
Department of Informatics, University of Zürich

Report

Mapping of Queries with Statement

Modifiers to Queries with Temporal

Primitives

Oliver Leumann
Email: oliver.leumann@uzh.ch

April 21, 2013
supervised by Prof. Dr. M. Böhlen and A. Dignös

Contents

1 Introduction 3

2 Background 6

2.1 Reduction Rules . 6
2.2 The Alignment Operator . 7
2.3 The Normalization Operator . 8

3 The SQL mapping 10

3.1 Implementation of the Temporal Primitives 10
3.2 The Mapping of Queries with Statement Modifiers to Queries with Temporal

Primitives . 11

4 Conclusion 15

2

1 Introduction

In this self-study project, the main goal is to define a SQL mapping that translates queries
with statement modifiers to queries with temporal primitives over algebra expressions. The
comprehension of the temporal primitives and the reduction of temporal operators [1] are
important prerequisites before we can find a solution for the SQL mapping. Also the use of
statement modifiers [2], as well as having a look on the PostgreSQL parser [3], are necessary
to get an idea how the mapping could work.

First of all, we will start with a relatively simple example of a nontemporal query on a
sample database. Then, a second example will be proposed which expands the database, so
we can run a temporal counterpart of the first query. After that, the second chapter shows the
knowledge we need, including examples that build on the temporal query. Having the needed
background, the third chapter will then examine the SQL mapping.

Example 1. Consider employees with each of them working at a certain department. For
each department, there is one manager responsible for the employees. The employees are
recorded in relation E, where Name is the name of an employee and Dept the department the
employee is working at. Relation M records the managers, where Mgr is a manager’s name
and Dept the department he’s responsible for. The relations of our first example are shown in
Figure 1.1(a).

If we want to determine the number of employees per manager, we would formulate some-
thing like the following SQL-query Q:

SELECT Mgr, count(*)
FROM M JOIN E ON M.Dept = E.Dept
GROUP BY Mgr

The result of the query Q is shown in Figure 1.1(b). Since the employees Amber and
Chelsea (e1 and e3) work at department one and Billy (e2) at department two, we get in
our result-relation one tuple that records that Xavier supervises two employees (z1) whereas
Yvonne has only one employee (z2).

E

Name Dept

e1 Amber 1

e2 Billy 2

e3 Chelsea 1

M

Mgr Dept

m1 Xavier 1

m2 Yvonne 2

(a) Nontemporal Relations

Z

Mgr count

z1 Xavier 2

z2 Yvonne 1

(b) Result

Figure 1.1: Nontemporal example.

3

Example 2. In Figure 1.2(a) we have almost the same example as before. The only differ-
ence is that we extend the previous relations from the first example, so that we are able to run
temporal queries on them.

Again we have the two relations consisting of employees E and managers M. But this time,
the data is timestamped with intervals, represented by the attribute T . Keep in mind that the
intervals are represented as a pair [Ts, Te), where the start-point Ts is inclusive and end-point
Te is exclusive. For instance, e3 records that Chelsea works from the beginning of July until the
end of November. Furthermore the new tuple e4 is added to the employee-relation E, which
records that Amber changes her department during the year. She changes the department at
the end of August and works at department two from September until December.

E

Name Dept T

e1 Amber 1 [2012/01, 2012/09)
e2 Billy 2 [2012/01, 2013/01)
e3 Chelsea 1 [2012/07, 2012/12)
e4 Amber 2 [2012/09, 2013/01)

M

Mgr Dept T

m1 Xavier 1 [2012/01, 2013/01)
m2 Yvonne 2 [2012/01, 2013/01)

(a) Temporal Relations

2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12

M
m1 = (Xavier, 1)

m2 = (Yvonne, 2)

E

e1 = (Amber, 1)

e2 = (Billy, 2)

e3 = (Chelsea, 1)

e4 = (Amber, 2)

(b) Graphical Representation

Figure 1.2: Temporal Example.

In contrast to query Q we are now interested in a temporal query and its result with respect
to the sequenced semantics. That means we want to determine the number of employees per
manager at each point in time. In order to do this, we prepend the statement modifier for
sequenced queries SEQ VT to the previous query Q and get the new temporal sql-query QT :

SEQ VT
SELECT Mgr, count(*)
FROM M JOIN E ON M.Dept = E.Dept
GROUP BY Mgr

Figure 1.2(b) shows a graphical representation of the temporal relations, where the tuples
are drawn as horizontal lines according to their timestamps. With the help of this graphical

4

representation it is quite easy to see what the result of the query QT should be. For instance,
Xavier (m1) has one employee (Amber: e1) from January until June, two employees (Amber:
e1, Chelsea: e3) from July until August and again only one employee (Chelsea: e3) from
September until November. The result of the query QT is shown in Figure 1.3.

Z

Mgr count T

z1 Xavier 1 [2012/01, 2012/07)
z2 Xavier 2 [2012/07, 2012/09)
z3 Xavier 1 [2012/09, 2012/12)
z4 Yvonne 1 [2012/01, 2012/09)
z5 Yvonne 2 [2012/09, 2013/01)

Figure 1.3: Result of the Temporal Query QT .

5

2 Background

This section explains in what way the reduction rules are using temporal primitives to reduce
the operators of a temporal algebra to their nontemporal counterparts. Some detailed examples
will thereby help to understand the functional principle of the temporal primitives.

2.1 Reduction Rules

The relational algebra representation of the query Q from the first example in the chapter
before would look as follows:

Qra = Mgrϑcount(∗)(M ��M.Dept=E.Dept E)

Similarly, the query QT from the second example, can be represented as a relational algebra
expression. We just have to mark the join- and the aggregation-operator as temporal operators
ϑT and ��T :

QT
ra = MgrϑT

count(∗)(M ��TM.Dept=E.Dept E)

Note that in order to get the result of the query, we first have to compute a temporal inner
join and then perform a temporal aggregation. The reduction rules introduced by Dignös
et al. [1] will help us to transform the temporal algebra expression QT

ra to its nontemporal
representation. The rules are shown here in table 2.1.

We split the query QT
ra up to the temporal inner join and the temporal aggregation and apply

the corresponding reduction rules at the temporal operators:

X ← α((MΦM.Dept=E.DeptE) ��M.Dept=E.Dept∧M.T=E.T (EΦM.Dept=E.DeptM))

Mgr,Tϑcount(∗)(NMgr(X;X))

As we have a look at the rules for the inner join and the aggregation, we see that there are
several operators which we don’t know from the traditional relational algebra. α(r) is called
the absorb operator and is an operator that eliminates temporal duplicates. The alignment
operator rΦθs as well as the normalization operator NA(r; r) are the previously mentioned
temporal primitives, that adjust the timestamps of the tuples of our argument relations.

6

Operator Reduction

Selection σT
θ (r) = σθ(r)

Projection πT
B(r) = πB,T (NB(r; r))

Aggregation BϑT
F (r) = B,TϑF (NA(r; r))

Difference r −T s = NA(r; s)−NA(s; r)

Union r ∪T s = NA(r; s) ∪NA(s; r)

Intersection r ∩T s = NA(r; s) ∩NA(s; r)

Cart. Prod. r ×T
θ s = α((rΦtrues)×r.T=s.T (sΦtruer))

Inner Join r ��Tθ s = α((rΦθs) ��θ∧r.T=s.T (sΦθr))

Left O. Join r ��Tθ s = α((rΦθs) ��θ∧r.T=s.T (sΦθr))

Right O. Join r �� T
θ s = α((rΦθs) �� θ∧r.T=s.T (sΦθr))

Full O. Join r �� T
θ s = α((rΦθs) �� θ∧r.T=s.T (sΦθr))

Anti Join r �Tθ s = (rΦθs) �θ∧r.T=s.T (sΦθr)

Table 2.1: Reduction Rules

2.2 The Alignment Operator

The temporal alignment operator rΦθs occurs two times in our example and at its first occur-
rence it has the form MΦM.Dept=E.DeptE. This means that the manager-relation M will be
aligned with respect to the employee-relation E whereby the condition M.Dept = E.Dept
has to be satisfied. In detail, it says that we get the aligned result tuples as follows: We search
for each tuple in M the tuple(s) in E with the same department and for each tuple in E that
fulfills the condition, we get a result-tuple with the nontemporal attributes of the tuple of M
and the time interval that results from the intersection of the M-tuple with the particular E-
tuple. Also for each gap in the interval of a M-tuple that is not covered by any E-tuple, we
get a result-tuple.

Example 3. Figure 2.1(a) shows the alignment of M with respect to E using the theta-
condition θ ≡ (M.Dept = E.Dept). For instance, the first result tuple, (Xavier, 1, [2012/1,
2012/9)), is derived from m1 and e1 over their common interval, and the second result tuple,
(Xavier, 1, [2012/9,2012/12)), from m1 and e2 over their common interval. The third result
tuple matches an interval that is a sub-interval of m1 which is not covered by any tuple in E.

Simultaneously, the alignment operator will also work the same way for its second occur-
rence (EΦM.Dept=E.DeptM). Only this time, E will be aligned with respect to M, but notice
that the condition M.Dept = E.Dept is still the same. The second alignment operation with
its result relation �E is shown in figure 2.1(b).

Example 4. After the alignment of the relations M and E, let us perform the inner join on
the aligned argument relations �M and �E. As we can see from the reduction rule for inner joins
in table 2.1, α((rΦθs) ��θ∧r.T=s.T (sΦθr)) , we have have to perform the join not only with
respect to the theta-condition θ ≡ (M.Dept = E.Dept), but also with respect to the fact that
the interval timestamps from �M and �E should be equal, i.e. �M.T = �M.T . The result relation

7

2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12

M

m1 = (Xavier, 1)

m2 = (Yvonne, 2)

E

e1 = (Amber, 1)

e2 = (Billy, 2)

e3 = (Chelsea, 1)

e4 = (Amber, 2)

�M

�m1 = (Xavier, 1)

�m2 = (Xavier, 1)

�m3 = (Xavier, 1)

�m4 = (Y vonne, 2)

�m5 = (Y vonne, 2)

(a) Alignment of M

2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12

E

e1 = (Amber, 1)

e2 = (Billy, 2)

e3 = (Chelsea, 1)

e4 = (Amber, 2)

M

m1 = (Xavier, 1)

m2 = (Yvonne, 2)

�E

�e1 = (Amber, 1)

�e2 = (Billy, 2)

�e3 = (Chelsea, 1)

�e4 = (Amber, 2)

(b) Alignment of E

Figure 2.1: Temporal Alignments

X after this inner join is shown graphically in Figure 2.2.

The absorb operator α(r), which has to be performed as last of the reduction of temporal
inner joins, helps us to remove temporal duplicates. If in the argument relation exist value-
equivalent tuples, such that one of those timestamp intervals is a subset of the other tuple’s
interval, this temporal duplicate would be removed. In our previously computed relation X we
have no such temporal duplicates. But hypothetically, if there would exist a fifth tuple x5 with
the values (Y vonne,Amber, 2) over the interval [2012/10, 2012/12), this tuple x5 would be
removed by the absorb operator since it is contained in the value-equivalent tuple x4.

2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12

X

x1 = (Xavier, Amber, 1)

x2 = (Xavier, Chelsea, 1)

x3 = (Y vonne,Billy, 2)

x4 = (Y vonne,Amber, 2)

Figure 2.2: Result after Inner Join

2.3 The Normalization Operator

The temporal normalization operator NA(r; s) is the next operator that has to be applied in our
example and then would look like NMgr(X;X). So the relation X, that is created after the
inner join, will be normalized with respect to itself, X, and the Attribute Mgr. That means
that we get the normalized result tuples if we adjust the intervals of each tuple in X by the
start and end point of all tuples of X in the same group. In our example, X is grouped by the
attribute Mgr into two groups, one with Mgr = Xavier and the other with Mgr = Y vonne.

8

And again, similarly to the alignment operator, each gap in the interval of a X-tuple that is not
covered by any X-tuple in the same group, we get a result-tuple as well.

Example 5. Figure 2.3 shows the normalization of X and the attribute Mgr is used for
grouping. For instance, the first result tuple, (Xavier, Amber, [2012/1,2012/7)), and the the
second result tuple, (Xavier, Amber, [2012/7,2012/9)) are derived from x1 which is splitted by
the start point of x3. The third result tuple, (Xavier, Chelsea, [2012/7,2012/9)), and the fourth
result tuple, (Xavier, Chelsea, [2012/9,2012/12)) are derived from x3 which is splitted by the
end point of x1.

2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12

Y

y1 = (Xavier, Amber)

y2 = (Xavier, Amber)

y3 = (Xavier, Chelsea)

y4 = (Xavier, Chelsea)

y5 = (Y vonne,Billy)

y6 = (Y vonne,Billy)

y7 = (Y vonne,Amber)

Figure 2.3: Temporal Normalization

After that we have accomplished the normalization, we can perform the aggregation over
the previously gained relation Y. Figure 2.4 shows the result of Mgr,Tϑcount(∗)(Y) which is
equal to the assumed result of the query QT = MgrϑT

count(∗)(M ��TM.Dept=E.Dept E) shown in
figure 1.3:

2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12

Z

z1 = (Xavier, 1)

z2 = (Xavier, 2)

z3 = (Xavier, 1)

z4 = (Y vonne, 1)

z5 = (Y vonne, 2)

Figure 2.4: Aggregation

9

3 The SQL mapping

3.1 Implementation of the Temporal Primitives

Dignös et al. [1] have described the implementation of the temporal primitives in the kernel
of the PostgreSQL database system. A very straightforward approach has been used so that,
if we know how to write the relational algebra expression of a desired query, we won’t have
any problems to formulate the query in SQL. Table 3.1 shows the SQL syntax for the tem-
poral primitives. Instead of the symbol for the temporal alignment operator Φ, we use the
keyword ALIGN and the theta-condition θ has to be written by starting with the keyword ON
followed by the actual condition. In order to use the normalization operator N , we have to
write NORMALIZE and we can define the group-attribute by writing it inside of the brackets
of USING().

MΦM.Dept=E.DeptE NMgr(X;X)

SELECT * SELECT *

FROM (M ALIGN E ON M.Dept = E.Dept) m FROM (X NORMALIZE X USING(Mgr)) Y

Table 3.1: Implementation of Temporal Primitives

The complete formulation of our query QT
ra as SQL-query with temporal primitives would

approximately look like:

WITH X AS (
SELECT ABSORB Mgr, Name, M.Ts, M.Te
FROM (M ALIGN E ON M.Dept = E.Dept) M

JOIN
(E ALIGN M ON M.Dept = E.Dept) E
ON M.Dept = E.Dept AND M.Ts=E.Ts AND M.Te=E.Te

)
SELECT Mgr, count(*), Ts, Te
FROM (X NORMALIZE X USING(Mgr)) Y
GROUP BY Mgr, Ts, Te;

10

3.2 The Mapping of Queries with Statement Modifiers

to Queries with Temporal Primitives

So up to now, we know the reduction-rules, the temporal primitives, the relational algebra
representations as well as the PostgreSQL representations of the primitives and how they work.
What we don’t know and what the actual problem is, is how we can achieve to map a query
with statement modifiers to a query with temporal primitives. Without statement modifiers
and the mapping, every time we desire to execute some temporal queries, we would be forced
to manually formulate complex queries with temporal primitives:

WITH X AS (
SELECT ABSORB Mgr, Name, M.Ts, M.Te
FROM (M ALIGN E ON M.Dept = E.Dept) M

JOIN
(E ALIGN M ON M.Dept = E.Dept) E
ON M.Dept = E.Dept

AND M.Ts=E.Ts AND M.Te=E.Te
)
SELECT Mgr, count(*), Ts, Te
FROM (X NORMALIZE X USING(Mgr)) Y
GROUP BY Mgr, Ts, Te;

SEQ VT
SELECT Mgr, count(*)
FROM M JOIN E ON M.Dept = E.Dept
GROUP BY Mgr

Figure 3.1: Actual Reality (l.) and Wishful Thinking (r.).

This section investigates the grammar of the PostgreSQL parser (src/backend/parser/gram.y1)
and how our desired mapping could be achieved. Since one of our goals is to implement state-
ment modifiers, we have to modify the parser grammar to make it work. For now, we are
interested at statement modifiers for select statements. The probably most important grammar
rule for select statements can be found at the definition of the simple_select category.
This is also the place where we have to make our first modifications to the grammar. Fig-
ure 3.2 shows the original-code on the left side and on the right side the grammar after we did
some modifications. First, we have to add the non-terminal modifiers at the beginning of
the rule. Whatever this non-terminal returns, will be passed to the argument $1 which will be
stored in the variable n->sequencedValidTimeFlag of the SelectStmt-node. Be-
cause of the non-terminal modifiers we’ve just added, the rank of the other non-terminals
has changed and so we have to adjust the argument-variables accordingly. As next we have to
define the category for the modifiers non-terminal and also its rules. One rule is that if the
keyword SEQ VT has been used, it will return the value TRUE which will end up being saved
into the variable sequencedValidTimeFlag. The other rule is for the case if we don’t
prepend the statement modifier to our SQL query, so that FALE will be returned.

Unfortunately we can’t realize more of the mapping inside the PostgreSQL grammar. The
rest will happen after the parser has created the parse tree. Figure 3.3 shows the parse tree,
whereas θ ≡ (M.Dept = E.Dept). Remember that the parse tree is a SelectStmt which
stores in its modified version whether the flag sequencedValidTimeFlag is set and if
so, the parse tree should be processed regarding to the sequenced semantics. If the flag is set,

1http://www.ifi.uzh.ch/dbtg/research/align.html

11

simple_select:

SELECT opt_distinct opt_absorb
target_list into_clause from_clause
where_clause group_clause having_clause
window_clause
{

SelectStmt *n = makeNode(SelectStmt);

n->distinctClause = $2;
n->absorbClause = $3;
n->targetList = $4;
n->intoClause = $5;
n->fromClause = $6;
n->whereClause = $7;
n->groupClause = $8;
n->havingClause = $9;
n->windowClause = $10;
$$ = (Node *)n;

}

/* some other rules for simple_select */
;

simple_select:
modifiers
SELECT opt_distinct opt_absorb
target_list into_clause from_clause
where_clause group_clause having_clause
window_clause
{

SelectStmt *n = makeNode(SelectStmt);
n->sequencedValidTimeFlag = $1;
n->distinctClause = $3;
n->absorbClause = $4;
n->targetList = $5;
n->intoClause = $6;
n->fromClause = $7;
n->whereClause = $8;
n->groupClause = $9;
n->havingClause = $10;
n->windowClause = $11;
$$ = (Node *)n;

}

/* some other rules for simple_select */
;

modifiers:
SEQ VT { $$ = TRUE; }
| /*EMPTY*/ { $$ = FALE; }

;

Figure 3.2: Modifications of the PostgreSQL Grammar.

we can mark the parse tree accordingly by replacing the relational algebra operators �� and ϑ
in the parse tree by their temporal representations ��T and ϑT , which is shown in figure 3.3(b).

Mgrϑcount(∗)

��θ

M E

(a) Parse Tree

MgrϑT
count(∗)

��Tθ

M E

(b) Temp. P.T.

��Tθ

M E

(c) Temp. Join

MgrϑT
count(∗)

X

(d) Temp. Agg.

Figure 3.3: Mapping Parse Trees

For better visualization purposes, we split the temporal parse tree into two pieces, at which
the temporal join in figure 3.3(c) is shown as node X in the temporal aggregation in fig-
ure 3.3(d).

Now we proceed with the mapping by reducing the operators with sequenced semantics
to their nontemporal counterparts. Hence the temporal join is processed before the temporal
aggregation, we reduce the temporal join as first, which is shown in figure 3.4(a). As we
know it from the reduction rules from table 2.1, the argument relations M and E must be both
aligned. Keep in mind that θ still equates to (M.Dept = E.Dept). The condition for the
nontemporal inner join equates to (M.Dept = E.Dept ∧ M.T = E.T). The next step is

12

that we reduce the temporal aggregation as shown in figure 3.4(b). The reduction demands
to perform the normalization by taking the previously reduced temporal join X as both input-
arguments of the normalization operator. Also mind that the normalization has to processed
with respect to the group-attribute Mgr and that the grouping for the aggregation has to happen
with respect to Mgr as well as to T . After that, we have completed the mapping of queries
with statement modifiers to queries with temporal primitives over algebra expressions.

α

��θ∧M.T=E.T

Φθ

M E

Φθ

E M

(a) Reduced Temporal Join

Mgr,Tϑcount(∗)

NMgr

X X

(b) Reduced Tempo-
ral Aggregation

Figure 3.4: Reduction on Temporal Operators

We know that, an ordinary select-statement is processed in the order shown in figure 3.5(a).
This makes it possible to determine a general case for the order of reduction rules that have
to be performed, which is shown in figure 3.5(b). So first of all, we have to do the reduction
on all the joins and/or cartesian products. As second step, the WHERE-clause takes place,
but nothing special happens here since a temporal selection is processed the same as a usual
selection. As next we have to apply the reduction rules on aggregates. After that the HAVING-
clause has to be handled, but since its behaviour does no differ from a general selection, there
is also no special reduction necessary. And in the end, the SELECT-clause has to be handled
by applying the reduction rules of a temporal-projection.

13

from items from
table

where
subset of table

group
grouped table

having
subset of groups

select subset of groups

(a) General Processing Order

FROM

WHERE

GROUP

HAVING

SELECT

r ×T
θ s

r ��Tθ s

r ��Tθ s

r �� T
θ s

r �� T
θ s

r �Tθ s

σT
θ (r)

BϑT
F (r)

σT
θ (r)

πT
B(r)

=

=

=

=

=

=

=

=

=

=

α((rΦtrues)×r.T=s.T (sΦtruer))

α((rΦθs) ��θ∧r.T=s.T (sΦθr))

α((rΦθs) ��θ∧r.T=s.T (sΦθr))

α((rΦθs) �� θ∧r.T=s.T (sΦθr))

α((rΦθs) �� θ∧r.T=s.T (sΦθr))

(rΦθs) �θ∧r.T=s.T (sΦθr)

σθ(r)

B,TϑF (NA(r; r))

σθ(r)

πB,T (NB(r; r))

(b) General Order of the Temporal Operators / Reduction Rules

Figure 3.5: General Case

14

4 Conclusion

In this report we have looked at reduction rules that are using temporal primitives and thereby
define a temporal algebra with sequenced semantics. We have used this reduction rules to
define a SQL mapping that translates queries with statement modifiers to queries with temporal
primitives. As part of the mapping we have shown in what way the PostgreSQL parser can be
used to implement statement modifiers. The statement modifiers in turn can be used to flag
select-statements/parse-trees, so that our desired mapping is possible after the creation of the
flagged parse tree. In the end, we have illustrated the general case of our SQL mapping by
opposing the algebra expressions with the processing order of typical SQL queries.

15

Bibliography

[1] A. Dignös, M. H. Böhlen, and J. Gamper. Temporal alignment. In Proceedings
of the 2012 international conference on Management of Data, SIGMOD ’12,
pages 433–444. ACM, 2012.

[2] M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass. Temporal statement modi-
fiers. ACM Trans. Database Syst., 25(4):407–456, 2000.

[3] H. Garcia-Molina, J. D. Ullman, and J. Widom. Parsing. In Database systems
- the complete book (international edition), chapter 16.1, pages 788-795. Pear-
son Education, 2002.

16

