
Department of Informatics, University of Zürich

Facharbeit in Informatik

Provenance in Temporal Databases

Ekaterina Kuleshova
Matrikelnummer: 08-748-253

Email: ekaterina.kuleshova@uzh.ch

October 12 , 2011

supervised by Prof. Dr. M. Böhlen and A. Dignös



Contents

1 Introduction 4

2 Definitions and Notation 6

3 Lineage traceability for temporal data 8
3.1 Tuple derivation in nontemporal data model . . . . . . . . . . . . . . . . . . 8
3.2 Tuple derivation for a snapshot in temporal model . . . . . . . . . . . . . . . 8
3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Lineage on composite temporal queries . . . . . . . . . . . . . . . . . . . . 14

4 Provenance Semirings 18
4.1 Positive algebra for K-relations and provenance semirings . . . . . . . . . . 18
4.2 Trace of Lineage/Where-provenance . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Provenance semiring/How-provenance . . . . . . . . . . . . . . . . . . . . . 21
4.4 Provenance-propagating temporal relational algebra . . . . . . . . . . . . . . 22

5 Conclusion and future work 25

2



Abstract

The purpose of this paper is to develop tracing of lineage and provenance techniques for
temporal databases. Using the snapshot reducibility property of temporal databases we will
define a pointwise lineage traceability for temporal databases. Merging time points with the
same lineage in the result of temporal operators allows an interval-based model by still allow-
ing lineage traceability. On examples we show the algebra and it lineage. To trace lineage we
need to materialize intermediate results. Moreover, lineage tells us only about the tuples that
contribute and not how they contribute to the result query. That is why we further define rela-
tions annotated with provenance semirings. To be able to to perform queries on such relations
we generalize the algebra to operate on them, so that query execution propagates provenance
information. Finally, we define positive relational algebra, which propagates how-provenance.



1 Introduction
Conventional databases consider the data stored in it to be valid at time instant now, they do not
keep track of past or future database states. By attaching a time period to the data, it becomes
possible to store different database states (timestamping). Such a database is refered to as
a temporal database. We assume that time is linear, ordered and discrete set of time points
p ∈ O. Time is considered as being orthogonal to data, hence one can take a slice of time-
axis at the fixed time/ particular state. The obtained Database is called snapshot database and
one of the important requirements temporal DB must satisfy is the equivalence between the
snapshot database and the non temporal database at this time point. This requirement is called
snapshot reducibility. Temporal DBMS must also satisfy some other requirements, that not
only take migration concepts into consideration, but also ensure systematic and comprehensive
built-in support: temporal upward compatibility, syntactically similar, interval preservation,
non-restrictiveness (for more details see [Böh]).

Data provenance is an account of the derivation of a peace of data in a dataset that is
typically the result of executing a database query against a source database [Bun]. A special
field of data provenance is called lineage tracing. Lineage is a way of relating the tuples in
query output to the tuples in the query input that "contribute" to them [Tan].

Typically, lineage traceability (and the provenance we consider) is obtained by carefully
reasoning about the algebraic form of the database query and the underlying data model of the
source and resulting databases. The formal description of how a relational database operates,
i.e the mathematics which underpin SQL operations is defined by relational algebra. Using
relational algebra we can hence formulate the purpose of lineage traceability and solve the
problem in terms of the set of relation tuples (base tuples) that produce a given result. These
base tuples are called the derivation or tracing of lineage of the result tuple. The problem of
lineage tracing is defined and solved for non-temporal databases [Cui].

In the first part of the paper problem of data lineage tracing for temporal databases will be
solved and the lineage preserving set based temporal relational algebra is defined. At the end
of the first part we will see two drawbacks of this approach. First, lineage tracing forces inter-
mediate results to be saved and that can be very expensive. Second, the possibility of tracing
data lineage doesn’t provide any information about how the result was got. That is why in
the second part we will work with the annotation of the results of database transformations
with provenance information (annotated relations or K-relations). V. Tan, G. Karvounarakis
and T. Green in their paper "Provenance Semirings" have proposed a framework of semirings
annotation [Tan]. The idea is that every tuple of the database is associated with an element
of a semiring K, and to propagate the annotations through query evaluation. This means that
query construct (of some expressivness) must be associated with operations in the semiring.
The laws of commutative semirings are forced by certain expected identities in RA. The prop-
agation of provenance through query evaluation is defined using only the semiring operations
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addition and multiplication (and the constants 0 and 1). Having identified commutative semir-
ings as the right algebraic structure, they argue that a symbolic representation of semiring
calculations is just what is needed to record, document, and track RA querying from input to
output for applications which require rich provenance information. That is why provenance
is represented by elements of a semiring of polynomials. Using these achievements, the why-
provenance for positive algebra is defined.

The contributions of this paper are as follows:

• Using the snapshot reducibility property, we get a lineage for the temporal databases
and define lineage preserving set-based temporal relational algebra.

• Using the theory of semirings provenance, the positive temporal relational algebra which
includes annotation propagation will be defined.
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2 Definitions and Notation

Temporal databases were defined above. Now we take a deeper look at time dimension. There
are mainly two different notions of time which are relevant for temporal databases. One is
called valid time, the other one is transaction time. Valid time denotes the time period during
which a fact is true with respect to the real world. Transaction time is the time period during
which a fact is stored in the database. In case of the relational model, data and time are
recorded in a relation. Ordinary attributes of a conventional relation are termed explicit. Time
interval itself is not considered to be data, it is considered as being orthogonal to data. Hence,
this type of attributes often termed implicit attributes and are of the form [begin, end). It is said
that the data recorded in the explicit attributes is stamped by the time recorded in the implicit
attributes. A relation which contains explicit data part, a valid time T or/and a transactional
time is called temporal relation. Next we will only consider valid time.

To transform temporal relations we use temporal relational algebra. In terminology of
temporal relational algebra:

• Relation is a set of tuples,

• Tuple is a collection of attributes which describe some real world entity and period
during which this entity is valid.

• Attribute is a real world role played by a named domain

• Domain is a set of atomic values

• Temporal set has no value equivalent over overlapping time stamps (periods). Each
snapshot is a set (see later).

In the Figure 2.1 you can see an example of a temporal relation. The relation "HotelBook-
ing" is a set of 3 tuples. The first tuple (Knoth, 1) is valid on the time Interval [1,5). The time
interval in the Figure 2.1 is represented by horizontal line.

Using relational algebra we can hence formulate the problem of data lineage and data prove-
nance and solve the problem in terms of the set of relation tuples (base tuples) that produce a
given result. These base tuples in data lineage are called the derivation or lineage of the re-
sult tuple. I first review relational table semantics. Tuple derivations for operators and results
follows in the next section.

We assume that a table (relation) R contains a set of tuples t1, ..., tn. A database instance I
contains a list of base tables < R1, ..., Rm >. V is a result of a query over the base tables in I.
The query (or mapping from the base tables to the result table) is called the result definition,
denoted by v. We say that R1, ..., Rm derives V if V = v(R1, ..., Rm). We consider set
sematics, i.e. no dublicates.

6



client hotel_id period

Knoth 1 1-5

Smith 9 3-6

Eger 3 5-7

31 4 5 62 7

(Knoth, 1)

(Smith, 9)

(Eger, 3)

8

HotelBooking

Figure 2.1: Example of temporal relation

In this report I work with a class of queries defined over base relations using the relational
algebra operators selection (σ), projection (π), aggregation(θ), difference (−), union (∪) and
cartesion product (×) (for more details see for example [Cui]). We use the standard rela-
tional semantics, included here for completeness. For an attribute list A = A1, ..., An, we use
shorthand t.A to denote < t.A1, ..., t.An >.

7



3 Lineage traceability for temporal
data

3.1 Tuple derivation in nontemporal data model
Definition 3.1 (Tuple derivation for an Operator). Let Op be any relational operator over ta-
blesR1, ..., Rm, and letR = Op(R1, ..., Rm) be the result of applyingOp toR1, ..., Rm. Given
a tuple t ∈ R, we define t’s derivation inR1, ..., Rm according to Op to beOp−1<R1,...,Rm>

(t) =<
R∗1, ..., R

∗
m >, where R∗1, ..., R

∗
m are maximal subsets of R1, ..., Rm such that:

(a) Op(R∗1, ..., R
∗
m) = {t}

(b) ∀R∗i : ∀t∗ ∈ R∗i : Op(R∗1, ..., {t∗}, ..., R∗m) 6= Ø

We also say that Op−1Ri
(t) = R∗i is t’s derivation in Ri, and each tuple t∗ in R∗i contributes to t,

for i = 1...m.

Requirement (a) says that the derivation tuple sets (the R∗i ’s) derive exactly t. From re-
lational semantics we know that for any result tuple t there must exist such tuple sets. Re-
quirement (b) says that each tuple in the derivation does in fact contribute something to t. By
defining the R∗i ’s to be the maximal subsets that satisfy requirements (a) and (b), we make
sure that the derivation contains exactly all the tuples that contribute to t. Thus, the derivation
fully explains why a tuple exists in the result (see also [Cui]).

In the non temporal model Op can be extended to represent the derivation of a set of tuples:
Op−1<R1,..,Rm>

(R) =
⋃
t∈R

Op−1<R1,...,Rm>
(t) where

⋃
represents the multiway union of relation

lists, i.e. < S1, ..., Sm >=< (R1 ∪ S1), ..., (Rm ∪ Sm) >. It can be shown that there is a
unique derivation for any operator and result tuple.

3.2 Tuple derivation for a snapshot in temporal model
According to the snapshot reducibility property a snapshot database we get by slicing a tem-
poral database on the time-axis is equal to the non temporal database at the given time point.

Lemma 3.1 Let τp be a time slice operator at the time point p. Then it holds true:
∀p ∈ O τp(Op

T (R1, ..., Rm)) = Op(τp(R1), ..., τp(Rm))
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, where R1, .., Rm are relations (temporal if a temporal operator will be executed and non tem-
poral relation in the case of non temporal operator); OpT is a temporal Operator, Op is non
temporal operator.

Remark Time slice operator selects all tuples in the argument relations with the timestamp
that overlaps time point p.

The above Lemma means that for all time points in the time domain the execution of a tem-
poral operator on the temporal relation gives the same result as first take a snapshot and then
execute a non temporal Operator on the snapshot.

Definition 3.2 Let OpT be a basic operator of temporal relational algebra over temporal
relations R1, ..., Rm and R = OpT (R1, ..., Rm). Similar to the Lemma 1, τp be a time slice
operator at the time point p. For each tuple z ∈ R valid at time point pwe define the lineage set
L{z,p} =< R∗1, ..., R

∗
m > of the operator OpT as follows: L{z,p} = (OpT<R1,...,Rm>

)−1(τp({z}))
iff:

(a) τp(OpT (L{z,p})) = τp({z})

(b) ∀R∗i ∀zp,i ∈ R∗i : τp(OpT (R∗1, ..., zp,i, R∗m)) 6= Ø

(c) L{z,p} =< R∗1, ..., R
∗
m > is a maximal subset of R1, ..., Rm

Remark The first two conditions in Theorem 1 can be written as follows:

(a) τp(OpT (L{z,p})) = τp(Op
T (R∗1, ..., R

∗
m)) =

Lemma1
= Op(τp(R

∗
1), ..., τp(R

∗
m)) = {zp}

(b) ∀R∗i ∀zp,i ∈ R∗i : τp(OpT (R∗1, ..., zp,i, R∗m))
= Op(τp(R

∗
1), ..., τp(zi), ..., τp(R

∗
m))) 6= Ø

That means, that pointwise tuple derivation for an temporal Operator is equivalent to the
tuple derivation for a non temporal operator on the snapshot database.

Lemma 3.2 (Point based lineage for temporal databases)
LetR and S be temporal relations,A andB are Attributes in the RelationR and S respectively.
For difference and Union operators A and B are union compatible. c is a predicate over
Attributes in R. p is a time point, z is a tuple s.t z ∈ OpT (R) or z ∈ OpT (R, S), where OpT

is a basic temporal operator. G is a group by attribute list from A. H is an attribute list from
A. aggr(H) is a set of aggregate functions applied to attributes H of R.

1. Selection:
(σTc<R>)

−1(z, p) = {t|t ∈ R ∧ t.A = z.A ∧ p ∈ t.T}

2. Projection:
(πTH<R>)

−1(z, p) = {t|t ∈ R ∧ t.H = z.H ∧ p ∈ t.T}
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3. Aggregation:
(Gθ

T
aggr(H)<R>)

−1(z, p) = {t|t ∈ R ∧ t.G = z.G ∧ p ∈ t.T}

4. Difference:
(R−T S)−1(z, p) =

〈{t|t ∈ R ∧ t.A = z.A ∧ p ∈ t.T}, {t|t ∈ S ∧ t.B 6= z.A ∨ p /∈ t.T}〉

5. Union:
(R ∪T S)−1(z, p) =

〈{t | t ∈ R ∧ t.A = z.A ∧ p ∈ t.T}, {t | t ∈ S ∧ t.B = z.A ∧ p ∈ t.T}〉

6. Cartesian Product:
(R×T S)−1(z, p) =

〈{t|t ∈ R ∧ t.A = z.A ∧ p ∈ t.T}, {t|t ∈ S ∧ t.B = z.B ∧ p ∈ t.T}〉

Thus, we got a pointwise lineage tracing for temporal databases. The next natural step to
get the lineage on the intervals is to make a coalescing of points with the same lineage into
maximal intervals. We consider table HotelBooking in the Figure 3.1 and execute temporal
projection πThotel_id(HotelBooking).

client hotel_id period

Knoth 3 1-8

Smith 3 4-8

Eger 3 5-9

31 4 5 62 7

(Knoth, 3)

(Eger, 3)

(Smith, 3)

8 9

HotelBooking

(3)
(3)

(3)

(3)

R
e
s
u
l
t

Figure 3.1: Lineage traceability for temporal projection: πThotel_id(HotelBooking)

Taking lineage traceability pointwise we get following results:
(πThotel_id<HotelBooking>)

−1({3}, 1) =< {(Knoth, 3)} >
(πThotel_id<HotelBooking>)

−1({3}, 2) =< {(Knoth, 3)} >
(πThotel_id<HotelBooking>)

−1({3}, 3) =< {(Knoth, 3)} >
(πThotel_id<HotelBooking>)

−1({3}, 4) =< {(Knoth, 3), (Smith, 3)} >
(πThotel_id<HotelBooking>)

−1({3}, 5) =< {(Knoth, 3), (Smith, 3), (Eger, 3)} >
(πThotel_id<HotelBooking>)

−1({3}, 6) =< {(Knoth, 3), (Smith, 3), (Eger, 3)} >
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(πThotel_id<HotelBooking>)
−1({3}, 7) =< {(Knoth, 3), (Smith, 3), (Eger, 3)} >

(πThotel_id<HotelBooking>)
−1({3}, 8) =< {(Eger, 3)} >

Now we can coalesce points with the same lineage to intervals:
(πThotel_id<HotelBooking>)

−1({3|[1− 4)}) =< {(Knoth, 3)} >
(πThotel_id<HotelBooking>)

−1({3|[4− 5)}) =< {(Knoth, 3), (Smith, 3)} >
(πThotel_id<HotelBooking>)

−1({3|[5− 8)}) =< {(Knoth, 3), (Smith, 3), (Eger, 3)} >
(πThotel_id<HotelBooking>)

−1({3|[8− 9)}) =< {(Eger, 3)} >

We we can now define a lineage preserving temporal relational algebra.

Definition 3.3 (Lineage preserving set based temporal algebra)
Let R and S be a temporal relations, A and B are Attributes in the Relation R and S respec-
tively. For difference and Union operators A and B are union compatible. c is a predicate over
Attributes in R. p is a time point, z is a tuple s.t z ∈ OpT (R) or z ∈ OpT (R, S), where OpT

is a basic temporal operator. G is a group by attribute list from A. H is an attribute list from
A. aggr(A) is a set of aggregate functions applied to attributes A of R. t.T is a maximal time
interval over which all argument tuples with the A-values are hold. Small letters like k, x, t,
r, s mean tuples.

1. σTc (R) = {t|t ∈ R ∧ c(t)},

2. πTH(R) = {t|
∃r ∈ R(t.H = k.H ∧ t.T ⊆ r.T )∧
∀x ∈ R(x.H = t.H ⇒ x.T ⊇ t.T ∨ x.T ∩ t.T 6= Ø) ∧
∀T ′ ⊃ t.T∃x ∈ R(x.H = t.H ∧ T ′ * x.T ∧ T ′ ∩ x.T 6= Ø)},

3. Gθ
T
aggr(H)(R) = {t|
∃r ∈ R(t.G = r.G ∧ t.T ⊆ r.T ∧ t.aggr(H) = g.aggr(H)) ∧
g = {x|x ∈ R ∧ x.G = t.G ∧ x.T ∩ t.T 6= Ø} ∧
∀x ∈ R(x.G = t.G⇒ r.T ⊇ t.T ∨ x.T ∩ t.T 6= Ø) ∧
∀T ′ ⊃ t.T∃x ∈ R(x.G = t.G ∧ T * x.T ∧ T ′ ∩ t.T 6= Ø)}

4. R−T S = {t|}
∃r ∈ R(t.A = k.A ∧ t.T ⊆ k.T ∧
∀s ∈ S(s.B = t.A⇒ s.T ∩ t.T = Ø) ∧
∀T ′ ⊃ t.T∃s ∈ S(s.B = t.A ∧ T ′ ∩ s.T 6= Ø∨T ′ * r.T ))}

5. R ∪T S = {t|
∃r ∈ R(t.A = r.A ∧ t.T = r.T ∧

∀s ∈ S(s.B = t.A⇒ s.T ∩ t.T =Ø) ∧
∀T ′ ⊃ t.T∃s ∈ S(s.B = t.A ∧ T ′ ∩ s.T 6= Ø∨T ′ * r.T )) ∨

∃r ∈ R(t.A = r.A ∧
∃s ∈ S(r.A = s.B ∧ t.T = r.T ∩ t.T ∧ t.T 6= Ø)) ∨

∃s ∈ S(t.A = s.B ∧ t.T ⊆ s.T ) ∧
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∀r ∈ R(r.A = t.A⇒ r.T ∩ t.T = Ø) ∧
∀T ′ ⊃ t.T∃s ∈ S(s.B = t.A ∧ T ′ ∩ s.T 6= ∨ T ′ * r.T ))}

6. R×T S = {t|
∃r ∈ R∃s ∈ S(t.A = r.A ∧ t.B = s.B ∧ t.T = r.T ∩ s.T ∧ t.T 6= Ø)}

3.3 Example
We will now show results of some lineage preserving temporal operators execution. The
following temporal tables represent a part of temporal relational DB for a travel agency: "Car-
Sharing" and "HotelBooking" (See Figure 3.2). We want to compute the temporal unary
operator projection and a binary operator cartesian product:

· V1 = πTclient(CarSharing),

· V2 = πTclient(HotelBooking),

· V = V1 ×T V2

On the Figure 3.2 you can see the calculation of a projection on the Attribute client for
temporal relations HotelBooking and CarSharing for a client= "Knoth". For other clients
projection can be calculated analogously. In the Table 3.1 and 3.2 you can see the result of
applying the temporal projection on the tables "CarSharing" and "HotelBooking" respectively.

client hotel_id period

Knoth 3 5-10

Schweizer 4 3-6

Knoth 4 1-3

Schweizer 3 1-2

Knoth 5 3-11

31 4 5 62 7 8 9

HotelBooking

client car_id period

Knoth 1 6-7

Smith 5 4-5

Knoth 3 1-4

Smith 9 2-3

CarSharing

10 11

(Knoth,3)

(Knoth, 5)

(Knoth,4)

R
e
s
u
l
t

31 4 5 62 7

(Knoth,1)

(Knoth,3)

R
e
s
u
l
t

(Knoth)
(Knoth)

(Knoth)

(Knoth)

(Knoth)

(Knoth)

Figure 3.2: πTclient(HotelBooking), π
T
client(CarSharing) for client = ”Knoth”

The result of the projection of the relationHotelBooking on the Attribute client for client =
”Knoth” contains for example tuples (Knoth|[1−3)) and (Knoth|[3−5)) (see the right part
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on the Figure 3.2). We could coalesce these two result tuple into (Knoth|[1− 5)). According
the Definition 3.3 we don’t coalesce these two result tuple since the trace of data lineage for
these two tuples is different ( (Knoth, 4|[1 − 3)) for the result tuple (Knoth|[1 − 3)) and
(Knoth, 5|[3− 11)) for the result tuple (Knoth|[3− 5))),

Table 3.1: V1
client period

1 Knoth 1-4
2 Knoth 6-7
4 Smith 2-3
5 Smith 4-5

Table 3.2: V2
client period

1 Knoth 1-3
2 Knoth 3-5
3 Knoth 5-10
4 Knoth 10-11
5 Schweizer 1-2
6 Schweizer 3-6

Figure 3.3 shows the result of applying the temporal Cartesian Product.

31 4 5 62 7 8 9 10 11

V1

V2

(Knoth)

(Knoth)

(Knoth)

(Knoth)

12

(Knoth)

(Schweizer) (Schweizer)

(Knoth)

(Smith) (Smith)

(Knoth,Knoth)

(Knoth,Schweizer)

(Smith,Knoth)

(Smith,Schweizer)

(Smith,Knoth)

(Knoth,Knoth)R

e

s

u

l

t

(Knoth,Knoth)

Figure 3.3: V1 ×T V2

The result of applying Temporal Cartesian Product V1 × V2 is represented in the Table 3.3.
If we look at the red tuples in V1 and V2, the result of applying temporal Cartesian prod-
uct consists of 2 equal tuples: (Knoth,Knoth|[1 − 3)) and (Knoth,Knoth|[3 − 4)). We
could coalesce these two result tuples to (Knoth,Knoth|[1 − 4)). According to Definition
3.3 we could do it only if they had the same lineage and this is not the case here (the lin-
eage of (Knoth,Knoth|[1 − 3)) is 〈(Knoth|[1 − 4)), (Knoth|[1 − 3))〉 and the lineage of
(Knoth,Knoth|[3 − 4)) is 〈(Knoth|[1 − 4)), (Knoth|[3 − 4))〉). You can see above that
(Knoth|[1 − 3) and (Knoth|[3 − 4) have different trace of lineage and that is why are also
written as two different tuples.
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Table 3.3: V1 ×T V2
clientV1 clientV2 period

1 Knoth Schweizer 1-2
2 Knoth Knoth 1-3
3 Knoth Knoth 3-4
4 Smith Knoth 2-3
5 Smith Schweizer 4-5
6 Smith Knoth 4-5
7 Knoth Knoth 6-7

3.4 Lineage on composite temporal queries
For complex queries that are composed of a sequence of more than one relational operator,
lineage is defined inductively. A composite temporal query can be thought of as an operator
tree that is evaluated buttom-up. Intuitively, if a base tuple t∗ contributes to a tuple t′ in the
intermediate result of a composite query evaluation, and t′ further contributes to a view tuple
t, then t∗ contributes to t.

Definition 3.4. We define a composite query tuple’s derivation to be the set of all base
tuples that contribute to the result tuple.

The Definition 3.4 means that if we for example have a composite query:

σc(πB(R)), i.e
{
V1 = πB(R)
V2 = σc(V1)

,

then the trace of lineage consists not of the tuples in V1, but rather of tuples from the temporal
relation R.

A straightforward way to compute tuple derivation for composite temporal queries is thus
to compute the intermediate results for all operators, store the results as temporary tables, then
trace the tuple’s derivation in the temporary tables recursively until reaching the base table.

Example 3.4.1 (Composite query with lineage traceability direct from result).
Let us consider a composite query from Example 3.3:

V = V1 ×T V2, where
{
V1 = πTclient(CarSharing)
V2 = πTclient(HotelBooking)

We trace the lineage recursively for the result relation, represented in the Table 3.4. The
intermediate results are materialized in Table 3.1 and Table 3.2 for V1 and V2 respectively. We
first trace the lineage from the result Table 3.4 to the intermediate result in the Table 3.1 and
3.2.

14



Table 3.4: V1 ×T V2
clientV1 clientV2 period

1 Knoth Schweizer 1-2
2 Knoth Knoth 1-3
3 Knoth Knoth 3-4

We can do it using the Figure 3.3. On the figure we can see that trace of lineage for the
tuple:

(Knoth,Knoth|[1− 3))

is the set of tuples from V1 and V2:

{(Knoth|[1− 4)), (Knoth|[1− 3))}

and knowing these intermediate lineage result we can compute the lineage for this tuple using
Figure 3.2:

{(Knoth, 3|[1− 4)), (Knoth, 4|[1− 3))}

In the same way we get trace of lineage for other tuples in the result relation in the Table
3.4. The intermediate lineage is the following:

〈{(Knoth|[1− 4)), (Schweizer|[1− 2))},
{(Knoth|[1− 4)), (Knoth|[1− 3))},
{(Knoth|[1− 4)), (Knoth|[3− 4))}〉.

And the final trace of lineage for the result represented in the Table 3.4 is given by:

〈{(Knoth, 3|[1− 4)), (Schweizer, 3|[1− 2))},
{(Knoth, 3|[1− 4)), (Knoth, 4|[1− 3))},
{(Knoth, 3|[1− 4)), (Knoth, 5|[3− 11))}〉.

In this example there is also a direct way to trace the lineage of data, i.e. direct from result
table without the intermediate results. We just need to look for tuples in the base relations
HotelBooking and CarSharing, which attributes are equal to attributes in the result tuple
and the time interval contains or equal the time interval of the result tuple (see Figure 3.4).

Example 3.4.2 (Composite query which requires storage of intermediate results to trace the
lineage).
Now we want to derive lineage for the result table, given by the relation:

< {Knoth|[1− 3)}, {Knoth|[3− 11)} >

15



client
V1

client
V2

period

Knoth Schweizer 1-2

Knoth Knoth 1-3

Knoth Knoth 3-4

V1 xT V2 

31 4 5 62 7 8 9 10 11 12

(Knoth,Knoth)

(Knoth,Schweizer)

(Knoth,Knoth)

(Knoth,3)

(Knoth, 5)

(Knoth,4)

(Knoth,1)(Knoth,3)

(Smith,5)(Smith,9)

(Schweizer,4)(Schweizer,2)

CarSharing

HotelBooking

V1 xT V2 

Figure 3.4: V1 ×T V2

We know that this result we got applying following operators of temporal algebra on the
temporal relation:

πclient(σ
T
hotel_id>3,client=”Knoth”(HotelBooking)),

where HotelBooking is a temporal relation given on the Figure 3.2. But we do not have any
intermediate results. If we try to get the lineage direct from the result, we get the following:

client hotel_id period
1 Knoth 3 5-10
2 Knoth 4 1-3
3 Knoth 5 3-11

To get this result (like in example above) we looked for tuples in the base relation Hotel-
Booking, which attributes are equal to attributes in the result tuple and the time interval con-
tains or equal the time interval of the result tuple.

Now, if we derive tuples which contribute to result table using intermediate result, we get:

16



client hotel_id period
1 Knoth 4 1-3
2 Knoth 5 3-11

Thus, we can conclude that the existence of the operator selection makes lineage derivation
on the composite queries direct from the result (without materializing of intermediate results)
impossible.

Lemma 3.3 For composite queries involving only θT , πT , ×T , ∪T we do not need the inter-
mediate results to trace the lineage.

Remark Since temporal operators int he Lemma 3.3 doesn’t exclude any base tuples, one
can conclude that the composite queries based on that operators are traceable.

Trace of lineage is impractical due to the computation and storage required for all the inter-
mediate results which can be extremely expensive. That is why we are interested in a question
of lineage traceability for composite temporal queries in the case when we only have base ta-
bles, operators tree and result table, i.e. where we do not need to materialize the intermediate
results.
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4 Provenance Semirings

As mentioned, storage or recompilation of the intermediate results can be expensive. The
alternative way to get lineage is to use annotated relations to store provenance information.
To be able to perform queries on annotated relations we need to extend relational algebra to
operate on these, so that the operators execution propagates provenance information.

A.Tannel etc. el. proposed a general data model (referred to as K-relations) for annotated
relations [Tan]. The generalization of positive relational algebra to perform on K-relations
was introduced. It turned out that basic temporal operators performed on "usual" relations can
be naturally extended to operations on annotated relations. More specifically, operations on
tuples can be naturally translated into the algebraic operations sum and product in K. Con-
sideration of properties in positiveRA like associativity and commutativity for operator union
and the associative, commutative and the distribution property of join forces (K,+, ·, 0, 1) to
be a semiring. This led to the definition of the positive algebra on K-relations. Then the autors
of the paper [Tan] noticed that symbolic representation of semirings calculations is just what
is needed to record, document, and track RA querying from input to output for applications
which require rich provenance information. Thus, the provenance is represented by elements
of a semiring of polynomials. In the next section key definitions and results from the paper
[Tan] are repeated.

4.1 Positive algebra for K-relations and provenance
semirings

Definition 4.1 In relational model a tuple can be considered as functions t : U → D with
U a finite set of attributes and D a domain of values.

We fix the time being and we denote the set of all such U-tuples by U-tup.

Definition 4.2 A relation over U is a subset of U-tup.

We model a tagged-relation by a function on all possible tuples. For example a usual set-
theoretic relation corresponds to a function R : U-tup → B, where B = {true, false}. That
means tuples in the relation tagged by true and those not in a relation by false. This coincides
with the definition of a relation as a subset of tuples.

Definition 4.3 Let K be a set containing a distinguished element 0. A K-relation over
a finite set of attributes U is a function R : U-tup → K such that its support defined by
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supp(R) def
=== {t|R(t) 6= 0} is finite.

Thus, we have a space of annotations K and K-relations are relations where each tuple is
annotated with some element from K. Now we need to define some operations on K in order
to be able to perform queries that "annotate". We will now see that operations that queries in
the relational algebra perform on tuples can be naturally extended to operations on annotated
tuples.

To deal with selection we assume that the set K contains two distinct values 0 6= 1 which
denote "out of" and "in" the relations, respectively. To deal with union and projection and
therefore to combine different tags of the same tuple into one tag we assume that K is equipped
with a binary operation "+" (alternative use of data). To deal with natural join and therefore
combine tags of joinable tuples we assume that K is equippped with another binary operation
"·" (joint use of data).

Definition 4.4 Let (K,+, ·, 0, 1) be an algebraic structure with two distinguished elements.
The operations of the positive algebra are defined as follows:

empty relation For any set of attributes U, there is : U − tup→ K such that Ø(t) = 0.

union If R : U-tup→ K then R1 ∪R2 : U-tup→ K is defined by

(R1 ∪R2)(t)
def
=== R1(t) +R2(t)

projection If R : U-tup→ K and V ⊆ U then πVR : U-tup→ K is defined by

(πVR)(t)
def
===

∑
t=t’ on V and R(t’) 6=0

R(t′)

(here t = t′ on V means t′ is a U-tup whose restriction to V is the same as the V-tuple t; note
also that the sum is finite since R has finite support).

selection If R : U-tup → K the selection predicate P maps each U-tuple to either 0 or 1
then σPR : U-tup→ K is defined by

(σPR)(t)
def
=== R(t) · P(t)

Which {0,1}-valued functions are used as selection predicates is left unspecified, except that
we assume that false-the constantly 0 predicate, and true- the constantly 1 predicate, are al-
ways available.

natural joint If Ri : Ui-tup → K i=1,2, then and R1 on R2 is the K-relation over U1 ∪ U2

defined by

(R1 on R2)(t)
def
=== R1(t1) ·R2(t2)
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where t1 = t on U1 and t2 = t on U2 (recall that t is a U1 ∪ U2 -tuple).

renaming If R : U-tup → K and β : U → U ′ is a bijection then ρβR is a K-relation over
U ′ defined by

(ρβR)(t)
def
=== R(t ◦ β)

Remark. Join is equal to Cartesian product followed by Selection:

r onc s = σc(r × s)

Lemma 4.1 The operations of RA+ preserve the finiteness of supports, therefore they map
K-relations to K-relations. Hence, Definition 4.1 gives us an algebra on K-relations.

Lemma 4.2 The following RA identities:

• union is associative, commutative and has identity

• join is associative, commutative and distribute over union

• projections and selections commute with each other as well as with unions and joins
(when applicable)

• σfalse(R) = and σtrue(R) = R

hold for positive algebra on K-relations if and only if (K,+, ·, 0, 1) is a commutative semiring.

Definition 4.5 Let X be the set of tuple ids of a (usual) database instance I. The positive
algebra provenance semirings for I is the semiring of polynomials with variables from X and
coefficients from N, with the operations defined as usual: (N[X],+, ·, 0, 1).

4.2 Trace of Lineage/Where-provenance
We show that in Chapter 3 considered trace of lineage can be now modeled propagating lin-
eage using annotated relations. As you already know Lineage/where-provenance is defined as
a way of relating the tuples in a query output to the tuples in the query input that "contribute"
to them. The where-provenance of a tuple t in a query output in fact the set of all contribut-
ing input tuples. Propagations of where-provenance for queries in RA+can be defined using
Definition 4.4 for the semiring:

(P(X),∪,∪,Ø,Ø),

where X consists of the ids of the tuples in the input instance.
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Example 4.2.1 Let us consider the same temporal relationsCarSharing andHotelBooking
as in the Example 3.3 but now we tag each tuple in that relations with their own ids
c1, c2, c3, c4, h1, h2, h3, h4, h5, as shown in Table 4.1 and Table 4.2.

Table 4.1: CarSharing
client car_id period
Knoth 1 6-7 c1
Smith 5 4-5 c2
Knoth 3 1-4 c3
Smith 9 2-3 c4

Table 4.2: HotelBooking
client car_id period
Knoth 3 5-10 h1
Schweizer 4 3-6 h2
Knoth 4 1-3 h3
Schweizer 3 1-2 h4
Knoth 5 3-11 h5

The above relations can be seen as P({c1, c2, c3, c4}), reps. P({h1, h2, h3, h4, h5})-relation,
by replacing c1 by {c1} etc. After applying the modified composite query from the Example
3.4.1

V = V1 onT V2, where
{
V1 = πTclient(CarSharing
V2 = πTclient(HotelBooking)

to the above annotated relations we obtain according to Definition 4.4 the
P({c1, c2, c3, c4, h1, h2, h3, h4, h5})-relation shown in Table 4.3

Table 4.3: Where-provenance
client period
Knoth 1-3 {c3, h3}
Knoth 3-4 {c3, h5}
Knoth 6-7 {{c1}, {h1, h5}}

Using Where-provenance on annotated relations provenance propagation happens in an-
notations automatically executing relational algebra operators. Thus we do not need to materi-
alize the intermediate results anymore to know which tuples contribute. If one needs to know
how they contribute, provenance semiring must be applied on K-relations, represented in the
Definition 4.5.

4.3 Provenance semiring/How-provenance
As mentioned above, one uses provenance semirings to get information about how the result
was derived. As in Definition 4.5 was defined, one uses the semiring of polynomials with
variables from X and coefficients from N. The used operation are given from Definition 4.4:
"+" and "-". "+" references to alternative use of data, "·" to joint use of data.

Example 4.3.1 We consider the same example as in Section 4.3. The result is the
N[c1, c2, c3, c4, h1, h2, h3, h4, h5]-relation represented in Table 4.4.
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Table 4.4: How-provenance
client period
Knoth 1-3 c3 · h3
Knoth 3-4 c3 · h5
Knoth 6-7 c1 · h1 + c1 · h5

We consider the tuple (Knoth|[6− 7)) in the Table 4.4. It can be computed in two different
ways. One of them uses tuples c1 and h1; the second one uses tuples c1 and h5.

This approach assumes queries involve select, project, join, and union only. The where-
provenance and why-provenance of an output location are described through a set of propaga-
tion rules, one for each relational operator (i.e., select, project, join, union).

4.4 Provenance-propagating temporal relational
algebra

Let notations be like in the Definition 3.3. In the Definition 3.3 each Schema consists of
(A, T ), where A is attribute list and T represent time intervals. Up now each Schema con-
sists of (A, T, tag), where tag is an additional attribute that captures the provenance. Now we
extend the lineage preserving set-based temporal algebra to provenance-propagating temporal
relational algebra.

Definition 4.6 (Provenance-propagating positive temporal set-based relational algebra)

1. σTc (R) = {t|∃r ∈ R(t.A = r.A ∧ c(r) ∧ t.T = r.T ∧ t.tag = r.tag)}

2. πTH(R) = {t|
∃r ∈ R(t.H = k.H ∧ t.T ⊆ r.T ∧ t.tag =

∑
r∈R,r.A=t.A,t.T⊆r.T

r.tag)∧

∀x ∈ R(x.H = t.H ⇒ x.T ⊇ t.T ∨ x.T ∩ t.T 6= Ø) ∧
∀T ′ ⊃ t.T∃x ∈ R(x.H = t.H ∧ T ′ * x.T ∧ T ′ ∩ x.T 6= Ø)}

3. R ∪T S = {t|
∃r ∈ R(t.A = r.A ∧ t.T = r.T ∧ t.tag = r.tag ∧
∀s ∈ S(s.B = t.A⇒ s.T ∩ t.T =Ø) ∧
∀T ′ ⊃ t.T∃s ∈ S(s.B = t.A ∧ T ′ ∩ s.T 6= Ø∨T ′ * r.T )) ∨

∃r ∈ R(t.A = r.A ∧
∃s ∈ S(r.A = s.B ∧ t.T = r.T ∩ t.T ∧ t.T 6= Ø∧t.tag = r.tag + s.tag)) ∨

∃s ∈ S(t.A = s.B ∧ t.T ⊆ s.T ∧ t.tag = s.tag) ∧
∀r ∈ R(r.A = t.A⇒ r.T ∩ t.T = Ø) ∧
∀T ′ ⊃ t.T∃s ∈ S(s.B = t.A ∧ T ′ ∩ s.T 6= ∨ T ′ * r.T ))}

4. R onT S = {t|
∃r ∈ R∃s ∈ S(t.A = r.A ∧ t.A = s.B ∧ t.T = r.T ∩ s.T ∧ t.T 6= Ø∧
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t.tag = r.tag · s.tag)}

Example 4.4.1 (Application of provenance-propagating positive temporal algebra to com-
posite query ) Let two temporal relations ”HotelBooking”,”CarSharing” are given (Table
4.5 and Table 4.6 respectively ).

Table 4.5: HotelBooking
client car_id period tag
Knoth 3 1-9 h1
Knoth 4 1-5 h2
Knoth 5 5-9 h3

Table 4.6: CarSharing
client period tag
Knoth 5-7 c1
Smith 1-3 c2

We execute the following composite query:

(σclient=”Smith”(CarSharing))×T (CarSharing ∪T πclient(HotelBooking))

Execution of the above query includes the following steps:

Step 1: V1 = πclient(HotelBooking)
Step 2: V2 = CarSharing ∪T V1
Step 3: V4 = V3 ×T V2, where V3 = (σclient=”Smith”(CarSharing))

Step1 is represented in the Figure 4.1 and the result in the Table 4.7

31 4 5 62 7 8 9 10

(Knoth,3| h
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)
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(Knoth| h
1
+h

2
)

(Knoth,5| h
3
)(Knoth,4| h

2
)

(Knoth| h
1
+h

3
)

Figure 4.1: V1 = πclient(HotelBooking)

Step 2 you can see on the Figure 4.2 and in Table 4.8.
Finaly, Step 3 can be found on the Figure 4.3 and the result in th Table 4.9
We see that in the result Table 4.3 in the Attribute ”tag” we got provenance propagated auto-
matically during operators execution.
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Table 4.7: V1
client period tag
Knoth 1-5 h1 + h2
Knoth 5-9 h1 + h3

Table 4.8: V2
client period tag
Knoth 1-5 h1 + h2
Knoth 5-7 h1 + h3 + c1
Knoth 7-9 h1 + h2
Smith 1-3 c2
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Figure 4.2: V2 = CarSharing ∪T V1

Table 4.9: V4 = V3 ×T V2
clientV3 clientV2 period tag
Smith Smith 1-3 c22
Smith Knoth 1-3 h1 · c2 + h2 · c2
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Figure 4.3: V4 = V3 ×T V2
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5 Conclusion and future work

Relational algebra, lineage and provenance on the nontemporal databases can be in natural
way extended to temporal model which must coincide with non temporal on points. Thus,
using nontemporal models we could define temporal set-based lineage preserving relational
algebra, trace of lineage, provenance semirings and provenance-propagating positive temporal
set-based relational algebra for temporal models.

In Chapter 3 defined trace of lineage has some drawbacks: it forces intermediate results to
be materialized and it does not provide any information about how the result was obtained.
In Chapter 4 introduced annotated relations allow to capture the provenance and propagate it
through execution of temporal operators of relational algebra. At the end of Chapter 4 defined
Provenance-propagating positive temporal set-based relational algebra captures automati-
cally provenance. In the Chapter 4 represented generalized algebra which operates on anno-
tated relations is only defined for positive relational algebra, i.e. only for operators selection,
projection, union and natural join. That is why at the moment we cannot replace trace of
lineage by provenance-propagating set-based temporal algebra. Different attempts was made
to define the mapping of operators difference and aggregation to the operators on annotated
relations ([Diff], [Gee], [Aggr]). In the paper [Diff] was proved that operator difference
doesn’t satisfy the universal property, which one needs for example by deletion propagation.
In the paper [Aggr] the authors was tried to define operator aggregation and through ag-
gregation operator difference for m-semirings. The attempt to define the aggregation and
difference on annotated relations using semirings forced a difficult construction, which be-
comes too unnatural. In the future the missing operators on m-semirings must be defined.
Maybe even another mathematical structures should be found to make the provenance prop-
agation for all relational algebra operators possible. And of course provenance for temporal
databases should be implemented.
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