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1 Introduction+and+Task+
Temporal databases are databases expanded with a time dimension in order to qualify the 

entry in a relation with a specific timestamp. Each temporal relation has in addition to its 

entries two additional columns, a starting point and an endpoint during which the entry is 

valid. An example for a temporal database can be the following Figure 1, which shows a 

relation, where a salary is valid only between the starting point and the endpoint: 

Relation 1 

Salary Starting point Endpoint 

10’000  91 98 

20’000 93 99 

Figure 1: Example Relation 1 

To evaluate nontemporal functions, for the example in Figure 1 the average salary which is 

paid, over temporal data, it is necessary to determine constant intervals, during which the 

data is not altered. Figure 2 shows the constant intervals for the relation in Figure 1, over 

which the data is not altered: 

Constant Intervals over relation 1 

Total Salary Constant Intervals 

10’000 91 93  

30’000  93 98  

20’000  98 99 

Figure 2: Constant Intervals over Relation 1 

By increasing the amount of data in the database, the effort to compute these constant 

intervals can increase rapidly and a brute force approach can be very expensive by 

performing these computations on a single computer in a PostgreSQL-database. It can be a 

possibility, to extract these timestamps out of the PostgreSQL-database, build the constant 

intervals with a more fitted method than PostgreSQL and, after the successful generation of 

the necessary data, to reintegrate the data into the database.  
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Apache Hadoop is a framework of software, which supports distributed applications on large 

clusters of commodity hardware. One of the greatest strength of Hadoop is the fact, that it 

was build to handle a large amount of data without the necessity of using large-capacity 

computers.  

The main goal of this Vertiefung is, to make performance tests with Hadoop and PostgreSQL, 

in order to evaluate, in which cases Hadoop performs the computation of these constant 

intervals faster than PostgreSQL. Other goals are to learn the functionality and the 

possibilities of Hadoop and to make a connection between the Hadoop framework and 

PostgreSQL-databases.  

 +
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2 First+steps+with+Hadoop+

2.1 What is Hadoop 

Apache Hadoop is an open-source framework to perform distributed tasks, with a high data-

intensity. It’s based on a computational strategy called MapReduce. This means, that the task 

is divided in small fragments of work, which can be executed on every node in the cluster. As 

a second strong feature Hadoop provides the user with a distributed file system to handle the 

huge amount of data, which can be computed with Hadoop. The Hadoop file system as well 

as the MapReduce is designed to handle the failure of single nodes very generously, because 

in reality, thousands of independent computers can be summarized in a cluster and the failure 

handling is crucial for a framework like Hadoop.  

Main point of the Hadoop framework is the MapReduce algorithm. This algorithm takes the 

input data and generates out of it a set of data, a key and a value. An example could be 

objects in two-dimensional environment. The name of the object is the key, which is the 

identifier for the object, and the value could be its position in a two-dimensional plane, defined 

by an X- and a Y-coordinate. After the data is modified by the mapper, which means, 

categorized by a key, the data is shuffled between the nodes, in order to guarantee failure 

security. After the shuffling process, the values, now subscripted by the key, can be 

reassembled by the reducers. 

Hadoop was derived from some papers, which Google published in 2004. Until now some of 

the greatest companies in the world, like Deutsche Bank, Yahoo and Facebook, are using 

huge Hadoop clusters to perform their necessary computations. 

2.2 Installation 

To use Hadoop during this Vertiefung, Hadoop 1.0.4 was installed on a Ubuntu-Desktop 

12.10 distribution, which was running as a virtual machine. The latest Hadoop distribution can 

be found on the Apache Website (http://hadoop.apache.org/releases.html). After the 

installation, some configuration files have to been altered and adjusted to the specific system. 

For example in the conf/*-site.xml files, the configuration of Hadoop can be adjusted to the 

wishes of the user. Figure 3 shows some configuration detail, which are useful to add to the 

hadoop-site.xml file in order to prepare the Hadoop-environment. 
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Figure 3: Configuration of hadoop-site.xml 

The last property of the hadoop-site.xml (Figure 3) defines the slot-size of the hadoop-node. 

This property is very important to define the right size of reducers in a later stage. 

2.3 Writing a first MapReduce application 

In order to understand the MapReduce algorithm better, a Yahoo Tutorial 

(http://developer.yahoo.com/hadoop/tutorial/index.html) was followed to write the first 

MapReduce applications. A classical example to begin with MapReduce and Hadoop is the 

application WordCount. The goal of this application is to count the number of Words in a set 

of input files. As in the previous chapter explained, Hadoop uses the MapReduce algorithm to 

perform the computation, in order to distribute different tasks over the cluster. The structure of 

the program is shown in Figure 4. 

 
Figure 4: MapReduce algorithm of WordCount 

The mapper takes all the input files and emits for each word a set of value and key, where the 

key is the word itself (in order to identify it through all words) and the value is 1, because one 

instance of the word was found. After the map-procedure, the data is shuffled and rearranged 

by the reducer. As it is shown in Figure 4, for each key, the sum is increased and in the end 

emitted.  



Report Vertiefung March 2013 Thomas Brenner 

 

  5 

2.4 Running MapReduce on Hadoop 

After the MapReduce program is compiled, the Hadoop-environment is set-up properly and 

started, the necessary input data has to be loaded into the Hadoop File system (HDFS), so 

that it can be used by Hadoop. This task can be achieved by the following command shown in 

Figure 5.  

 
Figure 5: Command to put data into HDFS 

After the data is put into the HDFS, one can perform the Hadoop-Job. It’s important that 

Hadoop was build to perform on a huge amount of data, so the overhead for computations 

over a small size of data can produce a performance-time a lot bigger than the expected 

amount of time.  

2.5 Number of Mappers and Reducers 

The number of mappers is automatically set by the system and depends on factors like the 

amount of input data. While the exact number of mappers can not be manipulated manually, 

the maximum number can be set, in order to optimize the execution of a task. 

On the other hand, the performance of the task can be significantly improved by choosing the 

optimal number of reducers. There exists no exact rule, how many reducers have to be 

chosen. Nevertheless, there are some specifications in the system, which can be used to 

estimate a number of reducer. As a rule of thumb 1.75 * (nodes * tasks per node) can be a 

good choice for most problems, because with this amount of reducers, the faster nodes will 

finish their first round of reduces and launch a second round of reduces doing a much better 

job of load balancing. But not only the number of slots is decisive. Also the composition of the 

task can influence the performance of Hadoop.  

 +
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3 Connect+SQL+and+Hadoop+
Temporal data is stored and computed in a PostgreSQL-database. A very important step to 

compute the constant intervals in Hadoop is the connection between these two frameworks. 

This means, how can the data be extracted from PostgreSQL, be computed in Hadoop and 

afterwards reimported into the database. In this Vertiefung two different ways to accomplish 

this goal were elaborated. 

The first way, described in section 3.1. of this report, is to use a framework called Hive, which 

is also provided by Apache, and works on the top of Hadoop, giving the user the possibility to 

create a SQL-like database, in which queries can be run similar to PostgreSQL, but being 

processed in the background by Hadoop. The idea behind Hive is, to transform the whole 

database into a Hive-database and perform all the queries in this Hive-database.  

The second way is to extract the data out of the PostgreSQL-database, sort the data in Java 

using Hadoop, transform it in the desired format and give it back to PostgreSQL. The second 

way is described in section 3.2. of this report. 

3.1 Using Hive to compute Constant Intervals 

3.1.1 First+Steps+with+Hive+

As above mentioned, a way to process a PostgreSQL-query in Hadoop is the Hive-

framework. The necessary files can be downloaded on the Apache Website 

(http://hive.apache.org/releases.html). As a pre-condition to run Hive, PostgreSQL must be 

installed on the system, because Hive needs a SQL-database to work on it.   

The desired release of Hive has to be unzipped and then the folder must be placed in the 

Hadoop-Home directory. As a next step, the Hive-matrix must be installed properly into SQL. 

Some of these schemas can be found in the installed Hive folder or on the Apache Website: 

(http://svn.apache.org/viewvc/hive/trunk/metastore/scripts/upgrade/). 

After this schema is loaded into the specific SQL-database, the configuration-file, similar to 

the one for Hadoop, must be specified. The configuration of Hive can be found following the 

path: ./conf/hive-site.xml. In this configuration file, the authorization to the SQL-database must 

be specified, to allow Hive access to the matrix already installed in the database. The 

necessary XML-properties are shown in Figure 6.  

After the installation of Hive, the Hive-console can be accessed via the “./hive/bin/hive”-

command in the terminal. The functionality of the Hive-console is very similar to a 

corresponding console in MySQL or PostgreSQL. Hive supports a similar language called 

HiveQL.  

Hive works a lot like PostgreSQL. Because it should handle a large amount of data, even the 

time to load the data into the HDFS can be enormous. A big advantage of Hive is that the 

data has not to be loaded explicitly into the HDFS or a database, but can be used as an 

external text file. 
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Figure 6: Necessary Hive Properties 

3.1.2 First+tests+with+Hive+

In order to test the performance of Hive and Hadoop in the context of PostgreSQL, a first 

series of performance tests were made to compare a simple and a double Equijoin-Function 

between two relation in a small Hadoop-cluster compared to a PostgreSQL-database running 

on a single instance. These series had nothing to do with the main problem of calculating the 

constant intervals of temporal data, but was done to find out more about the performance of 

Hive and Hadoop used on general SQL-queries. The results are shown in Figure 7. 

The specifications of the computers during this test were the same, where the cluster 

consisted of 3 or 5 (can be seen in the column Cluster Nodes) of the same machines as the 

computer, where the results were calculated on PostgreSQL. The RAM had for each instance 

a size of 1.7 GB and one virtual core. The results can be seen in the table in Figure 7: 
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Cluster(
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5( 10( 15( 2x(Join( 20’000’000( 738s(

5( 10( 20( 2x(Join( 20’000’000( 772s(

5( 10( 40( 2x(Join( 20’000’000( 823s(

5( 10( 100( 2x(Join( 20’000’000( 974s(

( 5( 22( 1( Join( 40'000’000( 1921(s(

(780(s(
((
((

5( 22( 5( Join( 40'000’000( 1097(s(

5( 22( 10( Join( 40'000’000( 979(s(

5( 22( 15( Join( 40'000’000( 1055s(

5( 22( 40( Join( 40'000’000( 1070s(
( 5( 22( 1( 2x(Join( 40'000’000( 2380s( ((

1112(s(
((
((

5( 22( 5( 2x(Join( 40'000’000( 1478s(

5( 22( 15( 2x(Join( 40'000’000( 1446s(

5( 22( 40( 2x(Join( 40'000’000( 1539s(
Figure 7: Results of the test series 

The times were taken by the integrated time of the Hive-framework. 

The test was executed with varying numbers of reducers to find out, if the Hive-framework 

follows the same rules as an ordinary Hadoop-task, and by their variation better or worse 

results can be achieved.  

In Figure 8, where the data of the table in Figure 7 is summarized, the comparison between 

Hive and PostgreSQL can be seen more easily. To compare the results, always the time of 

the Hadoop task with the lowest computation time was taken. This means, the optimal 

number of reducers was taken. 
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Figure 8: Diagram of the results for the comparison of the Equijoin 

As it can be seen, for a simple equijoin-task, the performance of a PostgreSQL-database 

seems to be better than the corresponding Hive-task. Because both curves, Hive and 

PostgreSQL, grow in a similar way, the power of Hadoop and Hive does not come into 

account with this amount of data or with this function. In order to evaluate the performance of 

Hive in the context of temporal databases, in a next step the queries to generate constant 

intervals have been analysed. 

3.1.3 Constant+Intervals+with+Hive+

During the transcription from PL/pgSql to HiveQL some serious, game-changing problems 

occurred. Because Hive doesn’t support all the features PL/pgSql provides, some because 

they are not yet implemented, some because some problems cannot be processed efficiently 

by Hadoop and will therefore never be implemented. One of these features is the “aggregate 

Join”, another one is, that Hive cannot perform subqueries in the “where”-clause. Because the 

“aggregate Join” and a subquery in a “where”-clause are the centre point of the constant-

interval-query, Hive is not able to perform this specific query and is therefore not applicable 

for the computation of constant intervals. A computation of the constant interval problem 

using Hive is therefore not accomplishable.  

3.2 Sorting the Data with Hadoop 

3.2.1 The+Idea+

The expensive query in the context of temporal databases is the query, where the time-points 

are sorted in ascending order and formed into a relation, where the next time-point is linked 

with the preceding entry to build the constant interval. The idea behind the sorting is to extract 

the data out of the database, sort the timestamps in Hadoop, build the intervals with Java and 

reintegrate it in the database.  
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3.2.2 The+Implementation+

Hadoop has a feature, which allows an output-sorting for every reduce-task. The problem is, 

that if Hadoop itself distributes the data to the different reducers, every output-file is sorted 

locally, but not the overall data. To solve this problem it is necessary to add a Partitioner to 

the MapReduce algorithm, in order to tell Hadoop, which key has to be distributed to which 

reducer. After Hadoop is finished, the data is sorted overall and the different output files can 

be merged simply. In order to distribute the data to reduce task, it is to some point necessary 

to know the distribution of these time-points, because otherwise the reducers may not been 

fully used to capacity. 

In the evaluation discussed below, the timestamps were equally distributed between year 

1000 and year 1999. Therefore a simple algorithm to distribute the timestamps to each 

reducer was relatively easy to program. The code of the sorting-application can be seen in 

Appendix I.  

3.2.3 Results+of+the+SortingCApplication+

With the MapReduce-Sorting algorithm descriped in chapter 3.2.2, a series of tests were run, 

in order to verify, that sorting the timepoints with Java and Hadoop gives the user an 

immense advantage. In the following Figure 7 the results of this test-serie is shown. 

  



Report Vertiefung March 2013 Thomas Brenner 

 

  11 

Cluster 

Nodes Mappers Reducer Data sets 

Preparation 

Time 

Computation 

Time 

Post-editing 

time 

       5 16 1 50'000’000 

4 m 25 s 

11 m 16 s 

37 s 

5 16 5 50'000’000 11 m 14 s 

5 16 10 50'000’000 10 m 31 s 

5 16 20 50'000’000 10 m 51 s 

5 16 100 50'000’000 14 m 20 s 

         5 16 1 10'000’000 

1 m 13 

3 m 46 s 

29 s 

5 16 5 10'000’000 3 m 14 s 

5 16 10 10'000’000 3 m 14 s 

5 16 20 10'000’000 3 m 28 s 

5 16 100 10'000’000 7 m 11 s 

         5 16 1 1'000’000 

14 s 

1 m 14 s 

16 s 

5 16 5 1'000’000 1 m 17 s 

5 16 10 1'000’000 1 m 26 s 

5 16 20 1'000’000 1 m 39 s 

5 16 100 1'000’000 5 m 49 s 

         5 16 1 100’000 

7 s 

56 s 

29 s 

5 16 5 100’000 1 m 06 s 

5 16 10 100’000 1 m 19 s 

5 16 20 100’000 1 m 42 s 

5 16 100 100’000 5 m 23 s 

       5 16 1 20’000 
7 s 

47 s 
10 s 

5 16 5 20’000 1 m 02 s 

       5 16 1 1’500 
7 s 

46 s 
8 s 

5 16 5 1’500 59 s 

Figure 9: Table of the results 

The time was taken by the system timing tool. The specifications of the Hadoop cluster were 

the same as in test in chapter 3.1.2. Every data set consisted of a pair of two timestamps, a 

starting timestamp and an ending timestamp. That means in reality, 100 data sets mean 200 

timestamps, which have to be sorted and 199 constant intervals can be built, if all timestamps 

are unique. 

To evaluate, when Java and Hadoop become more efficient than PostgreSQL, the query to 

generate constant intervals was run on a single instance with PostgreSQL, which had the 

same specifications than one node in the Hadoop cluster in the previous test (Figure 9). 
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Number of data sets Number of timestamps Computation time in s 

100 200 0.41 s 

500 1’000 4.1 s 

1’500 3’000 41s 

5’000 10’000 6 m 38 s 

10’000 20’000 16 m 13 s 

20’000 40’000 32 m 24 s 

Figure 10: Table of the results in PostgreSQL 

Comparing the two tables in Figure 9 and Figure 10, it can be seen, that around 1’500 data 

sets, which means about 3’000 individual timestamps, Hadoop becomes equally efficient than 

PostgreSQL. Hadoop has an advantage when the number of data sets increases above this 

amount, because the computation time increases by far not as fast as the time in 

PostgreSQL. The computation time in Hadoop remains at about one minute until 

approximately 1’000’000 data sets, because Hadoop has an overhead of this amount of time, 

and the effective calculation time does not influence the overall time significantly below this 

limitation. 

3.3 Improving the query in PostgreSQL 

The query in PostgreSQL, which was used in the previous chapters, was not optimized fully 

according to the specific problem of calculation constant intervals. It was a brute-force 

approach to the problem. In the following chapter the results, achieved in Hadoop, will be 

compared to a modified query in PostgreSQL. The idea behind this new query is, that the 

table in PostgreSQL is sorted by the “order by” step in the query, and afterwards each row in 

the table is connected with the next entry in the table to form a constant interval. The function, 

implemented in PL/pgSql, is shown in Figure 11: 

 
Figure 11: Function to build constant intervals with cursor 

The results of a performance test with this function, and its comparison to Hadoop, can be 

seen in Figure 12. 
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Number(of(Timestamps(
Time(of(Cursor(Function(
in(minutes(

Corresponding(Time(in(
Hadoop(in(minutes(
including(preparation(
time(

(

( (10'000( 1(s( 1(m(04(s(
100'000( 4(s( 1(m(32(s(

1'000'000( 55(s( 1(m(44(s(
10'000'000( 13(m(33(s( 4(m(56(s(
50'000'000( 53(m(15(s( 15(m(33(s(

Figure 12: Table of the results in PostgreSQL with the cursor function compared to Hadoop 

As it can be seen, the new function performs a lot better than the brute-force query used in 

the previous chapters, due to the new architecture of the query/function and its optimization to 

the specific problem.  The more interesting question is, how the performance is compared to 

Hadoop. As it can be seen in Figure 12, up to approximately 1’000’000 single timestamps, the 

function is more efficient. In Figure 13 the tipping point can be approximately estimated: 

 
Figure 13: PostgreSQL (cursor-function) vs Hadoop 

PostgreSQL with this modified approach to calculate constant intervals is more efficient up to 

a specific amount of timestamps. This border of 1’000’000 timestamps is much higher than 

with the brute-force approach used in the previous chapters. But with an increasing amount of 

timestamps beyond this point, it still can not achieve the advantages in efficiency that Hadoop 

provides.  
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3.4 The comparison of the different approaches 

In the following Figure 14, the results of the brute-force approach, the cursor function and the 

approach with Hadoop are compared to each other. The fastest time to perform the 

computation for each row is bold:  

Number of Data sets Brute-force approach 

in PostgreSQL 

Cursor function in 

PostgreSQL 

Hadoop including 

Preparation time 

1’500 41 s 1 s 1 m 01 s 

20’000 16 m 13 s 1 s 1 m 04 s 

100’000 not computed 4 s 1 m 32 s 

1’000’000 not computed 55 s 1 m 44 s 

10’000’000 not computed 13 m 33 s 4 m 56 s 

50’000’000 not computed 53 m 15 s 15 m 33 s 

Figure 14: Comparison of the results 

3.5 The testing environments 

Because a Hadoop-cluster with multiple instances could not be set-up due to lacking of 

resources, for the tests in chapter 3 a Hadoop-cluster from Amazon Web Services 

(http://aws.amazon.com/) was rented. The cluster was already set-up with Hadoop 1.0.3 and 

could be used via a SSH-Connection. 
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4 Conclusion+
Hadoop is a very powerful framework, which can compute large amounts of data with relative 

simple technics. It is only needed to program 40 – 60 lines of code to write a powerful 

application. Even not so skilled programmers can use Hadoop to master the computation of 

data. Hadoop has some minor stumbling blocks during the installation process, but with a bit 

of experience in this environment, the framework is relatively simple and easy to use, where 

the benefit of Hadoop can be immense.  

Relating to the specific problem of computing the constant intervals of temporal data, Hadoop 

can be very advantageous. While the using of Hive was a dead end, because of the necessity 

to aggregate-join some relations, the extraction of the data out of PostgreSQL can be viewed 

as a success. The use of Hadoop may decrease the time of calculating constant intervals, 

even if the time to extract, transform and import the data again is added to the sorting time.  

The tests, conducted in chapter 3.2.3, showed, that a separate computation of constant 

intervals for temporal databases in Hadoop becomes more efficient at around 2’500 data sets 

(5’000 individual timestamps). The time to extract, alter and reintegrate the data in and out of 

a PostgreSQL-database is already included in this calculation. 

As it is shown in this Vertiefung, the application of an external method to compute constant 

intervals can be very useful above a certain number of data sets. Hadoop is a very powerful 

tool, which is able to perform the necessary computation and has been developed to handle a 

large amount of data. The only negative point is, that in order to use Hadoop properly, the 

data has to be partitioned correctly, which can be difficult sometimes, if the distribution of the 

data is not known. 

 +
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Appendix+I+
The following source code shows the Hadoop part of the application to sort the timestamps. 

Input is one ore more text files with one timestamps in each row, the output are a number of 

text files equal to the number of reducers chosen. 
public class LineIndexer { 
 
 //Define the number of reducers for your Hadoop-Job 
 public static int numberOfReducer = 1; 
 
 //The Mapper-class 

public static class LineIndexMapper extends MapReduceBase implements 
   Mapper<LongWritable, Text, Text, Text> { 
 
  private final static Text word = new Text(); 
  private final static Text location = new Text(); 
 
  public void map(LongWritable key, Text val, 
    OutputCollector<Text, Text> output, Reporter reporter) 
    throws IOException { 
 
   FileSplit fileSplit = (FileSplit) reporter.getInputSplit(); 
   String fileName = fileSplit.getPath().getName(); 
   location.set(fileName); 
 
   String line = val.toString(); 
   StringTokenizer itr = new StringTokenizer(line.toLowerCase()); 
   while (itr.hasMoreTokens()) { 
    word.set(itr.nextToken()); 
    output.collect(word, new Text(location)); 
   } 
  } 
 } 
 
 //The Reducer-class 

public static class LineIndexReducer extends MapReduceBase implements 
   Reducer<Text, Text, Text, Text> { 
 
  public void reduce(Text key, Iterator<Text> values, 
    OutputCollector<Text, Text> output, Reporter reporter) 
    throws IOException { 
   output.collect(key, null); 
  } 
 } 
 
 //The Partitioner-class 
 // For testing reasons, 1,5,10,20,100 numbers of reducers can be chosen 

public static class MyPartitioner implements Partitioner<Text, Text> { 
 
  public int getPartition(Text key, Text value, int numReduceTasks) { 
 
   int reduc = 0; 
 
   // For 10 reducers: 
   if (numberOfReducer == 10) { 
    char century = key.toString().charAt(1); 
    reduc = Character.getNumericValue(century); 
   } 
   // For 5 reducers: 
   else if (numberOfReducer == 5) { 
    char century = key.toString().charAt(1); 
    int century_int = Character.getNumericValue(century); 
    char decade = key.toString().charAt(2); 
    int decade_int = Character.getNumericValue(decade); 
    int temp = 10 * century_int + decade_int; 
    reduc = temp / 20; 
   } 
 
   // For 20 reducers: 
   else if (numberOfReducer == 20) { 
    char century = key.toString().charAt(1); 
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    int century_int = Character.getNumericValue(century); 
    char decade = key.toString().charAt(2); 
    int decade_int = Character.getNumericValue(decade); 
    int temp = 10 * century_int + decade_int; 
    reduc = temp / 5; 
   } 
 
   // For 100 reducers: 
   else if (numberOfReducer == 100) { 
    char century = key.toString().charAt(2); 
    reduc = Character.getNumericValue(century); 
   } 
 
   else { 
    reduc = 0; 
   } 
 
   return (reduc); 
  } 
 
  public void configure(JobConf arg0) { 
  } 
 } 
 
 /** 
  * The actual main() method for our program; this is the "driver" for the 
  * MapReduce job. 
  */ 
 public static void main(String[] args) { 
 
  JobClient client = new JobClient(); 
  JobConf conf = new JobConf(LineIndexer.class); 
 
  conf.setJobName("LineIndexer"); 
 
  conf.setOutputKeyClass(Text.class); 
  conf.setOutputValueClass(Text.class); 
 
  FileInputFormat.addInputPath(conf, new Path("input")); 
  FileOutputFormat.setOutputPath(conf, new Path("output")); 
 
  conf.setMapperClass(LineIndexMapper.class); 
  conf.setReducerClass(LineIndexReducer.class); 
  conf.setPartitionerClass(MyPartitioner.class); 
 
  conf.setNumReduceTasks(numberOfReducer); 
  client.setConf(conf); 
 
  try { 
   JobClient.runJob(conf); 
  } catch (Exception e) { 
   e.printStackTrace(); 
  } 
 
 } 
 
} 


