Department of Informatics

University of Ziirich
Department of Informatics
Binzmihlestr, 14
CH-8050 Zurich

Phone. +41 44 635 43 11
Fax +41 44 635 68 09
www.ifi.uzh.ch/dbtg

UZH, Dept. of Infermatics, Binzmihlestr. 14, CH-8050 Zlrich Prof. Dr. Michael Bohlen
Professor
Urs Vageli Phone +41 44 635 43 33

Fax +41 44 635 68 09
boehlen@ifi.uzh.ch

Zirich, October 14, 2013

Facharbeit in Informatik
Datenbanktechnologie

Topic: The aggregate & buffer effect in the CC-Join operator
Overview:

Given an outer and an inner relation, the CC-Join is an operator computing the equijoin ac-
cording to a common identifier, plus the nearest neighbor join according to the time for all outer
tuples not having an equijoin match. Since the time is not an identifier {i.e. many tuples could
be present in the inner relation with the same timestamp), all nearest neighbors of a given
outer tuples are aggregated.

The goal of this Facharbeit is to design, define, implement, and evaluate an extension of the
CC-Join operator offering the possibility to avoid the aggregation of the multiple join matches.

Detailed description:

Given an outer relation r [E,G,T] and in inner relation s [E,G,T,K,M], the CC-Join operator
is defined as following:

NN(T) NN{T)

rix s¢ = r_*ﬁf(sk_M)(rME‘Gs&u ((r Pr.a 8¢) Mg s&))

EQ(E)

where s; = ox_¢(s) and My ¢ is the equijoin operator on F, v the antijoin on £, ngélz the
nearest neighbor join on T' and ¥ the aggregation operator. Attribute G is a grouping attribute
used for specifying that the join matches of a given r tuple, must be found among the s; tuples
sharing the same G value; T is a temporal attribute.

In the following example, we define a partion of r as r, = o¢-,(r), a partition of s as s, ¢ =
pue(oc-garc-¢ (s)) and a set of partitions of s as s¢ = ox_¢(s) and we refer to a tuple r e r as

3 9\ University of 2
y Zurich™

a query point.

Consider the following expression that we use in the Swiss Feed Data Warehouse to retrieve
the Crude Protein cp and the Organic Matter om values of a set of query points r: the ¢p values
are stored in s, while the om values are stored in s,,,.

NN NN
Q = HE.G,T.@:,:p(rM Sn:p'Dq Som)
EQ(E} EQ(E)

For a given query point r e r, if a tuple s € s, (or s,,) does not exists with s.F = r.E and same
G, we consider as its ¢p (or om) value the temporal closest tuple in s,, (or s,,) with same G.

Shay,cp

rﬂny

l’hy

tpea | G4 | #

Table Q is obtained applying the definition of the CC-Join operator between the query points
r and the partition sets s, and s,,.. Since possible multiple join matches are aggregated, each
query point ~ can result at most into one result tuple. For example, for query point v, no
equijoin match on E exists but two nearest neighbors on T exist in s, tuples sy and sz are
both at 1 day distance from r,. The operator joins therefore r, with the average value among
s9.M and s3.M

The goal of this project is to build an extension of the CC-Join able to provide table Q'

[E [@] T [CF | O™ |

Table Q' is obtained extending the definition of the CC-Join with the possibility that multiple join
matches are not aggregated but result in multiple output tuples. Remembering that for query
point r, two tuples (s, and s3) exist in s, at the same minimum distance, Q' contains a tuple
g2 resulting by the join between r, and s, and a tuple g resulting by the join between r, and

83.

The Algorithm will be implemented in C++ extending the engine of the DBMS of PostgreSQL

\ University of 3
Zurich™

and should be called at query level as follows:

SELECT FE, G, T, CP, M AS OM

FROM (SELECT F, G, T, M AS CP
FROM r CCJOIN s, EQUAL ON £ NN BY G USING 7' [AGG M]
) r CCJOIN s,, EQUAL ON £ NN BY (G USING T [AGG M]

where the optionality of the AGG clause, establish if multiple join matches have to be aggre-
gated or not.

Implementation:

The CC-Join has been integrated in the kernel of PostgreSQL as a sort merge procedure
that takes advantage from the fact that multiple join matches are aggregated and avoids to
backtrack (re-fatching already scanned rows) any of the two input relations. The approach
uses two additional structures:

- one buffer B, storing a scanned outer tuple missing an equijoin match, until all its near-
est neighbors are fetched

= one aggregation set storing the aggregation of the nearest neighbors of the current
outer tuple since it may be used as well as join match of the next outer tuple.

The approach is modeled by a finite state machine composed by 4 main states and available
in the file nodeCCJoin.c of the implementation that will be given to the student.

TG = 3..GA(

rT < 3. TAr.BE < 3¢.E else NS

vd(r,ag) < a(r, an)) len(Bp) > 0

vr.G < 5..G

Tasks:

1. Oct: The CC-Join as defined above is not lossless, i.e. since multiple join matches are
aggregated there is a loss of information. Generalize the definition of the CC-Join for
making optional the aggregation of multiple join matches

2. Oct - Nov: Starting from the provided buffered implementation, extend the implemen-
tation of the CC-Join operator in the DBMS of PostgreSQL for the case when no aggre-
gation is required.

3. Dec: Implement the above algorithm, with the possibility to compute the join without any
buffering effect, i.e. without any buffer and any aggregation set. Backtracking (Mark-
Position and FetchRow) of the inner relation should be used when muiltiple outer tuples

\ University of 4

5 Zurich™

7.

share the same join matches.

. Dec: Can you describe application use cases of the cc-join without aggregation in the

context of the feed Data Warehouse? Domain experts may help you in this.

. Jan - Feb: Evaluate the efficiency of your approach analytically and empirically. De-

pending on the outcome of activity 4, the Feed Data Warehouse or synthetic data Show
your empirical results in graphs comparing the buffered and the unbuffered implementa-
tions of the operator with and without aggregation. What are the advantages / disadvan-
tages of having a buffered implementation? What are the limits of such an approach?
When the buffer gets large, volatile available memory may not be enough for storing it
and tuples need to be rewritten on disc. Can you find a good trade-off between buffering
and backtracing?

. Mar: In your report define the problem and your solution precisely and design a rep-

resentative running example to illustrate your approach. Describe your algorithm using
pseudo code.

Present progress and plans once every week to your supervisor.

Optional tasks:

1.

Implement the CC-Join using a hash-based approach

Literature:

[1] Y. N. Silva, W. G. Aref, and M. H. Ali. The similarity join database operator. ICDE,

2010.

Supervisor: Francesco Cafagna

Starting date: 4 October 2013

Ending date: 3th April 2014

Department of Informatics, University of Zurich

Prof. Dr.

ichael Bohlen

