a "distance" value between two records. Intuitively, when distance is great, similarity
is low; when distance is zero records are perfectly equal (similarity is one). The definitions of
overlap similarity and Hamming distance are the following:

Definition 5 (Overlap similarity) We denote overlap similarity by O. For two records x, y,
each described by a set of tokens, overlap similarity is defined by the following formula:

O(x, y) = |x ∩ y| (3.2)

Definition 6 (Hamming distance) We denote Hamming distance by H . For two records x, y,
each described by a set of tokens, Hamming distance is defined by the following formula:

H(x, y) = |x ∪ y| − |x ∩ y| (3.3)

Finally, we consider some reformulations of temporal Jaccard. In light of definitions 5 and
6 we can reformulate temporal Jaccard this way:

JT (x, y) =
waO(x, y)

waO(x, y) + wdH(x, y)
(3.4)

Another reformulation that will be useful throughout the thesis is the following:

JT (x, y) =
waO(x, y)

waO(x, y) + wd(|x|+ |y| − 2O(x, y))
(3.5)

3.3 Temporal model
A temporal model provides the basis to capture entity evolution and to apply it to calculate
agreement and disagreement weights. We can say that it defines between-entity temporal
agreement and within-entity temporal disagreement in terms that can be numerically calcu-
lated. Normally, a temporal model needs a set of labeled training data set to learn how entities
evolve. Then, after this training phase it generates some functions to calculate the different
weights.

When dealing with temporal Jaccard similarity, a temporal model must provide two func-
tions wa(x, y) and wd(x, y) that return respectively weights for agreement and disagreement
to be used in the calculation of JT (x, y).

Note that we choose a specific temporal model for illustration purpose. The solutions we
propose can be applied to compute temporal similarity joins irrespective of the specific tem-
poral model chosen.

The temporal we choose is a variation of the temporal model developed by Chiang et al. [3].
This model is based on the concepts of value recurrence and mutation function. It acts in three
step.

1. Learns recurrence rates of attributes from a labeled training data set.

18

2. Generates a mutation function.

3. Applies mutation during the clustering phase of the algorithm to calculate attributes
weights.

In our variation we keep the first step as the original. Since we do not execute clustering
and since the mutation function uses already formed clusters to compute its output, we use a
modified version of the mutation function.

We next describe our variation of the temporal model developed by Chiang et al. [3]. The
interested reader is referred to [3] for the original model.

3.3.1 Value recurrence
Let E be an entity and E.R a set of records associated with the entity. Consider multi-valued
attribute A. Given an attribute value u and a time interval ∆t, the recurrence rate rec(∆t) of
u indicates the probability of record x having attribute value u at time t+ ∆t, given that x has
the same value u at time t.

To calculate recurrence rates, we need the notions of recurrence hit and miss [3, p. 1179].

Definition 7 (∆t recurrence hit) A value u has a ∆t recurrence hit if u satisfies following
conditions: 1) value u occurs in a record associated with some entity E, and 2) u recurs ∆t
time units later in a record associated with the same entity E.

Definition 8 (∆t recurrence miss) A value u has a ∆t recurrence miss if u satisfies following
conditions: 1) value u occurs in a record associated with some entity E, and 2) u does not
recur in any record associated with E over the next ∆t time units.

rID eID main author co-authors year
r1 e1 Geoffrey Chu Aaron Harwood, Peter Stuckey 2009
r2 e1 Geoffrey Chu Peter Stuckey 2012
r3 e1 Geoffrey Chu M. de la Banda, Peter Stuckey 2012
r4 e1 Geoffrey Chu M. de la Banda, Christopher Mears, Peter Stuckey 2014
r5 e1 Geoffrey Chu Peter Stuckey 2015

Table 3.1: Records of the same main author.

We now describe the steps of the algorithm for learning recurrence rates. Consider a training
data set, where records are grouped according to their associated entities.

1. For each entity E with its records sorted in increasing temporal order, maintain the
occurrence history of E.tu for each value u that appears in at least one record associated
with E. Each occurrence history is an ordered list of timestamps sorted in increasing
temporal order, where each timestamp describes a point when a record associated with
entity E has a value u. E.g., if we consider the entity shown in table 3.1, the occurrence
history of value "M. de la Banda" would be {2012, 2014}.

19

2. For each occurrence history E.tu identify and fill in possible missing occurrences. For
each consecutive pair of timestamps ti, ti+1 inE.tu, if entityE does not have any records
with time stamp within (ti, ti+1), then we assume that entityE has value equal to u from
time ti to ti+1 and insert all possible timestamps ti < t < ti+1 into E.tu. E.g., consider
again the example in table 3.1. We notice that e1 worked with "M. de la Banda" in 2012
and 2014, and that e1 has no records in 2013. Therefore, it is possible that e1 worked
with "M. de la Banda" also in 2013, and we fill in the missing occurrence of "M. de la
Banda" in the occurrence history. The updated occurrence history of value "M. de la
Banda" would be {2012, 2013, 2014}.

3. Count and aggregate the numbers of hits h∆t and misses m∆t of ∆t-recurrences on
attributeA from the updated occurrence histories of all attribute values for each 0 < t ≤
tmax. This can be done by using a sliding window that iterates through each occurrence
history. Miss that fall on years beyond the latest timestamp of entity E must not be
counted.

4. Construct the recurrence function rec(∆t) based on the following equation:

rec(∆t) =

1 ∆t = 0

h∆t

h∆t +m∆t

1 < ∆t ≤ tmax

h∆tmax

h∆tmax +m∆tmax

∆t ≥ tmax

0 otherwise

Example 2 Consider the example in table 3.1, where we would like to learn the recurrence
function. Assume that we are currently learning hits and miss for value "M. de la Banda". As
seen in step 2 of the procedure, the occurrence history of value "M. de la Banda" (after filling
in the missing occurrences) is {2012, 2013, 2014}. Thus, for ∆t = 1 we get 2 hits and 1 miss,
and for ∆t = 2 we get 1 hit and 1 miss.

In addition, for ∆t = 1 we get the following hits and misses for the other attributes of entity
e1. "Peter Stuckey": 6 hits, 0 misses; "Aaron Harwood": 0 hits, 1 miss; "Christopher Mears":
0 hits, 1 miss. Therefore, we get in total 8 hits and 3 misses for ∆t = 1. Assume entity e1 is
the only entity in our training data set. Then rec(∆t = 1) = 8

8+3
≈ 0.73.

3.3.2 Weights calculation
Given two records x, y, with x.t ≤ y.t, and the recurrence function rec(∆t), we compute
the weights for agreement and disagreement as follows. First, we calculate value m in the
following way2:

m(x, y) = (1− rec(y.t− x.t))
√
|x|·|y| (3.6)

2m should not be confused with the mutation function M proposed in [3], although the concept is similar.

20

We now explain howm should be interpreted. Since the recurrence rate gives the probability
(given x.t < y.t) that a value that appears in x will appear also in y, then 1 − rec(y.t − x.t)
gives the probability that this value will not reappear. Thus, if we would like to compute the
probability that no value in xwill reappear after y.t−x.t time, we should raise 1−rec(y.t−x.t)
to a power of |x|. This can be interpreted as the probability that no value of record x will recur
in y. However, since we already know the size of y, we cannot ignore it in the calculation,
because it is obvious that when y has many values, the probability of recurrence is higher than
when y has only few values. E.g., assume that |x| = 4 and |y| = 1; then the probability of
recurrence should be less than in case |x| = 4 and |y| = 20. For this reason, we decide to use
the geometric mean to calculate the exponent of the formula. Finally, we can say that:

• When m is great, the probability that a value in x will recur in y is low.

• When m is small, it is likely that a value in x will recur in y.

Once the m value for two records has been computed, we need to apply it for calculating
the weights for agreement and disagreement. If the values in x are not likely to reappear in
y (i.e., m is great), then similar values between x and y come probably from between-entity
temporal agreement. As a result, a lower weight should be assigned to agreement.

On the other hand, if the values in x are not likely to reappear in y, the fact that x and
y do not have similar values should not be used as evidence that x and y refer to different
entities. Therefore, the penalty for disagreement between x and y should be reduced. Since in
temporal Jaccard formula disagreement is in the denominator part, to reduce the penalty we
need to assign a lower weight to disagreement.

After these consideration, we decide to use the following formulas for agreement and dis-
agreement weights in temporal Jaccard calculation:

wa = 1 + σ · (1−m) (3.7)

wd = 1− σ ·m (3.8)

These formulas are proposed in [3, p. 1182], but they do not apply them to temporal Jac-
card calculation. σ is a factor that controls the importance of m and could be changed. For
simplicity we will keep it fixed to 0.5 throughout the whole thesis. In addition, we use the
heuristic that weights for agreement are always higher than weights for disagreement. This
ensures that the similarity result will always be dominated by the common values between
the records rather than by the unequal values. The same heuristic was used also in [3] with a
similar purpose.

21

4 Solution

In this chapter, we illustrate the refinement of the prefix filtering, positional filtering, and suffix
filtering techniques. In particular, in section 4.1 we illustrate conversions of temporal Jaccard
into overlap and Hamming distance metrics. These conversions are essential for developing
prefix, positional, and suffix filtering techniques. In chapter 4.2 we describe our extension of
the prefix-filtering technique, mainly developed by Chaudhuri et al. [2] and Bayardo et al. [1],
in order to handle the temporal Jaccard metric. Then, chapters 43 and 4.4 present respectively
our extensions of the positional filtering and suffix filtering algorithms, originally devised by
Xiao et al. [16], in oder to handle the temporal Jaccard metric.

4.1 Conversions of similarity functions
A temporal similarity join computes the similarity of every pair of records and checks it against
a similarity constraint JT (x, y) ≥ θ. The conversion of this constraint into an equivalent
overlap constraint is the premise that enabled the development of prefix and positional filtering
techniques. In particular, positional filtering deals with finding the maximum possible overlap
value between two records after having seen only some parts of them. This maximum overlap
value would be of no help if it could not be checked against an equivalent temporal Jaccard
constraint. We will see in chapters 4.2 and 4.3 how this works in detail.

The conversion between a temporal Jaccard constraint and an overlap constraint is the fol-
lowing:

Proposition 1 Consider temporal Jaccard similarity function JT (x, y),, overlap similarity
function O(x, y), and two records x, y. Let θ ∈ [0, 1] be the threshold for similarity cal-
culation. Then,

JT (x, y) ≥ θ ⇐⇒ O(x, y) ≥ α =
θwd

(1− θ)wa + 2θwd
· (|x|+ |y|) (4.1)

Proof: By definition,

JT (x, y) =
O(x, y)wa

O(x, y)wa + (|x|+ |y| − 2O(x, y))wd

Thus,

JT (x, y) ≥ θ ⇐⇒ O(x, y)wa
O(x, y)wa + (|x|+ |y| − 2O(x, y))wd

≥ θ

22

Finally, if we rearrange the right-hand equation, we get

O(x, y)wa
O(x, y)wa + (|x|+ |y| − 2O(x, y))wd

≥ θ

⇐⇒ (wa − θwa + 2θwd) ·O(x, y) ≥ θwd(|x|+ |y|)

⇐⇒ O(x, y) ≥ θwd
(1− θ)wa + 2θwd

· (|x|+ |y|)

�

On the other hand, the suffix filtering technique needs to convert the constraint into an equiv-
alent Hamming distance one. The conversion between an overlap constraint and an Hamming
distance constraint is the following:

Proposition 2 Consider overlap similarity function O(x, y), Hamming distance H(x, y), and
two records x, y. Let α ≥ 0. Then,

O(x, y) ≥ α⇐⇒ H(x, y) ≤ |x|+ |y| − 2α (4.2)

Proof: By definition,

H(x, y) = |(x− y) ∪ (y − x)| = |x|+ |y| − 2O(x, y)

We can reformulate O(x, y) ≥ α in the following way:

O(x, y) ≥ α⇐⇒− 2O(x, y) ≤ −2α

⇐⇒ |x|+ |y| − 2O(x, y) ≤ |x|+ |y| − 2α

From the definition of H(x, y) it follows

H(x, y) ≤ |x|+ |y| − 2α

�

In addition, by the transitive property, we have the following conversion between a temporal
Jaccard constraint and an Hamming distance constraint:

Proposition 3
JT (x, y) ≥ θ ⇐⇒ H(x, y) ≤ |x|+ |y| − 2α (4.3)

with α = θwd

(1−θ)wa+2θwd
· (|x|+ |y|).

23

4.2 Prefix filtering
In this chapter, we first review the prefix filtering technique, then we refine it in order to han-
dle the temporal Jaccard similarity metric, and finally we present an algorithm that exploits
prefix filtering to perform temporal similarity joins. The algorithm presented here will then
be extended in chapters 4.3 and 4.4 with positional and suffix filtering. Prefix filtering was
mainly developed by Chaduri et al. [2] and Bayardo et al. [1]. In addition, this chapter is also
based on concepts illustrated in [16].

Existing prefix filtering-based methods for computing similarity joins with classical Jac-
card metric exploit the conversion of the Jaccard constraint into an overlap constraint1. We
have seen that a similar conversion can also be applied to the temporal Jaccard constraint
(see equation 4.1). In addition, existing methods are based on two other important concepts,
namely inverted indexes and prefix filtering principle.

The inverted index of a given token u simply keeps track of all records containing u. In real-
ity, the use of inverted indexes is sufficient for designing an algorithm that computes similarity
joins. An algorithm of this type must consist roughly of the following steps:

1. Build inverted indexes for all tokens in the record set.

2. Scan each record x.

3. Probe indexes using every token in x and obtain a (multi)set of candidate pairs2.

4. Merge the elements of this (multi)set together to get the actual overlap of x with every
other candidate record.

5. Extract the final result by removing records whose overlap is less than the overlap con-
straint α.

However, this approach presents two relevant drawbacks [16, p. 133]. First, some tokens
(known as "stop words") can generate very long inverted indexes, causing significant over-
head. Second, all pairs of records that share at least one token have to be stored during the
calculation; this is often a prohibitive task.

The prefix filtering principle reflects the following intuition: if two canonicalized records
have a total overlap value over a given threshold, then they must necessarily produce a min-
imum overlap value also when considering only a portion of their tokens. In particular, the
principle exploits the global ordering of tokens among records to augment the benefit of this
intuition. The prefix filtering principle is formalized in the following lemma originally devised
by Chaudhuri et al. [2] and then rephrased by Xiao et al. [16] in this way:

1The equation for converting a classical Jaccard similarity constraint into an overlap constraint is the following:

J(x, y) ≥ t⇐⇒ O(x, y) ≥ t

1 + t
· (|x|+ |y|)

For more information about prefix filtering with classical Jaccard see Xiao et al. [16, pp. 132–133].
2A candidate pair is a pair of records that couldn’t be pruned by the algorithm and constitutes a potential result.

The set of candidate pairs is a superset of final result of the similarity join.

24

Lemma 1 (Prefix filtering principle) Consider an ordering O of the token universe U and a
set of records, each with tokens sorted in the order of O. Let the p-prefix of a record x be the
first p tokens of x. IfO(x, y) ≥ α, then the b|x|−α+1c-prefix of x and the b|y|−α+1c-prefix
of y must share at least one token.

We can intuitively understand that when two records have no overlap between their prefixes,
then the remaining tokens (i.e., those in the suffixes) are not enough to get a total overlap that
is at least equal to α. Very roughly, the reason is that suffixes of both records have length equal
to α − 1 and, in addition, the global order among tokens prevent tokens in the suffix of one
record from overlapping with tokens in the prefix of the other3.

The prefix filtering principle suggests the creation of an algorithm that seeks all pairs of
records that share at least one token in their prefixes. All other pairs can be safely pruned.
Then, the remaining pairs (named "candidate pairs") must be verified, i.e., their actual overlap
must be computed and compared with the overlap constraint. The reason for this final step is
easily understood: lemma 1 states that prefix filtering is only a necessary (and not a sufficient)
condition for an overlap similarity greater than α between two records. In addition, we note
that the principle is well suited for being used in combination with inverted indexes. Actually,
the use of inverted indexes can speed up the search of candidate pairs.

In summary, an algorithm that combines prefix filtering and inverted indexes should consist
of the following general phases:

1. Indexing phase: build inverted indexes for tokens that appear in the prefix of each record.

2. Candidate generation phase: probe inverted indexes for tokens in the prefix of each
record; merge record identifiers returned to generate a set of candidate pairs.

3. Verification phase: evaluate the similarity of every candidate pair and prune those that
do not meet the threshold.

If we adopt the theoretical division of the flow of signature-based algorithms seen in sec-
tion 2.2, we can say that the first two phases together form the filtering step of the algorithm.
Throughout these phases, the initial set of all possible pairs (which has size n!

(n−2)!·2) is filtered
and reduced to only a subset of candidate pairs. This set of candidate pairs still contains all
pairs with a similarity greater than α.

Example 3 Consider the alphabetical order Oa of the token universe U and a set of four
records, each with tokens sorted in the order of Oa:

w = {A,B,C, F}
x = {C,D,E, F,G}
y = {A,C,D,E}
z = {E,G,H}

3See Chaudhuri et al. [2] for more details.

25

Assume that we want to compute a similarity join to get pairs withO(x, y) ≥ α = 3. Tokens in
the prefixes are indexed and underlined. Prefix lengths are calculated according to the prefix
filtering principle. After the indexing phase, we get the following inverted indexes:

A = {w, y}
B = {w}
C = {x, y}
D = {x}
E = {x, z}

Then, after probing inverted indexes and merging candidates (candidate generation phase), we
get the following set of candidate pairs:

S = {〈w, y〉, 〈x, y〉 〈x, z〉}

Since 〈w, y〉 and 〈x, z〉 have overlap equal to 2, they are pruned during the verification phase.
Thus, the only pair in the final result is 〈x, y〉.

Unfortunately, the algorithm outlined above is only suitable for computing similarity joins
using a fixed overlap similarity threshold. When the overlap threshold (α) is derived from a
fixed temporal Jaccard threshold (θ), we face a new issue, i.e., α is no more fixed but changes
frequently, depending on the length of different records being compared. Therefore, since the
prefix of a record depends on the size of α, it cannot be determined before hand. In order to
solve this issue, we need to find a prefix value which depends only on the particular record
being currently probed by the algorithm. We tackle this problem in the following chapter.

4.2.1 Prefix length
Lemma 2 is an extension of lemma 1, and it is the first step to define a prefix length that can be
used for computing temporal similarity joins with a temporal Jaccard threshold. It states the
new prefix length to be probed for a record; this length is more independent of other records
in the data set than prefix length in lemma 1, since for a given record x (y) only x’s size (y’s
size) is needed for the calculation, while prefix length in lemma 1 needs always also the size
of another record to be calculated. In addition, lemma 2 considers a fixed temporal Jaccard
threshold instead of a general overlap threshold.

Lemma 2 Consider an ordering O of the token universe U and a set of records, each with
tokens sorted in the order of O. Let JT (x, y) be the temporal Jaccard similarity function
defined in section 3.2. For any two records x, y, with |x| ≥ |y|, if JT (x, y) ≥ θ, then the prefix
of y of length ⌊

(1− θ)wa
(1− θ)wa + 2θwd

· |y|+ 1

⌋
(4.4)

26

and the prefix of x of length ⌊
(1− θ)wa

(1− θ)wa + θwd
· |x|+ 1

⌋
(4.5)

must share at least one token4.

Proof: The proof is divided into two parts. First, we need to prove that temporal Jaccard
similarity function increases monotonically when the overlap value increases and all other
values remain constant. Second, we calculate the general maximum possible temporal Jaccard
for variable prefix lengths, and we find out the minimum number of tokens that a record needs
in its prefix to avoid pruning false negatives.

We prove now that temporal Jaccard similarity function increases monotonically when the
overlap value increases. By definition, we know that temporal Jaccard function can be ex-
pressed this way (see section 3.2):

JT (x, y) =
waO(x, y)

waO(x, y) + wd(|x|+ |y| − 2O(x, y))

If O(x, y) is the only variable, the domain of the function given x and y values is 0 ≤
O(x, y) ≤ min(|x|, |y|). We also know that O(x, y) is always an integer, and thus, the general
domain of the function is IN. In addition, consider wa, wd > 0 and |x|, |y| ≥ 1. Since |x|
and |y| cannot be smaller than O(x, y), the denominator of the equation is never negative or 0.
After rearranging equation 4.6, we get

JT (x, y) =
waO(x, y)

(wa − 2wd)O(x, y) + wd(|x|+ |y|)

SinceO(x, y) is the only variable, wd(|x|+ |y|) is a constant part of the function, and we name
it c. In addition, we know that c > 0.

JT (x, y) =
waO(x, y)

(wa − 2wd)O(x, y) + c

We compute the derivative and we get

dJT (x, y)

dO(x, y)
=

wac

[(wa − 2wd)O(x, y) + c]2

Since both the numerator and the denominator are positive for every O(x, y) ≥ 0, we can
conclude that the derivative is always positive for every O(x, y) ≥ 0. Thus, JT (x, y) increases
monotonically for variable O(x, y) and constant wa, wd, |x|, |y|.

Consider now two records x, y, and, without loss of generality, |x| ≥ |y|. Consider an or-
deringO of the token universe U , and let the tokens of each record be sorted in the order ofO.

4Note the different denominators in the fraction of the equations.

27

Let xn be the token of record x at position n (consider positions starting from 1). The notation
xm ≺ yn means that token yn comes after token xm in the global order O. In addition, let i be
the prefix length of x, while j the prefix length of y. See figure 4.1 for a graphical description
of the situation. The goal is to find the minimum values of i and j that, for a given threshold
θ, guarantee the following: if x and y share no common token in their prefixes, then temporal
Jaccard similarity between x and y is less than θ. In order to prove this, we must distinguish
two cases.

y

x

yj

xi

|y| − j

|x| − i

suffixprefix

Figure 4.1: Prefix and suffix of records x and y.

Case 1: yj � xi. In this case, if there is no overlap between x’s prefix and y’s prefix, the
maximum possible overlap between the two whole records is min(|y| − j, |x|) = |y| − j. Ac-
cording to equation 4.6, we get the following maximum possible temporal Jaccard similarity
between x and y:

max JT (x, y) =
wa(|y| − j)

wa(|y| − j) + wd[|x|+ |y| − 2(|y| − j)]

Since |x| ≥ |y|, we can substitute |x| with |y| and get a value greater or equal to max JT (x, y).

max JT (x, y) ≤ wa(|y| − j)
wa(|y| − j) + 2wd · j

Now, we must ensure that this value is always less than threshold θ, i.e., the following condi-
tion must hold:

wa(|y| − j)
wa(|y| − j) + 2wd · j

< θ

If this condition holds, then also max JT (x, y) is always less then θ. We solve the equation for
j, and we get

(1− θ)wa
(1− θ)wa + 2θwd

· |y| < j

28

Thus, since prefix must be an integer, the prefix length for record y is⌊
(1− θ)wa

(1− θ)wa + 2θwd
· |y|
⌋

Case 2: xi ≺ yj . In this case, if there is no overlap between x’s prefix and y’s prefix, then
the maximum possible overlap between the two whole records is min(|y|, |x| − i). In any
case, the maximum overlap is less or equal to |x| − i. In addition, since no token in the prefix
of x will overlap with y, minimum possible Hamming distance is i. It can be easily shown that
JT (x, y) increases monotonically when H(x, y) decreases. Thus, from equation 3.4 we get

max JT (x, y) =
wa(|x| − i)

wa(|x| − i) + wd · i

Since JT must be less than θ, we have

wa(|x| − i)
wa(|x| − i) + wd · i

< θ

We solve the equation for i, and we get

(1− θ)wa
(1− θ)wa + θwd

· |x| < i

Thus, since prefix must be an integer, the prefix length for record x is⌊
(1− θ)wa

(1− θ)wa + θwd
· |x|

⌋
�

From lemma 2 we can now deduce a new prefix length to be probed and indexed. Since

(1− θ)wa
(1− θ)wa + θwd

≥ (1− θ)wa
(1− θ)wa + 2θwd

We deduce from lemma 2 that for a generic record xwe only need to index and probe its prefix
of length ⌊

(1− θ)wa
(1− θ)wa + θwd

· |x|+ 1

⌋
(4.6)

In addition, we note from lemma 2 that we could probe even a smaller prefix for the record
with smaller size between the two records considered in the lemma. In section 4.2.2 we show
how this property can be exploited to further enhance the performance of a prefix filtering-
based algorithm to compute temporal similarity joins.

29

Unfortunately, prefix length stated in equation 4.6 still present an issue, i.e., wa and wd are
not fixed values but also change according to the specific two records that are being compared.
The solution is to index and probe the maximum possible prefix length for every record. The
idea is formalized in the following corollary of lemma 2:

Corollary 1 Consider an ordering O of the token universe U and a set of records, each with
tokens sorted in the order of O. In addition, let JT (x, y) be the temporal Jaccard similarity
function defined in section 3.2 and θ be a fixed threshold for temporal similarity join. Let pi
be the pre-calculated factor equal to:

pi = max
wa,wd

(1− θ)wa
(1− θ)wa + 2θwd

(4.7)

And let pp be the pre-calculated factor equal to:

pp = max
wa,wd

(1− θ)wa
(1− θ)wa + θwd

(4.8)

Then, for any two records x, y, with |x| ≥ |y|, if JT (x, y) ≥ θ, the prefix of y of length

bpi · |y|+ 1c (4.9)

and the prefix of x of length
bpp · |x|+ 1c (4.10)

must share at least one token.

After this step we have finally defined a prefix length for a record being probed which only
depends on itself. This prefix length is shown in equation 4.10. Without such a data set–
independent prefix length, prefix filtering could not be applied.

Specifically, if we consider temporal model defined in section 3.3, we have the following
values for factors pi and pp:

pi = 1− θ (4.11)

And
pp =

1− θ
1− 0.5θ

(4.12)

Proof: We know from equations 3.7 and 3.8 that wa and wd have the following relation:

wa = wd + 0.5

Thus, we can reformulate equation 4.7 as

pi = max
wa

(1− θ)wa
(1− θ)wa + 2θ(wa + 0.5)

30

Now we consider the equation of pi a function with a single parameter wa, and we denote it
by f(wa). To get its maximum we compute the derivative of f(wa), and we get

df

dwa
=

−(1− θ) · θ
[wa(1 + θ)− θ]2

We note that the function is decreasing for θ ∈ [0, 1]. Thus, the maximum occurs when wa is
minimum, i.e. when wa = 1 (since wa ∈ [1, 1.5]).

The same procedure can be applied to calculate pp. We substitute wd with wa + 0.5 and
compute the derivative (we denote by g(wa) the function of pp).

dg

dwa
=
−(1− θ) · 0.5θ
(wa − 0.5θ)2

We note that also this function is decreasing for θ ∈ [0, 1], and thus, the maximum occurs
when wa = 1.

�

Example 4 Consider the alphabetical order Oa of the token universe U and a set R of four
records, each with tokens sorted in the order of Oa. Consider the temporal model defined in
section 3.3 and a temporal Jaccard similarity threshold of θ = 0.8. We get the following pp
factor:

pp =
1− 0.8

1− 0.4
=

1

3

Thus, prefix length for a record x ∈ R must be⌊
1

3
· |x|+ 1

⌋
Assume we have the following records inR:

w = {A,B,C, F}
x = {C,D,E, F,G}
y = {A,C,D,E}
z = {E,G,H}

Tokens in the prefixes are indexed and are underlined. We probe prefixes and get the following
set of candidate pairs:

S = {〈w, y〉, 〈x, y〉}

All other pairs are guaranteed to have a temporal Jaccard similarity JT < 0.8 and can be
safely pruned.

31

4.2.2 Indexing prefix
We have seen that lemma 2 states different prefix lengths for two records that are being com-
pared: a short prefix length for the record with smaller size, and a longer prefix length for the
record with larger size. This difference can be exploited to enhance the performance a prefix
filtering-based algorithm to compute temporal similarity joins.

The enhancement is based on a conceptual division of prefixes. We can say that each record
do not have one but two prefixes, namely an indexing prefix and a probing prefix. We define
the indexing prefix of a record as the set of tokens that need to be indexed, i.e., tokens for
which the record identifier has to be stored in the corresponding inverted index. We define the
probing prefix of a record as the prefix that need to be probed; tokens in this prefix are probed
by the algorithm but they are not necessarily indexed.

In addition, we sort records by their size and scan them in ascending size order. Then, every
record x that is scanned has a size larger or equal to the size of every other record y that have
been already scanned. This step enables the use of the new prefix length for building inverted
indexes. For a given record x, this is equal to

bpi · |x|+ 1c (4.13)

with pi defined in equation 4.7. In order to avoid confusion, in later sections prefix in equa-
tion 4.13 is named indexing prefix, while prefix in equation 4.10 is named probing prefix.

If we consider temporal model defined in section 3.3, then, for a given record x, length of
indexing prefix must be equal to

b(1− θ) · |x|+ 1c (4.14)

And length of probing prefix must be equal to⌊
1− θ

1− 0.5θ
· |x|+ 1

⌋
(4.15)

Example 5 Consider the set of records in example 4, as well as the same threshold θ = 0.8
for temporal Jaccard similarity join. Then, for a given record x in the set, indexing prefix
length must be

b0.2 · |x|+ 1c

Therefore, the following tokens marked with an apostrophe must be indexed:

z = {E ′, G,H}
w = {A′, B, C, F}
y = {A′, C,D,E}
x = {C ′, D′, E, F,G}

In addition, note that tokens in the probing prefixes of records are still underlined and that we
sorted records by their size.

32

4.2.3 Size filtering
Size filtering is a technique that can by itself avoid a large number of records comparisons. It
enables the direct pruning of all those pairs containing records that do not have a minimum
size relative to the size of the record being probed.

Size filtering is based on the following lemma:

Lemma 3 Consider temporal Jaccard similarity JT (x, y) and overlap similarity O(x, y) de-
fined in section 3.2. Then,

JT (x, y) ≥ θ =⇒ |y| ≥ θwd
(1− θ)wa + θwd

· |x| (4.16)

Proof: From equation, we know that

JT (x, y) ≥ θ ⇐⇒ O(x, y)wa
O(x, y)wa + (|x|+ |y| − 2O(x, y))wd

≥ θ

Since |y| ≥ O(x, y), the following relation holds:

|x| −O(x, y) ≤ |x| −O(x, y) + |y| −O(x, y)

Thus, also the following not strict inequality holds:

O(x, y)wa
O(x, y)wa + (|x| −O(x, y))wd

≥ O(x, y)wa
O(x, y)wa + (|x|+ |y| − 2O(x, y))wd

From equation we can infer the following relation:

O(x, y)wa
O(x, y)wa + (|x| −O(x, y))wd

≥ t

We solve for O(x, y) and we get

O(x, y) ≥ θwd
(1− θ)wa + θwd

· |x|

Finally, since |y| ≥ O(x, y), we have

|y| ≥ θwd
(1− θ)wa + θwd

· |x|

�

Concisely, lemma 3 states that we can directly prune a pair of records when the size of the
smaller record is not at least θwd

(1−θ)wa+θwd
-times the size of the larger record.

Example 6 Consider the set of records in example 4, as well as the same threshold θ = 0.8 for
temporal Jaccard similarity join. Assume that for the pair of records 〈x, z〉 we have wa = 1.1

33

and wd = 0.6. Then, record z needs the following minimum size to be compared to x:

|z| ≥ 0.6 · 0.8
1.1 · 0.2 + 0.6 · 0.8

· 5

I.e.,
|z| ≥ 3.42

Since the size of z is only 3, the pair 〈x, z〉 can safely be pruned.

4.2.4 Algorithm
We now present our algorithm TPREFIX which exploits the prefix filtering technique to per-
form temporal similarity joins with a temporal Jaccard threshold.

The algorithm takes as input a collection of canonicalized records already sorted in ascend-
ing order of their sizes, the threshold for the temporal Jaccard similarity, and the two precom-
puted factors pi and pp, which are necessary for computing the prefix lengths of records during
the algorithm. pi and pp are computed according to equations 4.7 and 4.8. For each record,
the algorithm sequentially scans its probing prefix (Line 6), and for each token in the probing
prefix, the corresponding inverted index is returned and iterated (Lines 7-8). For each record
in the inverted index, agreement and disagreement weights are computed at Lines 9-10, and
size filtering is performed at Line 11. If size filtering constraint is respected, the pair is then
verified against the temporal Jaccard constraint and, if it is the case, inserted into the result
set S (Lines 12-14). Finally, after the whole inverted index of current token u has been iter-
ated, the record is itself inserted in the inverted index of u (Line 19). However, note that this
happens only if current token u is in the indexing prefix of the record (Line 18).

Notice that inverted indexes are not built in a separate phase prior to the execution of the
algorithm. Instead, they are built on-the-fly during the probing phase. This is possible because
when a general record x is being scanned, the tokens in the prefixes of already scanned records
y are already in the inverted indexes. In addition, all records z that will be scanned after
record x will use inverted indexes that include x. Thus, no record will be excluded from
the comparison with each other record. This method has the advantage of reducing inverted
indexes lengths when compared to the building of all indexes at the beginning of the algorithm.

34

Algorithm 4.1 TPREFIX(R, θ, pi, pp)
Input: R: set of records sorted by ascending order of their size; each record has been canon-

icalized by a global order O.
θ: temporal Jaccard similarity threshold.
pi: precomputed factor equal to maxwa

(1−θ)wa

(1−θ)wa+2θ(wa+0.5)
.

pp: precomputed factor equal to maxwa,wd

(1−θ)wa

(1−θ)wa+θwd
.

Output: S: set of records pairs 〈x, y〉, with JT (x, y) ≥ θ.
1: S ← ∅;
2: Iu ← ∅ (∀u ∈ U); //initialize the inverted index for each token in the universe
3: for each x ∈ R do
4: iPrefix← bpi · |x|+ 1c; //indexing prefix
5: pPrefix← bpp · |x|+ 1c; //probing prefix
6: for i = 1 to pPrefix do
7: u← x[i];
8: for each y ∈ Iu such that 〈x, y〉 /∈ S do
9: wa ← CALCWAGR(x, y);

10: wd ← CALCWDIS(x, y);
11: if |y| ≥ θwd

(1−θ)wa+θwd
· |x| then

12: JT ← CALCSIM(x, y);
13: if JT ≥ θ then
14: insert 〈x, y〉 into S;
15: end if
16: end if
17: end for
18: if i ≤ iPrefix then
19: insert x into Iu;
20: end if
21: end for
22: end for

35

4.3 Positional filtering
In this chapter we first review the positional filtering technique developed by Xiao et al. [16],
and then we present our refinement in order to handle temporal Jaccard similarity.

4.3.1 Description
Positional filtering was originally devised by Xiao et al. [16]. They implemented the first algo-
rithm that uses this technique, namely PPJOIN, which combines prefix filtering and positional
filtering. They observed that, at that time, no algorithm fully exploited the global ordering of
tokens which is necessary for prefix filtering. In particular, they noticed that the position of a
token in a canonicalized record could be used to further reduce the candidate size.

Positional filtering is based on following lemma [16] (rephrased using notation presented in
section 3.1):

Lemma 4 (Positional filtering principle) Given an ordering O of the token universe U and
a set of records, each with tokens sorted in the order of O. Let u = xi, u partitions the
record into the left partition xl(u) = {x1..xi} and the right partition xr(u) = {xi+1..x|x|}. If
O(x, y) ≥ α, then for every token u ∈ x ∩ y, O(xl(u), yl(u)) + min(|xr(u)|, |yr(u)|) ≥ α.

Following example should make clear the rationale behind positional filtering:

Example 7 Consider the alphabetical order Oa of the token universe U , and two records x,
y, each with tokens sorted in the order of Oa:

x = {A,B,C,E}
y = {B,C,D,E}

Tokens in the prefixes are underlined. Assume that the constraint for similarity join is α = 4.
We note that the pair does not meet the constraint, sinceO(x, y) = 3. However, prefix filtering
selects 〈x, y〉 as a candidate pair, because x and y share a common token in their prefixes.

Now, with the help of the positional filtering principle, we can compute a maximum possible
overlap value between x and y. Indeed, if we look at the positions of the common token B we
get

maxO(x, y) = 1 + min(2, 3) = 3

And since this upper bound is smaller than α, we can safely prune pair 〈x, y〉 .

4.3.2 Algorithm
In this section we present our algorithm TPOSITIONAL, which performs temporal similarity
joins utilizing the positional filtering technique. The algorithm extends the TPREFIX algorithm
seen in section 4.2.4 with positional filtering as implemented in PPJOIN [16]. The changes with
respect to TPREFIX are the following:

36

• Inverted indexes (Lines 9 and 24):
TPREFIX stores in the inverted indexes of a given token only records and nothing else.
Instead, TPOSITIONAL stores also the position at which the token appears (Line 24).
I.e., an entry in an inverted index has the form (record id, position). E.g., if token u is
found at position 3 in record x, then entry (x, 3) is inserted into Iu. Storing also this
positional information is necessary to perform positional filtering (see next point).

• Positional filtering (Lines 4 and 13-20):
The core of positional filtering is in Lines 13-20. At Line 13, the overlap constraint α
is computed according to equation 4.1. Then the maximum possible overlap between x
and y is computed and stored in variable uBound. Notice that the already accumulated
overlap between x and the other records is stored in map A and is taken into account
in the uBound calculation (Lines 14-15). The keys of map A are record ids, while its
values have the form (record reference, int, int); for a given record y, the map stores in
A[y.id] following three values: a reference to record y, the overlap constraint α between
x and y, and the already accumulated overlap between x and y. Finally, at Line 16,
uBound is checked against the overlap constraint; if uBound is greater or equal to α, the
new accumulated overlap between x and y is put in map A, otherwise, the insertion of
value (y, 0, 0) prevents that y will be further considered as a candidate for x.

• Verification (Line 27):
Verification is now performed in a dedicated function VERIFY() for every record x. We
now describe how function VERIFY() works. We remark that the accumulated overlap
between the probing prefix of x and the indexing prefix of other records y is stored in
map A.

First, when the accumulated overlap is zero, pair 〈x, y〉 can be pruned (Line 1), since this
means that the threshold α is not met (see previous point). In addition, VERIFY() utilizes
the positional filtering principle to further reduce the workload. At Line 6 it compares
the last token in the probing prefix of x with the last token in the indexing prefix of y.
Then, only the suffix of the record with the smaller token needs to be intersected with the
entire other record. E.g., consider two records v and w. We denote by uv last token in
the prefix of v, and by uw the last token in the prefix of w. If uv ≺ uw, then the prefix of
v will not intersect with the suffix of w, because the prefix of v contains only tokens that
are smaller than uv, while the suffix of w contains only tokens that are larger than uv. In
addition, the first O tokens in w (where O denotes the overlap between the prefixes of v
and w and is originally stored in Line 4) can be also omitted from the calculation, since
at least O tokens have intersected with v’ prefix and therefore will not contribute to any
overlap with v’ suffix. This optimization is performed in Lines 6-17 of VERIFY().

37

Algorithm 4.2 TPOSITIONAL(R, θ, pi, pp)
Input: R: set of records sorted by ascending order of their size; each record has been canon-

icalized by a global order O.
θ: temporal Jaccard similarity threshold.
pi: precomputed factor equal to maxwa

(1−θ)wa

(1−θ)wa+2θ(wa+0.5)
.

pp: precomputed factor equal to maxwa,wd

(1−θ)wa

(1−θ)wa+θwd
.

Output: S: set of records pairs 〈x, y〉, with JT (x, y) ≥ θ.
1: S ← ∅;
2: Iu ← ∅ (∀u ∈ U); //initialize the inverted index for each token in the universe
3: for each x ∈ R do
4: A← empty map; key: (record id); value: (record reference, int, int);
5: iPrefix← bpi · |x|+ 1c; //indexing prefix
6: pPrefix← bpp · |x|+ 1c; //probing prefix
7: for i = 1 to pPrefix do
8: u← x[i];
9: for each (y, j) ∈ Iu do

10: wa ← CALCWAGR(x, y);
11: wd ← CALCWDIS(x, y);
12: if |y| ≥ θwd

(1−θ)wa+θwd
· |x| then

13: α←
⌈

θwd

(1−θ)wa+2θwd
· (|x|+ |y|)

⌉
;

14: O ← A[y.id].O; //get the overlap already accumulated with y
15: uBound← O + 1 + min(|x| − i, |y| − j);
16: if uBound ≥ α then
17: A← (y, α,O + 1);
18: else
19: A← (y, 0, 0);
20: end if
21: end if
22: end for
23: if i ≤ iPrefix then
24: insert (x, i) into Iu;
25: end if
26: end for
27: VERIFY(x, A, pPrefix, pi);
28: end for

38

Algorithm 4.3 VERIFY(x, A, lx, pi)
Input: x: a record inR.

A: map containing overlap of other records with x.
lx: length of probing prefix of x.
pi: precomputed factor equal to maxwa

(1−θ)wa

(1−θ)wa+2θ(wa+0.5)
.

1: for each y such that A[y.id].O > 0 do
2: ux ← the last token in the prefix of x;
3: uy ← the last token in the prefix of y;
4: O ← A[y.id].O; //get the overlap already accumulated with y
5: α← A[y.id].α; //get the stored alpha constraint
6: if ux ≺ uy then
7: uBound← O + |x| − lx;
8: if uBound ≥ α then
9: O ← O +

∣∣{x(lx+1)..x|x|} ∩ {y(O+1)..y|y|}
∣∣;

10: end if
11: else
12: ly ← bpi · |y|+ 1c; //length of indexing prefix of y
13: uBound← O + |y| − ly;
14: if uBound ≥ α then
15: O ← O +

∣∣{x(O+1)..x|x|} ∩ {y(ly+1)..y|y|}
∣∣;

16: end if
17: end if
18: if O ≥ α then
19: insert 〈x, y〉 into S;
20: end if
21: end for

39

4.4 Suffix filtering
Suffix filtering is a technique developed by Xiao et al. [16] and is used to further reduce the
candidate size in similarity joins. Xiao et al. [16] apply suffix filtering in their algorithm
PPJOIN+ as an additional filtering barrier after prefix and positional filtering. We now review
how suffix filtering works and how we integrated it in our algorithm TSUFFIX, which extends
TPOSITIONAL with suffix filtering.

Consider two records x, y, and assume they share a common token at position i of x and
at position j of y. We denote by xp the prefix of record x, i.e. tokens in x from position 1 to
position i, and by yp the prefix of record y, i.e. tokens in y from position 1 to position j. In
addition, we denote by xs the suffix of x, i.e. tokens in x from position (i+ 1) to position |x|,
and by ys the suffix of y, i.e. tokens in y from position (j + 1) to position |y|. Essentially,
suffix filtering works as follows:

1. A threshold Hamming distance value Hmax is computed. This value is the maximum
allowable Hamming distance between xs and ys that enables the pair to meet the overlap
threshold α.

2. A minimum possible Hamming distanceH between the suffixes of x and y is computed,
and if H > Hmax, pair 〈x, y〉 can be pruned.

Step 1 derives from the conversion of the overlap constraint α into an equivalent Hamming
distance constraint. We know that (equation 4.2)

O(x, y) ≥ α⇐⇒ H(x, y) ≤ |x|+ |y| − 2α

Since x and y share the same token at positions i and j, then

H(xp, yp) +H(xs, ys) = H(x, y)

In addition, assume that O is the overlap between xp and yp. Note that in algorithm 4.2 O can
be always retrieved, since we store the accumulated overlap between records (Line 17). Then,
the Hamming distance between the two prefixes is at least

H(xp, yp) ≥ i+ j − 2O

Now, we can derive the following Hamming distance constraint for xs and ys:

H(xs, ys) ≤ Hmax = |x|+ |y| − 2α− (i+ j − 2O) (4.17)

On the other hand, step 2 finds a lower bound (i.e., the minimum possible value) for Ham-
ming distance between xs and ys in the following way. Consider an arbitrary token u in xs.
We now divide xs into a left partition xl and a right partition xr. xl contains all the tokens in
x that precede u in the global ordering, while xr contains u and all the tokens that succeed u
in the global ordering. In addition, we also divide y into partitions yl and yr according to the

40

position of token u (although u could not occur in y). Then, we calculate a lower bound for
Hamming distance between xs and ys as follows:

H(xs, ys) ≥ abs(|xl| − |yl|) + abs(|xr| − |yr|) (4.18)

This relation holds because xl shares no common token with yr, and at the same time yl shares
no common token with xr.

Example 8 Consider the alphabetical order Oa of the token universe U , and two suffixes xs,
ys, each with tokens sorted in the order of Oa:

xs = {C,D,E,F, G,H, I}
ys = {A,B,C,D,G,H, I}

If we divide the suffixes by token F , we get the following partitions:

xl = {C,D,E}
yl = {A,B,C,D}

xr = {F,G,H, I}
yr = {G,H, I}

It is then clear that the lower bound for Hamming distance between xs and ys is

H = abs(3− 4) + abs(4− 3) = 2.

The token in xs can be drawn at the center of xs with a low cost for the algorithm, while the
position at which ys must be partitioned can be discovered using binary search. In addition,
suffix filtering can be implemented in a recursive way as shown in example 9.

Example 9 Consider example 8. If we further divide xl and yl by token D, we get the follow-
ing partitions:

xll = {C}
yll = {A,B,C}

xlr = {D,E}
ylr = {D}

xr = {F,G,H, I}
yr = {G,H, I}

Note that we denoted by xll (yll) the left partition of xl (yl) and by xlr (ylr) the right partition of
xl (yl). Since a general partition xa shares common tokens only with the respective partition
ya, we can calculate a new lower bound for Hamming distance, i.e.,

H = abs(1− 3) + abs(2− 1) + abs(4− 3) = 4.

Finally, we extend TPOSITIONAL with the SUFFIXFILTER() function originally presented
in [16] and we name the new algorithm TSUFFIX. We implement SUFFIXFILTER() function
exactly as shown in algorithm 3 in [16]. However, Xiao et al. [16] decided to perform suffix
filtering only once for each candidate pair on the first occasion that the pair is formed. Instead,
we decided to perform suffix filtering in the verification phase for each candidate pair that
survives positional filtering. The reason is that suffix filtering generates considerable overhead,
since it requires binary search, and we noticed that when executing it in the verification phase,

41

i.e., on less pairs than at the beginning, our algorithm performed better. In order to perform
suffix filtering in the verification phase, we need to insert the lines shown in algorithm 4
between Lines 5 and 6 of our function VERIFY() seen in section 4.3.2.

Algorithm 4.4 Insertion between Lines 5 and 6 of VERIFY()
1: Hmax ← |x|+ |y| − 2α− (i+ j − 2O);
2: H ← SUFFIXFILTER({xi+1..x|x|}, {yj+1..y|y|}, Hmax, 1);
3: if H > Hmax then
4: continue; //go to next iteration
5: end if

42

5 Experimental evaluation
This chapter describes our experimental setup and results. We evaluated our algorithms on
candidate size, running time, and scalability.

5.1 Experiment setup

5.1.1 Data set
For the evaluation we considered two subsets of the DBLP data set. DBLP is a publicly
available data set1, which contains bibliographic records of major computer science journals
and proceedings. A record in DBLP defines a real world published article or paper, and it
is usually described by attributes "title", "authors", and "year of publication". We ignored
attributes title and main author (we considered as the main author the author listed first in the
paper) and created a data set of records as in table 5.1. All records in example table 5.1 refer to
papers written by the same main author "Khaled Gaaloul". We can notice that some coauthors
appear in more than one records.

rID co-authors year
r1 François Charoy, Claude Godart 2006
r2 François Charoy, Andreas Schaad, Hannah Lee 2007
r3 Andreas Schaad, Ulrich Flegel, François Charoy 2008
r4 Ehtesham Zahoor, François Charoy, Claude Godart 2010
r5 Erik Proper, François Charoy 2011

Table 5.1: Records in the experimental data set.

We tokenized the coauthors of each record using white spaces and punctuations, and then
we built two different subsets of DBLP.

• DBLP-Large: This data set contains almost 0.6 millions of records and is used to eval-
uate filtering algorithms in detail. Given its size, it constitutes a considerable challenge
for temporal similarity join algorithms. However, evaluating the brute force algorithm
on this data set is almost an impossible task, since the algorithm would require a very
long running time.

• DBLP-Small: This data set is smaller and contains only about 5,000 records. It is
used to compare the filtering algorithms with the brute force algorithm. However, a

1http://dblp.uni-trier.de/

43

detailed evaluation of the performance of filtering algorithms on this data set is not
possible, since running times of these algorithms on this data set differ only by some
milliseconds.

Some important statistic about the data sets are listed in table 5.2.

Data set DBLP-Large DBLP-Small
Size 578,236 5,049
Avg. record length 9.2 9.7
Distinct tokens (|U|) 284,294 16,958

Table 5.2: Statistics about the experimental data sets.

5.1.2 Algorithms
We implemented and used the following algorithms in the experiments:

• TPREFIX: Our proposed algorithm that exploits prefix filtering for computing temporal
similarity joins.

• TPOSITIONAL: Our proposed algorithm that extends TPREFIX with positional filter-
ing.

• TSUFFIX: Our proposed algorithm that further extends TPOSITIONAL with suffix fil-
tering.

• BRUTEFORCE: An algorithm that computes temporal similarity join using the brute
force approach.

All the algorithms use the temporal model described in section 3.3 to calculate temporal
weights wa and wd. Recurrence rates for attribute co-authors were computed in advance ac-
cording to procedure described in section 3.3. For this purpose we used a labeled subset of
DBLP composed by 100 entities. We calculated recurrence rates for 1 ≤ ∆t ≤ 20. Results
are shown in table 5.3.

We preprocessed the records sorting them in the ascending order of their sizes, and we used
the document frequency ordering Odf as global ordering among tokens. Note that we did not
include preprocessing time in the results of our experiment. In addition, we set parameter
MAXDEPTH = 2, which is needed by function SUFFIXFILTER() in algorithm 4.4. This
parameter defines the total number of recursions performed by suffix filtering (see [16, p.
136] for more informations).

44

∆t rec(∆t)
1 0.31
2 0.22
3 0.17
4 0.13
5 0.10
6 0.09
7 0.06
8 0.05
9 0.03

10 0.02

∆t rec(∆t)
11 0.02
12 0.01
13 0.00
14 0.01
15 0.00
16 0.00
17 0.00
18 0.00
19 0.00
20 0.00

Table 5.3: Recurrence rates for attribute "co-authors".

5.1.3 Implementation
All algorithms were implemented as single-threaded Java programs (Java version: jre 1.8.0_45),
and we ran them inside of Eclipse (version 4.4.2). All experiments were carried out on a PC
machine with Windows 7 OS, a 2.27 GHz Intel CPU, and 4GB of RAM.

5.2 Candidate size
We measured the size of candidate pairs generated by the algorithms on the two data sets
with varying similarity thresholds from 0.8 to 0.95. Figure 5.1 shows the results on DBLP-
Small (including BRUTEFORCE), while figure 5.2 shows the results on DBLP-Large (without
BRUTEFORCE). In addition, the result set is also included in the graphs. The result set is
composed by all pairs with an actual similarity value higher than the threshold. Note that in
both figures the y-axis is in logarithmic scale.

From the results, we first notice that the size of the join result grows modestly when the
similarity decrease. Second, we observe that all filtering algorithms generates a lot less candi-
date pairs than what BRUTEFORCE does (figure 5.1). We also observe that the three filtering
algorithm generates more candidate pairs with the decrease of the similarity threshold. Specif-
ically, TPREFIX grows the fastest, followed by TPOSITIONAL, while TSUFFIX generates can-
didate sets that have sizes very close to the size of the result.

Differences among the three filtering algorithms are observed more in detail on DBLP-
Large. Here we can notice that TSUFFIX prunes a large number of pairs in addition to what
TPREFIX and TPOSITIONAL do.

45

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

0.8 0.85 0.9 0.95

C
a

n
d

id
a

te
 s

iz
e

 (
lo

g
a

ri
th

m
ic

)

Temporal Jaccard similarity

TPrefix

TPositional

TSuffix

Result

BruteForce

Figure 5.1: DBLP-Small, Candidate size.

1.E+05

1.E+06

1.E+07

1.E+08

0.8 0.85 0.9 0.95

C
a

n
d

id
a

te
 s

iz
e

 (
lo

g
a

ri
th

m
ic

)

Temporal Jaccard similarity

TPrefix

TPositional

TSuffix

Result

Figure 5.2: DBLP-Large, Candidate size.

46

5.3 Running time
Figures 5.3 and 5.4 show the running time of the algorithms on the two data sets. Note that,
as in the previous experiment, DBLP-Large does not include BRUTEFORCE.

On DBLP-Small (figure 5.3), we observe that the increase in performance of all three fil-
tering algorithms with respect to BRUTEFORCE is impressive. In particular, BRUTEFORCE

needs ca. 40 seconds to perform the join on this data set, while at threshold 0.8 all filtering
algorithms need only few milliseconds (between 38 and 46 milliseconds). This means approx-
imately a 1000x speed-up. Note that the running time of BRUTEFORCE does not change for
different similarity thresholds, since the algorithm always probe all the possible combinations
of pairs.

To observe the differences among the three filtering algorithms, we need to look at the
results on DBLP-Large (figure 5.4). Here we can make following observations. We first
observe that TSUFFIX is the most efficient algorithm at thresholds 0.8, 0.85, 0.9. However, at
threshold 0.95 TPREFIX has approximately the same running time as TSUFFIX, i.e., ca. 4.2
seconds.

We also observe a general trend related to this point: the speed-up of TSUFFIX against
TPREFIX decreases with the increase of the similarity threshold. In particular, at threshold
0.8 TSUFFIX can achieve 2.5x speed-up against TPREFIX, at threshold 0.85 it achieves 2.4x
speed-up, at threshold 0.9 only 1.6x, and, as we have seen, at threshold 0.95 it achieves no
speed-up. This could be due to the following reasons 2:

1. In TSUFFIX the overheads caused by positional and suffix filtering are greater with a
high similarity threshold. This is because with a high similarity threshold the result is
small and easy to compute also for TPREFIX.

2. With a low similarity threshold prefixes are longer, and, as a result, inverted lists grow
very quickly. Therefore, since inverted lists are longer, the prefix filtering method gener-
ates a large quantity of candidate pairs. This slows down the TPREFIX algorithm, since
prefix filtering is the only filtering mechanism of TPREFIX, while TSUFFIX can also
benefit from positional and suffix filtering.

Another observation on DBLP-Large experimental results is that TPOSITIONAL runs al-
ways a few seconds slower than TSUFFIX. Anyway, TPOSITIONAL achieves also a noticeable
speed-up against TPREFIX at thresholds 0.8, 0.85 and 0.9. On the other hand, at threshold
0.95 it needs ca. 5.6 seconds to perform the join and gets slower than TPREFIX.

Finally, we observe that also if TSUFFIX generates a considerable smaller number of candi-
date pairs than TPOSITIONAL (see section 5.2), the difference in running time between the two
is minor. This is because suffix filtering produces a notable overhead for pruning candidates,
in particular due to the use of binary search.

2These points were already made by Xiao et al. [16, p. 139] to explain the differences in running time between
non-temporal prefix filtering (ALL-PAIRS) and suffix filtering (PPJOIN) algorithms.

47

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0.8 0.85 0.9 0.95

T
im

e
 (

s
e

c
o

n
d

s
,
lo

g
a

ri
th

m
ic

)

Temporal Jaccard similarity

TPrefix

TPositional

TSuffix

BruteForce

Figure 5.3: DBLP-Small, Time.

0

10

20

30

40

50

60

70

80

90

100

0.8 0.85 0.9 0.95

T
im

e
 (

s
e

c
o

n
d

s
)

Temporal Jaccard similarity

TPrefix

TPositional

TSuffix

Figure 5.4: DBLP-Large, Time.

48

5.4 Scalability
In order to evaluate how the algorithms scale, we run the algorithms on growing subsets of
the DBLP-Large data set keeping threshold fixed to 0.8, and we measured running times.
Figure 5.5 shows the results. Measures start on a data set with 100,000 tokens, which is then
increased by 100,000 for any following measure.

We observe that the running time of the three filtering algorithms grows quadratically.
Among them, TSUFFIX is the one that has the slower growth rate. TPOSITIONAL has a growth
rate which is only a little higher than the one of TSUFFIX, while the difference with TPREFIX

is considerable.
In addition, table 5.4 shows the candidate sizes for different data set sizes and includes also

BRUTEFORCE3. Also in this experiment threshold is kept fixed to 0.8. Note that all values in
this table are in thousands, except column "Data set size".

Data set size BRUTEFORCE TPREFIX TPOSITIONAL TSUFFIX Result
100k 4 · 106 669 194 16 13
200k 20 · 106 2,381 665 42 34
300k 45 · 106 5,171 1,451 89 70
400k 80 · 106 9,676 2,693 153 121
500k 125 · 106 15,864 4,387 221 173

Table 5.4: Scalability, Candidate sizes, θ = 0.8. All values are in thousands, except column
"Data set size".

3The candidate size of BRUTEFORCE for a data set of size n can be computed with the following formula:
n!

(n−2)!·2 .

49

0

10

20

30

40

50

60

70

100k 200k 300k 400k 500k

T
im

e
 (

s
e

c
o

n
d

s
)

Data set size

TPrefix

TPositional

TSuffix

Figure 5.5: Scalability, Time, θ = 0.8.

50

6 Conclusions and future work

In this thesis, we refined prefix filtering, positional filtering, and suffix filtering techniques
to perform similarity joins utilizing also temporal information of records. Specifically, we
implemented three algorithms that perform temporal similarity joins with a temporal Jaccard
similarity threshold: TPREFIX is an algorithm that exploits prefix filtering for computing tem-
poral similarity joins; TPOSITIONAL, which extends TPREFIX with positional filtering; and
TSUFFIX, which further extends TPOSITIONAL with suffix filtering.

We showed that these algorithms improve considerably the performance of exact temporal
similarity joins with temporal Jaccard when compared to the brute force approach. In par-
ticular, TSUFFIX proved to be the fastest among the three in our experiments, followed by
TPOSITIONAL which proved to be only modestly slower.

Future work might address the implementation and test of the algorithms proposed in these
thesis with different temporal models, and thus, with different ranges of the temporal weights
wa and wd. The development of ad hoc temporal models to better exploit filtering techniques
might also represent a research field. Finally, other similarity metrics for computing the join
could be considered, as for instance temporal versions of overlap and cosine similarity func-
tions.

51

Bibliography

[1] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling Up All Pairs Simi-
larity Search. In Proceedings of the 16th International Conference on World Wide Web,
WWW ’07, pages 131–140, New York, NY, USA, 2007. ACM.

[2] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A Primitive Operator for Sim-
ilarity Joins in Data Cleaning. In Proceedings of the 22Nd International Conference on
Data Engineering, ICDE ’06, pages 5–, Washington, DC, USA, 2006. IEEE Computer
Society.

[3] Yueh-Hsuan Chiang, AnHai Doan, and Jeffrey F. Naughton. Modeling Entity Evolution
for Temporal Record Matching. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14, pages 1175–1186, New York, NY,
USA, 2014. ACM.

[4] Yueh-Hsuan Chiang, AnHai Doan, and Jeffrey F. Naughton. Tracking Entities in the Dy-
namic World: A Fast Algorithm for Matching Temporal Records. Proc. VLDB Endow.,
7(6):469–480, February 2014.

[5] Edith Cohen and Martin Strauss. Maintaining Time-decaying Stream Aggregates.
In Proceedings of the Twenty-second ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS ’03, pages 223–233, New York, NY, USA, 2003.
ACM.

[6] Graham Cormode, Vladislav Shkapenyuk, Divesh Srivastava, and Bojian Xu. Forward
Decay: A Practical Time Decay Model for Streaming Systems. In Proceedings of the
2009 IEEE International Conference on Data Engineering, ICDE ’09, pages 138–149,
Washington, DC, USA, 2009. IEEE Computer Society.

[7] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate
Record Detection: A Survey. IEEE Trans. on Knowl. and Data Eng., 19(1):1–16, Jan-
uary 2007.

[8] Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. String Similarity Joins: An
Experimental Evaluation. Proc. VLDB Endow., 7(8):625–636, April 2014.

[9] Pei Li, Xin Dong, Andrea Maurino, and Divesh Srivastava. Linking temporal records.
Proceedings of the VLDB Endowment, 4(11):956–967, 2011.

52

[10] Gultekin Ozsoyoglu and Richard Thomas Snodgrass. Temporal and Real-Time
Databases: A Survey. IEEE Trans. on Knowl. and Data Eng., 7(4):513–532, August
1995.

[11] Jianbin Qin, Wei Wang, Yifei Lu, Chuan Xiao, and Xuemin Lin. Efficient Exact Edit
Similarity Query Processing with the Asymmetric Signature Scheme. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD
’11, pages 1033–1044, New York, NY, USA, 2011. ACM.

[12] John F. Roddick and Myra Spiliopoulou. A Survey of Temporal Knowledge Discovery
Paradigms and Methods. IEEE Trans. on Knowl. and Data Eng., 14(4):750–767, July
2002.

[13] Jiannan Wang, Guoliang Li, and Jianhua Feng. Can We Beat the Prefix Filtering?: An
Adaptive Framework for Similarity Join and Search. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’12, pages 85–
96, New York, NY, USA, 2012. ACM.

[14] Wei Wang, Jianbin Qin, Xiao Chuan, Xuemin Lin, and Heng Tao Shen. VChunkJoin:
An Efficient Algorithm for Edit Similarity Joins. IEEE Trans. on Knowl. and Data Eng.,
25(8):1916–1929, August 2013.

[15] Chuan Xiao, Wei Wang, and Xuemin Lin. Ed-Join: An Efficient Algorithm for Similarity
Joins with Edit Distance Constraints. Proc. VLDB Endow., 1(1):933–944, August 2008.

[16] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient Similarity Joins for
Near Duplicate Detection. In Proceedings of the 17th International Conference on World
Wide Web, WWW ’08, pages 131–140, New York, NY, USA, 2008. ACM.

[17] Mohamed Yakout, Ahmed K. Elmagarmid, Hazem Elmeleegy, Mourad Ouzzani, and
Alan Qi. Behavior Based Record Linkage. Proc. VLDB Endow., 3(1-2):439–448,
September 2010.

53

