
Lineage implementation in PostgreSQL

Andrin Betschart, 09-714-882
Martin Leimer, 09-728-569

3. Oktober 2013

Contents

Contents

1. Introduction 3

2. Lineage computation in TPDBs 4
2.1. Lineage . 4
2.2. Temporal adjustment in TPDBs . 4
2.3. Relational algebra operators in TPDBs . 6

2.3.1. Selection . 6
2.3.2. Duplicate eliminator . 6
2.3.3. Projection . 7
2.3.4. High Aggregation . 8
2.3.5. Set operations . 9
2.3.6. Join operations . 12

3. Confidence evaluation through lineage 15

4. Implementation 18
4.1. Postgres . 18
4.2. Database setup and usage synopsis . 18
4.3. Implementation approach . 19
4.4. Lineage as system column . 19
4.5. Lineage computation . 20

4.5.1. Temporal adjustment . 20
4.5.2. Selection . 21
4.5.3. Projection . 21
4.5.4. Duplicate eliminator . 21
4.5.5. High Aggregation . 22
4.5.6. Join operations . 23
4.5.7. Cartesian product . 23
4.5.8. Set Operations . 24

4.6. Confidence computation . 26

5. Evaluation 27
5.1. Lineage computation . 27
5.2. Confidence evaluation . 29

References 32

A. Changed Files 33

B. Implemented PL/pgSQL-Functions & -Aggregates 35

C. New SELECT-Statement synopsis 38

2

1. Introduction

1. Introduction

Temporal Probabilistic Databases, called TPDBs are defined as databases consisting of tuples
representing an event. Each event has a time interval, called the temporal attribute, consisting
of an included starting and excluded ending timestamp. Alongside there exists a probabilistic
attribute, which defines the probability to which some event will occur at a specific time point
within the given time interval.

Moreover, each temporal probabilistic relation consists of further attributes, called the non-
temporal attributes, which store any kind of information about the event the tuple represents.
This adds up to a relation having the following scheme:

non-temporal temporal probabilistic
Name Supervisor T p

p1 Ann Kim [1, 3) 0.95
p2 Ann Brad [2, 4) 0.62

Figure 1.1: Temporal Probabilistic Relation

In order to query TPDBs, we propose the use of the reduction rules as evaluated by Anton
Dignös et al. [1]. Those rewrite temporal operators using time adjustment operators normalize,
align and absorb with standard database operators. The time adjustment operators adjust tuple
time intervals such that any matching clause of the standard database operator can be extended
with the temporal attribute.

While executing a query, the probabilistic attribute must be changed accordingly, as each
result tuple is derived from multiple tuples, each having their own probability. For this, we
propose the use of lineage, which will keep track from which tuples the result tuples are derived.

In Section two, we will describe how we can use lineage for probability computation. We
then move on explaining how lineage is computed for each operator in detail. In Section three,
we will show the evaluation algorithm we used to compute confidences of the result tuples given
their lineage. Section four will give an overview about how PostgreSQL-Queries are executed
in the backend. We then move on explaining how we extended PostgreSQL by lineage and
the evaluation algorithm, giving abstract overviews about the implemented changes. Finally, in
Section five, we present an evaluation of our implementation.

3

2. Lineage computation in TPDBs

2. Lineage computation in TPDBs

In order to compute the confidence of a result tuple, we propose the use of lineage according
to Da Sarma et al. [2]. Lineage allows us to keep track of which base tuples a result tuple was
derived from. This will allow us to compute final confidence afterwards, as this is a requirement
for this approach.

2.1. Lineage

In temporal probabilistic databases, each tuple represents an event which has a probability of
being true and each event is determined by an unique identifier. On a conceptual level, all
unique identifiers correspond to a boolean variable. This means that if an event tuple is true, the
underlying boolean variable will evaluate to true as well and false otherwise.

A query operation corresponds to a combination of input tuples for the creation of the output
ones. In order to describe the correlations between the input tuples during an operation, we
use lineage. The lineage of a tuple λ.t is a complex boolean expression, consisting of boolean
variables uniquely determining other tuples in the database and it intuitively captures ”how tuple
t was derived”.

2.2. Temporal adjustment in TPDBs

In the following, we will show how lineage is computed for different boolean operators. For
this, we first have to adjust time intervals, were we propose the use of the reduction rules from
Dignös et al. [1] as seen in Figure 2.2. Those reduction rules describes how a query must be
rewritten using time adjustment operators in order to do correct query operations. By applying
those time adjustment operators as seen in Figure 2.1, we create for each tuple a new set of
tuples having identical non-temporal attributes but adjusted time intervals. These adjusted time
intervals will have starting and ending points such that they will match with the corresponding
tuple of the other relation. Thereafter, the matching clause of the query operator can be extended
with the temporal attribute.

Figure 2.1: Temporal adjustment operators [1]

4

2. Lineage computation in TPDBs

For normalization, which is used for projection, aggregation and set operations, the tuples ini-
tial time interval is split up according to both, starting and ending time points of tuples matching
on the condition being specified.

For alignment, which is used for cartesian product and join operations, the tuples initial time
interval is intersected with the time intervals of the tuples matching on the condition being
specified.

Figure 2.2: Reduction Rules [1]

To illustrate the computation of lineage, we introduce the following running example. Please
note that each base tuple has a probability p. However, this attribute is ignored for any interme-
diate operation, as it would be neither valid nor needed. Only in the result relation, when lineage
shall be evaluated, do we retrieved the probabilities of the base tuples in order to compute final
confidence.

P (People)
Name Dest T p λ

p1 Ann Zurich [3, 8) 0.80 p1
p2 Ann Zurich [9, 14) 0.50 p2
p3 Mark Basel [6, 12) 0.70 p3
p4 Jim Luzern [5, 10) 0.20 p4
p5 Tina Bern [10, 13) 1.00 p5
p6 Tina Bern [10, 13) 0.90 p6

W (Weather)
Loc Weather T p λ

w1 Basel Sun [1, 8) 0.80 w1

w2 Bern Rain [11, 17) 0.50 w2

w3 Zurich Snow [5, 10) 0.70 w3

w4 Zurich Fog [8, 15) 0.20 w4

Figure 2.3: Temporal Probabilistic Databases

5

2. Lineage computation in TPDBs

2.3. Relational algebra operators in TPDBs

2.3.1. Selection

For any selection operator σ, we do not need to apply any reduction rules in advance. The lineage
of each result tuple corresponds to the lineage of the input tuple which matters the condition θ.

As an example we want to find all the possible predictions for weather conditions in Zurich.
This results in:

Loc Weather W λ
r1 Zurich Snow [5, 10) w3

r2 Zurich Fog [8, 15) w4

Figure 2.4: σLoc=Zurich(W)

Consider a select operator having selection criteria θ on relation S producing relation R,
where rx.λ is the lineage of rx

1. For each tuple si in S which fulfils θ, add si to R generating rj where rj .λ = si.λ

2.3.2. Duplicate eliminator

We explicitly allow for duplicates in TPDBs, meaning that tuples with identical non-temporal
attributes and identical time interval can coexist. Such duplicates can appear both, in base re-
lations and intermediate results, e.g. after a projection. However, even duplicates can still be
distinguished from each other, as each tuple has an unique identifier used for lineage. But as
relational algebra operators are duplicate eliminating by default, we must take special care of
tuples having identical non-temporal and temporal attributes, but different lineage. Therefore,
we apply the following algorithm to handle lineage correctly:

Consider a select operator having selection criteria θ on relation S producing relation R,
where rx.λ is the lineage of rx

1. For each tuple si in S which fulfils θ, add si to R generating rj where rj .λ = si.λ

2. For each tuple ri in R which has a duplicate rj in R, set lineage of ri as ri.λ ∨ rj .λ
and remove rj afterwards

The application of this algorithm using the following example σLoc=Bern(P) results in:

Loc Weather T λ
r1 Tina Bern [10, 13) p5 ∨ p6

Figure 2.5: σLoc=Bern(P)

6

2. Lineage computation in TPDBs

In a first step, all tuples which do not follow the selection criteria are removed, remaining
tuples p5 and p6. Then, as the selection operator is duplicate eliminating and since p6 is a
duplicate of p5, one of those tuples will be removed as well. But while applying this step, we
must concatenate the boolean expressions of the inferred tuples, here p5 and p6, using ∨, as the
result tuple r1 is derived from p5 and p6.

2.3.3. Projection

For any projection operator πT , we need to do a normalization on the relation itself first. Then,
the attributes specified within the projection clause B are extended with the temporal attribute,
before the projection is being executed. Regarding lineage, the boolean expression of the input
tuples correspond to the result tuples except in case of duplicates, where the duplicate elimina-
tion algorithm is applied.

Assume the following example πTLoc(W). According to the reduction rules this query is
rewritten as πLoc,T (NLoc(W ;W)). By applying normalization, the intermediate result is:

Loc Weather T λ
x1 Basel Sun [1, 8) w1

x2 Bern Rain [11, 17) w2

x3 Zurich Snow [5, 8) w3

x4 Zurich Fog [8, 10) w3

x5 Zurich Fog [8, 10) w4

x6 Zurich Fog [10, 15) w4

Figure 2.6: NLoc(W ;W)

Here, tuple w3 was split up in a set of two tuples x3 and x4 having identical non-temporal
attributes, but an adjusted temporal attribute. Moreover, lineage of xj being created from tuple
wi corresponds to wi.λ. Correspondingly, this is done for tuple w4.

The application of the projection operator produces the following result:

Loc T λ
r1 Basel [1, 8) w1

r2 Bern [11, 17) w2

r3 Zurich [5, 8) w3

r4 Zurich [8, 10) w3 ∨ w4

r5 Zurich [10, 15) w4

Figure 2.7: πLoc,T (NLoc(W ;W))

Here, tuple r1 is derived from x1 which has lineage x1.λ = w1. On the other hand, tuple r4
is derived from x4 and x5 as the projection operator is duplicate eliminating. Therefore lineage
is adjusted as specified in Section 2.3.2, resulting in r4.λ = x4.λ ∨ x5.λ = w3 ∨ w4.

7

2. Lineage computation in TPDBs

Consider a projection operator having projection criteriaB on relation S producing relation
R, where x.λ is the lineage of rx

1. For each tuple si in S normalize it using sj in S and set the lineage of each tuple xk
in the created tuple sets as si.λ

2. Add each xk to R, while removing all non-temporal attributes not being specified in
B

3. For each tuple ri in R which has a duplicate rj in R, set lineage of ri as ri.λ ∨ rj .λ
and remove rj afterwards

2.3.4. High Aggregation

For any high aggregation operator ϑT , we need to do a normalization on the relation itself first,
like for projection. Then, the attributes specified in the high aggregation clause B is extended
with the temporal attribute, before the high aggregation is being executed. Regarding lineage, the
boolean expression of the input tuples correspond to the intermediate tuples after having applied
normalization. Then, for high aggregation, the boolean expressions of the tuples belonging to
the same group are ∧-concatenated with each other before the actual high aggregation function
is being executed.

Assume the following example Locϑ
T
count(Loc)(W). According to the reduction rules this

query is rewritten as Loc,Tϑcount(Loc)(NLoc(W ;W)). Therefore, we first have to apply normal-
ization producing same results as in Figure 2.6.

Now, the application of the high aggregation operator produces the following result:

Loc count(Loc) T λ
r1 Basel 1 [1, 8) w1

r2 Bern 1 [11, 17) w2

r3 Zurich 1 [5, 8) w3

r4 Zurich 2 [8, 10) w3 ∧ w4

r5 Zurich 1 [10, 15) w4

Figure 2.8: Loc,Tϑcount(Loc)(NLoc(W ;W))

Here, tuple r1 is derived from x1 which has lineage λ.x1 = w1. On the other hand, tuple r4 is
derived from x4 and x5 as by definition each grouping only returns one result per group. Either
because duplicates are eliminated, or/and functions are applied. Here, the function count(Loc)
is applied, which counts the number of entries for each (Loc, T)-group. There, lineage of r4.λ
is x4.λ ∧ x5.λ = w3 ∧ w4.

Consider an high aggregation operator having aggregation clauseB on relation S producing
relation R, where rx.λ is the lineage of rx

8

2. Lineage computation in TPDBs

1. For each tuple si in S normalize it using sj in S and set the lineage of each tuple xk
in the created tuple sets as λ.si

2. For each xi find all xj , i 6= j belonging to the same group and apply high aggregation.
Add remaining tuple xk to R producing rl and set rl.λ = xi.λ ∧ xj .λ

2.3.5. Set operations

For any set operator ∩T ,∪T ,−T we first must apply normalization on both relations using the
other relation each. Lineage and the normalization operation behaves in a same way as shown in
Figure 2.6, except that we normalize on different relations. Once having applied normalization,
the set operator can be applied. As lineage is being calculated differently for each set operator,
we will explain this more detailed in the upcoming subsections.

Assume a relation P ′ being identical as P but containing only tuples p1, p5 and p6. The
normalizations of NName,Dest(P ;P ′) and NName,Dest(P

′;P) are as follows:

Name Dest T λ
np1 Ann Zurich [3, 8) p1
np2 Ann Zurich [9, 14) p2
np3 Mark Basel [6, 12) p3
np4 Jim Luzern [5, 10) p4
np5 Tina Bern [10, 13) p5
np6 Tina Bern [10, 13) p6

Figure 2.9: NP.Dest=P ′.Dest(P ;P ′)

Name Dest T λ
np′1 Ann Zurich [3, 8) p′1
np′2 Tina Bern [10, 13) p′2
np′3 Tina Bern [10, 13) p′3

Figure 2.10: NP.Dest=P ′.Dest(P
′;P)

Obviously, normalization produced the same results for each relation np and np′ as its input
relation p and p′ was. Although that we could have chosen a different example, for understanding
purposes we try to focus here on the computation of lineage of the set operations only.

Given this normalizations, we can apply the corresponding set operator. In the following we
will show how lineage is calculated given specific examples.

9

2. Lineage computation in TPDBs

Union

Consider an union operator on relations S and T producing relation R, where rx.λ is the
lineage of rx

1. For each tuple si in S, add it to R producing rj having lineage si.λ

2. For each tuple ti in T , add it to T producing rj having lineage ri.λ

3. For each tuple ri in R, if there exists a duplicate rj where i 6= j, set the lineage of ri
to ri.λ = ri.λ ∨ rj .λ and remove rj afterwards

Consider query P ∪T P ′ which is rewritten as NName,Dest(P ;P ′) ∪ NName,Dest(P
′;P).

Given the normalized relations np and np′ the union of those equals the following.

Name Dest T λ
r1 Ann Zurich [3, 8) p1 ∨ p′1
r2 Ann Zurich [9, 14) p2
r3 Mark Basel [6, 12) p3
r4 Jim Luzern [5, 10) p4
r5 Tina Bern [10, 13) p5 ∨ p6 ∨ p′2 ∨ p′3

Figure 2.11: NP.Dest=P ′.Dest(P ;P ′) ∪NP.Dest=P ′.Dest(P
′;P)

The lineage of a result tuple corresponds to the lineage of the input tuple, as each input tuple
is added to the result relation without further dependencies. However, as the union operator is
duplicate eliminating in relational algebra, r1 derives from intermediate tuples np1 and np′1. On
the other hand, r5 derives from intermediate tuples np5, np6, np′2 and np′3 producing r6.λ =
np5.λ ∨ np6.λ ∨ np′2.λ ∨ np′3.λ = p5 ∨ p6 ∨ p′2 ∨ p′3.

Intersection

Consider an intersection operator on relations S and T producing relation R, where λ.rx is
the lineage of rx

1. For each tuple si in S, find all identical tuples tj in T

2. Create a boolean expression bk belonging to si and set bk to true

3. For each tuple tj matching with si, set bk = bk ∨ tj .λ

4. For each non-empty boolean expression bk belonging to some si, set lineage of si to
si.λ = si.λ ∧ bk and add si to R

5. For each tuple ri in R, if there exists a duplicate rj where i 6= j, set the lineage of ri
to ri.λ = ri.λ ∨ rj .λ and remove rj afterwards

10

2. Lineage computation in TPDBs

Consider query P ∩T P ′ which is rewritten as NName,Dest(P ;P ′) ∩ NName,Dest(P
′;P).

Given the normalized relations np and np′ the intersection of those equals the following.

Name Dest T λ
r1 Ann Zurich [3, 8) p1 ∧ p′1
r2 Tina Bern [10, 13) (p5 ∧ (p′2 ∨ p′3)) ∨ (p6 ∧ (p′2 ∨ p′3))

Figure 2.12: NP.Dest=P ′.Dest(P ;P ′) ∩NP.Dest=P ′.Dest(P
′;P)

Here, each tuple of the left relation np was added to R if there existed a tuple in the right
relation np′ having identical non-temporal and temporal attributes. Then, any duplicates in R
were removed in a second step.

Regarding lineage, we searched all matches in the right relation np′ for each tuple in np. For
each match in the right relation np′ belonging to the same tuple in the left relation, lineage was
∨-concatenated. This produced lineages p′2 ∨ p′3 twice, as there were for both np5 and np6 the
same matches np′2 and np′3 in the right relation.

Then, the produced complex boolean expression among the tuples of the right relation np′,
was ∧-concatenated with the boolean expression of the tuple of the left relation np. This pro-
duced p5 ∧ (p′2 ∨ p′3)) and (p6 ∧ (p′2 ∨ p′3)).

However, since the union operator is duplicate eliminating and since np5 and np6 are dupli-
cates, the duplicate eliminating algorithm was applied, producing (p5 ∧ (p′2 ∨ p′3))∨ (p6 ∧ (p′2 ∨
p′3)).

Difference

Consider a difference operator on relations S and T producing relationR, where rx.λ is the
lineage of rx

1. Add each tuple si in S to R producing ri, where ri.λ = si.λ

2. Create a boolean expression bk belonging to ri and set bk to true

3. For each tuple tj in T matching with the same tuple ri in R, set bk = bk ∧ ¬tj .λ

4. For each tuple ri in R set lineage of ri to ri.λ = ri.λ ∧ bk
5. For each tuple ri in R, if there exists a duplicate rj where i 6= j, set the lineage of ri

to ri.λ = ri.λ ∨ rj .λ and remove rj afterwards

Consider query P −T P ′ which is rewritten as NName,Dest(P ;P ′) − NName,Dest(P
′;P).

Given the normalized relations np and np′ the difference of those equals the following.

11

2. Lineage computation in TPDBs

Name Dest T λ
r1 Ann Zurich [3, 8) p1 ∧ ¬p′1
r2 Ann Zurich [9, 14) p2
r3 Mark Basel [6, 12) p3
r4 Jim Luzern [5, 10) p4
r5 Tina Bern [10, 13) (p5 ∧ ¬p′2 ∧ ¬p′3) ∨ (p6 ∧ ¬p′2 ∧ ¬p′3)

Figure 2.13: NP.Dest=P ′.Dest(P ;P ′) ∩NP.Dest=P ′.Dest(P
′;P)

Here, each tuple of the left relation np was added to R independent whether there existed an
identical tuple in the right relation np′. Then, any duplicates in R were removed in a second
step.

Regarding lineage, we searched all matches in the right relation np′ for each tuple in np. For
each match in the right relation np′ belonging to the same tuple in the left relation, the inverse
lineage was ∧-concatenated. This produced lineages ¬p′2 ∧ ¬p′3 twice, as there were for both
np5 and np6 the same matches np′2 and np′3 in the right relation.

Then, the produced complex boolean expression among the tuples of the right relation np′,
was ∧-concatenated with the boolean expression of the tuple of the left relation np. This pro-
duced p5 ∧ ¬p′2 ∧ ¬p′3 and p6 ∧ ¬p′2 ∧ ¬p′3.

However, since the difference operator is duplicate eliminating and since np5 and np6 are
duplicates, the duplicate eliminating algorithm was applied, producing (p5∧¬p′2∧¬p′3)∨ (p6∧
¬p′2 ∧ ¬p′3).

2.3.6. Join operations

For any join operator (./, d|><|, |><|d, d|><|d) we first must apply alignment on both relations using the
other relation each. Then the actual join operation can be executed, before the absorb operator
will detect and remove any duplicates.

Regarding lineage, the alignment creates for each tuple a set of tuples, where each of those
tuples will have the same lineage as the tuple which created it. After the join operation is
processed, the lineage of the result tuple corresponds to the ∧-concatenation of the lineages
matching tuples in the join operation.

Finally, the reductions rules specify to apply the absorb operator, which eliminates tuples
having same non-temporal attributes, but time intervals being a subset of some other tuple.
However, as it is up to further studies to find an adequate approach computing lineage for this
temporal operator, we omit it. This also in regards that in most cases such duplicates do not even
exist.

Consider the following exampleP ./Loc W which is rewritten asα((PΦLocW)d|><|Loc(WΦLocP)).
The application of alignment produces the following results

The application of the aggregation operator produces the following result:

12

2. Lineage computation in TPDBs

Name Dest T λ
ap1 Ann Zurich [3, 5) p1
ap2 Ann Zurich [5, 8) p1
ap3 Ann Zurich [9, 10) p2
ap4 Ann Zurich [9, 14) p2
ap5 Mark Basel [6, 8) p3
ap6 Mark Basel [8, 12) p3
ap7 Jim Luzern [5, 10) p4
ap8 Tina Bern [10, 11) p5
ap9 Tina Bern [11, 13) p5
ap10 Tina Bern [10, 11) p6
ap11 Tina Bern [11, 13) p6

Figure 2.14: PΦDest=LocW

Loc Weather T λ
aw1 Basel Sun [1, 6) w1

aw2 Basel Sun [6, 8) w1

aw3 Bern Rain [11, 13) w2

aw4 Bern Rain [13, 17) w2

aw5 Zurich Snow [5, 8) w3

aw6 Zurich Snow [8, 9) w3

aw7 Zurich Snow [9, 10) w3

aw8 Zurich Fog [8, 9) w4

aw9 Zurich Fog [9, 14) w4

aw10 Zurich Fog [14, 15) w4

Figure 2.15: WΦDest=LocP

Here tuple p2 created tuples ap3 and ap4 as p2 intersects the time interval of w3 and w4.
Moreover, lineage of ap3 and ap4 were set to ap3.λ = p2.λ and ap4.λ = p2.λ as they were
created from the same tuple. Accordingly, this was done for all other tuples as well.

The application of the join operation produces the following result:

Name Dest Loc Weather T λ
r1 Ann Zurich NULL NULL [3, 5) p1
r2 Ann Zurich Zurich Snow [5, 8) p1 ∧ w3

r3 Ann Zurich Zurich Snow [9, 10) p2 ∧ w3

r4 Ann Zurich Zurich Fog [9, 14) p2 ∧ w4

r5 Mark Basel Basel Sun [6, 8) p3 ∧ w1

r6 Mark Basel NULL NULL [8, 12) p3
r7 Jim Luzern NULL NULL [5, 10) p4
r8 Tina Bern NULL NULL [10, 11) p5
r9 Tina Bern Basel Rain [11, 13) p5 ∧ w2

r10 Tina Bern NULL NULL [10, 11) p6
r11 Tina Bern Basel Rain [11, 13) p6 ∧ w2

Figure 2.16: (PΦDest=LocW)d|><|Loc(WΦDest=LocP)

13

2. Lineage computation in TPDBs

Consider a join operation on relations S and T having join clause θ producing relation R,
where rx.λ is the lineage of rx

1. For each tuple si in S, normalize it using tj in T and set the lineage of each tuple ask
in the created tuple sets as si.λ

2. For each tuple ti in T , normalize it using sj in S and set the lineage of each tuple atk
in the created tuple sets as ti.λ

3. Apply join operation on relations having tuples ask and atk using join clause θ ,
producing ri, where the lineage of ri corresponds to ri.λ = ask.λ ∧ atk.λ

14

3. Confidence evaluation through lineage

3. Confidence evaluation through lineage

Lineage as a complex boolean expression consists of boolean variables and operators. As each
boolean variable represents an event which has a probability of being true, final confidence can
be computed while evaluating lineage. This means that we create a truth table for given lineage,
which allows us to evaluate for which combinations of boolean types lineage is true. Then, by
creating a probability table emerging from the result of the truth table, final confidence can be
computed.

To illustrate this algorithm, recap example from Section 2.2, especially Figure 2.16, where
we performed the query (PΦDest=LocW)d|><|Loc(WΦDest=LocP). Assume we extend this query
with a selection σT=[9,10) on it. This produces:

Name Dest Loc Weather T λ
r1 Ann Zurich Zurich Snow [9, 10) p2 ∧ w3

Figure 3.1: σT=[9,10)((PΦDest=LocW)d|><|Loc(WΦDest=LocP))

Given any lineage, we can compute the corresponding confidence. For the given example
above, there is only one result tuple to be evaluated, but the following algorithm could be applied
for any number of result tuples, as the calculations are made for each result tuple independently.

In a first step, we create a truth table and evaluate it for given lineage. For this, boolean
variables being true are represented with a 1, while boolean variables being false are represented
with a 0. Then, for each row in the truth table, we take the specific boolean type each boolean
variable represents and replace them in the lineage expression. If lineage evaluates to true, we
set the evaluation of the corresponding row to true (1) and false (0) otherwise.

p2 w3 eval
t1 0 0 0
t2 0 1 0
t3 1 0 0
t4 1 1 1

Figure 3.2: Evaluated truth table for p2 ∧ w3

This evaluation allows us to see for which combination of specific boolean types, lineage
evaluates to true. Regarding our example in Figure 3.2, the only combination of specific boolean
types which evaluates to true is entry t4 where the boolean variables p2 and w3 are both being
represented with the specific boolean type being true.

In order to compute final confidence, we only have to consider those combinations which
evaluated to true, as we want to retrieve the probability of the event of the result tuple being true.

15

3. Confidence evaluation through lineage

To achieve this, we have to create a probability table. For this, we look up the corresponding
probability of the tuple the boolean variable belongs to. Depending whether the boolean variable
was represented by a boolean type being true or false, either the probability p of the event being
true, or its opposite 1 − p is taken. Then, for each row, those probabilities are multiplied with
each other, before all probabilities are summed up over all rows. This calculation can also be
seen in the following pseudo-code example:

1 e v a l u a t e P (t ru thTab leRow) {
2 rowP = 1 ;
3 i f (t r u thTab leRow . e v a l == 0) {
4 r e t u r n 0 ; −− g i v e n b o o l e a n t y p e c o m b i n a t i o n d i d n o t e v a l u a t e t o t r u e

f o r l i n e a g e
5 }
6 f o r each e n t r y i n t ru thTab l eRow {
7 i f (e n t r y == 1) −− b o o l e a n t y p e was s e t t o t r u e i n t h e t r u t h t a b l e
8 rowP = rowP ∗ e n t r y . p ;
9 e l s e

10 rowP = rowP ∗ (1 − e n t r y . p) ;
11 }
12 r e t u r n rowP ;
13 }
14

15 −− main f u n c t i o n
16 t r u t h T a b l e = { . . . } ; −− e v a l u a t e d t r u t h t a b l e
17 f i n a l P = 0 ; −− f i n a l c o n f i d e n c e
18 f o r each t ru thTab l eRow i n t r u h T a b l e {
19 rowP = e v a l u a t e P (t ru thTab l eRow) ;
20 f i n a l P = f i n a l P + rowP ;
21 }

Given our example, the application of this algorithm evaluates to the following result. Please
note that ’—’ relates to rows which we did not evaluate any further, as the combination of the
corresponding specific boolean types infers lineage being false.

p2 w3 eval p
t1 — — 0.00
t2 — — 0.00
t3 — — 0.00
t4 0.50 0.70 0.35

sum 0.35

Figure 3.3: Evaluated probability table for p2 ∧ w3

Recap Figure 3.2 where we found out that p2 ∧ w3 evaluates to true for the combination
represented by t4. For this combination of boolean types, we took the probability of the event
being represented by the boolean variable. As p2 was set to true in entry t4 in Figure 3.2, we

16

3. Confidence evaluation through lineage

take the represented probability of the event being true, p2 = 0.5. Analogous, for w3, where we
take w3 = 0.7 as the represented specific boolean type by w3 for entry t4 was 1 (true).

In a final step, the probabilities of each entry are multiplied with each other. Then, we take the
sum over all entries. This will represent the final confidence of the event being true represented
by the given lineage. These even holds if time intervals were adjusted, as an event is not more
likely to happen if the time interval is shortened. Therefore, r1s final confidence equals to 0.35.

The set-up of the truth table assures that the final confidence, the sum over all entries, will
be zero in case that for no combination of specific boolean types lineage evaluated to true. On
the opposite, the probability will be one if lineage evaluates to true for all possible combinations
of specific boolean types. As no outcome can exceed this boundary, computed confidence will
always be between zero and one.

17

4. Implementation

4. Implementation

In this section we will first give a brief overview about how queries are executed on the Post-
greSQL server. Postgres, an more often used alternative name of PostgreSQL, is an object-
relational database management system, which is distributed under an open source licence.
Besides SQL and C it allows also for other languages, so called procedural languages, like
PL/pgSQL, PL/Tcl, PL/Perl and PL/Python.

We then move on explaining how relations must be defined and how queries can be executed.
Afterwards we will show how we implemented the lineage computation and the confidence
computation. However, we are not going to explain each line we changed in the code, but rather
giving a broad overview about the basic concept that we used.

4.1. Postgres

Once a connection to the Postgres server is established, the user is able to execute queries. Each
query will go through different stages, before either an error or a result will be returned.

Firstly, the parser transforms the query according to its grammar into a parse-tree. This is
done by generating corresponding nodes for each keyword in the query, e.g. SELECT will gen-
erate a SelectStmt-Node, whereas * will generate an A Star-Node and so on. While generating
nodes, those nodes are linked with each other, generating a tree, which will then be processed by
the rewriter. By applying all applicable rewriter rules stored in the system catalogs, the rewriter
transforms the parse-tree into the query-tree. In case that the query is syntactically or semanti-
cally invalid, an error will be thrown during rewriting and the further execution of the query will
be aborted.

Before the rewritten query-tree is executed, the optimizer will transform the query-tree. For
this, the optimizer looks up all possible paths leading to the same result. By rearranging nodes
and expanding the least cost path, an executable query-plan is being generated.

Finally, the executor executes the query-plan in the specified order by retrieving the necessary
tuples in the database, applying operators and returning the final result to the user.

4.2. Database setup and usage synopsis

In order to compute lineage and confidence values, each relation must be a temporal probabilistic
relation. This means that each relation must specify a column ts and te, both being of type date
and specifying the time interval, from when (including) until when (excluding) the event the
tuple represents holds. Moreover, there must be an attribute of type numeric that is called p,
which defines the probability of the event’s occurrence.

Regarding query execution, queries must contain keywords such that lineage respectively
confidences get computed. We added the keywords LINEAGE and CONF. If either of both
keywords is given in the user’s query the system will compute lineage. In order to have the

18

4. Implementation

query result show the computed lineage expression, one must specify LINEAGE, while CONF
must be written to get the confidence value computed and displayed. If none of the keywords is
given in the query lineage will not be computed. Both keywords can be used independently and
must be defined right before the so called SELECT-list. See line 2 in the following synopsis.
For the complete synopsis see Appendix C.

1 SELECT [ALL | DISTINCT [ON (e x p r e s s i o n [, . . .])]]
2 [[] | CONF | LINEAGE | CONF LINEAGE | LINEAGE CONF]
3 ∗ | e x p r e s s i o n [[AS] o u t p u t n a m e] [, . . .] −− SELECT− l i s t
4 [FROM f r o m i t e m [, . . .]]
5 [WHERE c o n d i t i o n]
6 . . .

4.3. Implementation approach

We decided to implement the lineage computation in the rewriter. More precisely in the trans-
formation step that transforms the parse-tree into the query-tree. We transform the query that
was entered by the user in such a way that lineage is computed as well. To do so we add calls
to self defined PL/pgSQL-functions and aggregate-function, which take care of the correct com-
putation of the lineage expressions. With this approach we make use of the already existing
functionality of Postgres and since we transform the queries entered by the users into other valid
SQL-queries, no changes in the optimizer nor executor are required.

The computation of the confidence value is done by calling a PL/pgSQL-function and passing
the computed lineage as an argument to it. This function then evaluates with the algorithm
described in Section 3 the confidence value for every result tuple.

In the Appendix additional information to the implementation is given. The files that were
changed for the implementation described in this paper are shown in Appendix A. And in Ap-
pendix B the functions and aggregate-functions that were created are described.

4.4. Lineage as system column

As written in Section 2.1 lineage is conceptually represented as a boolean expression, but in
therms of implementation it is represented as a string. For stored relations, henceforth called
base relations, lineage expressions must be an unique identifier of the tuple itself. But for derived
relations the lineage expressions are concatenations of the lineage expression of base relations
and boolean operators.1 To store those complex lineage expressions we created a system column
called ’lineage’ of type text. Since the fields of type text are of undefined length it is optimal for
this purpose, because it is likely for lineage expressions to grow fast.

To create the lineage expressions for the base relations, which must be unique identifiers, we
make use of identifiers that are already existing in PostgreSQL. We look up the system columns
called ’tableoid’ and ’oid’, which are unique identifiers (so called object identifers, short OID)

1To represent lineage expressions as text we replaced all boolean operators with mathematical ones. This means
that ∧ is represented with ∗, ∨ with + and ¬ with −.

19

4. Implementation

of the relation and the tuple respectively. Those are automatically created by the system.2 Since
the OIDs defined in PostgreSQL are 32-bit quantities and are assigned from a single database-
wide counter, it is possible that the counter wraps around in large databases. To make sure that
no two rows of a table are assigned with the same OID, a unique constraint on the ’oid’ column
should be created.3 By combining the ’tableoid’ and the ’oid’ we are able to uniquely identify
each tuple within the database.

Lineage is defined as system column for the ease of use purposes. To be exact we do not need
to care about if the relations we make manipulations on are base relations ore derived relations.
We can simply access the relations ’lineage’ column. This is because the column is defined for
base tuples in the same way as for derived tuples. In addition, ’lineage’ must not be defined
when relations are created, since we make use of the already existing identifiers.

4.5. Lineage computation

As mentioned before we compute lineage by transforming the queries entered by the users to
other valid SQL-queries.

In the following subsections we show in detail what transformations are done for the different
kinds of SELECT-Statements. It is always shown what query the user enters and how it is
transformed in order to get the correct lineage expression for every tuple. For simplification
reasons we used abbreviations to express subqueries that take care of the temporal adjustment.
pNp for example stands for people NORMALIZE people ON true or pAw for people ALIGN
weather ON dest=loc respectively. The transformation of those statements is shown in the first
subsection and it would be done similar in all other statements.

4.5.1. Temporal adjustment

Normalization
As for normalization the lineage expression of the tuple of the left relation is also the lineage
expression of the resulting tuple, we simply select the original lineage expression of the left
relation as the lineage expression of the resulting tuples.

1 SELECT LINEAGE ∗
2 FROM (p e o p l e NORMALIZE w e a t h e r ON

d e s t = l o c) x ;

SELECT-Statement entered by the user

1 SELECT ∗ , p e o p l e . l i n e a g e
2 FROM (p e o p l e NORMALIZE w e a t h e r ON

d e s t = l o c) x ;

Transformed SELECT-Statement that will be executed

2Till PostgreSQL version 8.1., ’OIDs were created by default unless the user specified to create tables without
OIDs. But today, they are no longer created as most up to date applications do not need this attribute any more.
Therefore, we modified the code such that OIDs are created by default again, as this is eminent to compute
lineage.

3Of course, it is only possible for the table to contain fewer than 232 (4 billion) rows with unique identifiers. But in
practice the table size should be much less anyhow, or performance might suffer.

20

4. Implementation

Alignment
The transformation for alignment is similar to the one for normalization. We also select the
original lineage expression of the left relation as the lineage expression of the resulting tuples.

1 SELECT LINEAGE ∗
2 FROM (p e o p l e ALIGN w e a t h e r ON d e s t =

l o c) x ;

SELECT-Statement entered by the user

1 SELECT ∗ , p e o p l e . l i n e a g e
2 FROM (p e o p l e ALIGN w e a t h e r ON d e s t =

l o c) x ;

Transformed SELECT-Statement that will be executed

4.5.2. Selection

In case of a simple selection, we only need to add the lineage column to the selection list.

1 SELECT LINEAGE ∗
2 FROM p e o p l e
3 WHERE name = ’Ann ’ ;

SELECT-Statement entered by the user

1 SELECT ∗ , l i n e a g e
2 FROM p e o p l e
3 WHERE name = ’Ann ’ ;

Transformed SELECT-Statement that will be executed

4.5.3. Projection

Since projections are not duplicate eliminating in SQL the transformation is the same as for
selections. We also add the lineage column to the selection list.

1 SELECT LINEAGE name , t s , t e
2 FROM pNp ;

SELECT-Statement entered by the user

1 SELECT name , t s , t e , l i n e a g e
2 FROM pNp ;

Transformed SELECT-Statement that will be executed

4.5.4. Duplicate eliminator

If we want duplicates to be eliminated we can use the keyword DISTINCT in SQL. If this is the
case the lineage expressions of all tuples that result in one final tuple must be concatenated. This
resembles the main idea of an aggregation. We therefore transform the SELECT-Statement such
that we group by all expressions that are given in the SELECT-list and we add an aggregation-
function that concatenates the lineage expressions. Like that the Grouping makes sure that the
resulting tuples are distinct. We use the aggregation-function lineage or, which concatenates all
lineage expressions with ’+’ to a resulting lineage expression. See Appendix B for the definition
of the aggregation-function.

1 SELECT DISTINCT LINEAGE name , t s ,
t e

2 FROM pNp ;

SELECT-Statement entered by the user

1 SELECT name , t s , t e , l i n e a g e o r (
l i n e a g e) AS l i n e a g e

2 FROM pNp
3 GROUP BY name , t s , t e ;

Transformed SELECT-Statement that will be executed

21

4. Implementation

PostgreSQL also allows the use of DISTINCT ON where the resulting tuples are only distinct
on the columns defined in the ON-Clause. By definition it keeps the value of the first row for
all columns that are not defined in the ON-Clause. The transformation here is similar to this of
a simple DISTINCT, the only difference is that we do not need to group by the columns, which
are not in the ON-Clause and that we use another aggregation-function for those columns. The
aggregation-function lineage first, simply returns the first element of the group. See Appendix
B for the definition of the aggregation-function.

1 SELECT DISTINCT ON (t s , t e) LINEAGE
name , t s , t e

2 FROM pNp ;

SELECT-Statement entered by the user

1 SELECT l i n e a g e f i r s t (name) , t s , t e ,
l i n e a g e o r (l i n e a g e) AS l i n e a g e

2 FROM pNp
3 GROUP BY t s , t e ;

Transformed SELECT-Statement that will be executed

4.5.5. High Aggregation

For aggregations we must concatenate the lineage expressions of all tuples of the same group
with ’*’ to get the resulting lineage expression. Therefore we add the aggregation-function
lineage and, which handles this concatenation, to the selection list. See Appendix B for the
definition of the aggregation-function.

1 SELECT LINEAGE d e s t , t s , t e , c o u n t
(∗)

2 FROM pNp
3 GROUP BY d e s t , t s , t e ;

SELECT-Statement entered by the user

1 SELECT d e s t , t s , t e , c o u n t (∗) ,
l i n e a g e a n d (l i n e a g e) AS l i n e a g e

2 FROM pNp
3 GROUP BY d e s t , t s , t e ;

Transformed SELECT-Statement that will be executed

A special case, which need to be considered separately is the useage of DISTINCT and
GROUP BY in the same SELECT-Statement. By definition SQL first executes the grouping
and at the end the duplicate elimination. Since we transform SELECT-Statements including
DISTINCT to SELECT-Statements including GROUP BY as we saw above, we need to create
a Sub-SELECT-Statement here. We take the transformation of the SELECT-Statement without
DISTINCT as the Sub-SELECT-Statement and group by all its resulting columns to make them
distinct. To concatenate the lineages of identical groups we again add the lineage or aggregate-
function.

22

4. Implementation

1 SELECT DISTINCT LINEAGE t s , t e ,
c o u n t (∗)

2 FROM pNp
3 GROUP BY t s , t e ;

SELECT-Statement entered by the user

1 SELECT s t m t . t s , s t m t . t e , s t m t . count
, l i n e a g e o r (s t m t . l i n e a g e) AS
l i n e a g e

2 FROM
3 (SELECT t s , t e , c o u n t (∗) ,

l i n e a g e a n d (l i n e a g e) AS
l i n e a g e

4 FROM pNp
5 GROUP BY t s , t e
6) s t m t
7 GROUP BY s t m t . t s , s t m t . t e , s t m t .

c o u n t ;

Transformed SELECT-Statement that will be executed

4.5.6. Join operations

In case of join operations the lineage expression of both tuples that contribute to a result tuple
must be concatenated. We add the function concat lineage and2 to the SELECT-list and pass
the lineage expressions of both given relations as arguments. The concat lineage and2 function
concatenates the given lineages with ’*’ if both are defined, otherwise it simply returns the lin-
eage that is defined, like that we can also support outer joins. See Appendix B for the definition
of the function.

1 SELECT LINEAGE ∗

2 FROM pAw FULL JOIN wAp ON d e s t = l o c ;

SELECT-Statement entered by the user

1 SELECT ∗ , c o n c a t l i n e a g e a n d 2 (pAw .
l i n e a g e , wAp . l i n e a g e) AS
l i n e a g e

2 FROM pAw FULL JOIN wAp ON d e s t = l o c ;

Transformed SELECT-Statement that will be executed

4.5.7. Cartesian product

The cartesian product was only implemented for reasons of completeness. It is actually not used
for temporal operations since the temporal cartesian product is by the reduction rules replaced
with join operations. Since our implementation also works for non-temporal queries, we came
up with a solutions as well. The idea is to concatenate the lineage expressions of all relations
defined in the FROM-Clause to get the lineage expression of the resulting tuples.

1 SELECT LINEAGE ∗

2 FROM people , wea ther , p e o p l e AS p ;

SELECT-Statement entered by the user

1 SELECT ∗ , ’ (’ | | p e o p l e . l i n e a g e | |
’) ∗ (’ | | w e a t h e r . l i n e a g e | | ’)
∗ (’ | | p . l i n e a g e | | ’) ’ a s
l i n e a g e

2 FROM people , wea ther , p e o p l e AS p ;

Transformed SELECT-Statement that will be executed

23

4. Implementation

4.5.8. Set Operations

Set Operations are a bit more complicated, since not only must we compute lineage but also we
must produce different query results in some cases. They are therefore transformed in two steps.
At first a transformation using SELECT-Statements with DISTINCT is done. Those statements
are then transformed in a second step as normal SELECT-Statements with DISTINCT, as we saw
in Section 4.5.4. Set operations also can be executed with the keyword ALL, in which case du-
plicates are not eliminated and we simply do not add DISTINCT to the outer SELECT-Statement
in the first transformation step.
To make the examples not too confusing we use place-holders $1 respectively $2 for the follow-
ing subqueries:

1 $1 := SELECT ∗ , l i n e a g e FROM p1Np2 ;
2 $2 := SELECT ∗ , l i n e a g e FROM p2Np1 ;

Union
In the first transformation step we add the SELECT-Statement with DISTINCT and add lineage
to the SELECT-list of both sides of the union. Since the lineage expression is selected at both
sides duplicates will not be eliminated by the union operation as the lineage expression is not
equal. And in the second step the lineage expressions can get concatenated as we have seen for
SELECT-Statement with DISTINCT.

1 SELECT LINEAGE ∗
2 FROM p1Np2
3 UNION
4 SELECT ∗
5 FROM p2Np1 ;

(1) SELECT-Statement entered by the user

1 SELECT DISTINCT LINEAGE ∗
2 FROM
3 (
4 $1
5 UNION
6 $2
7) s t m t ;

(2) Intermediate transformation of the SELECT-Statement

1 SELECT ∗ , l i n e a g e o r (l i n e a g e) AS l i n e a g e
2 FROM
3 (
4 $1
5 UNION
6 $2
7) s t m t
8 GROUP BY name , d e s t , t s , t e ;

(3) Transformed SELECT-Statement that will be executed

Intersection
The intersection is a bit more complex since we need to first make sure that we do not have
any duplicates on the right side and at the same time we ensure that we concatenate the lineage
expressions of all tuples on the right side that are equal. By joining the left side with the resulting

24

4. Implementation

tuples from the right side we make sure that only the tuples which exist on both sides are in the
result. The final transformations are done as we saw in the sections above.

1 SELECT LINEAGE ∗
2 FROM p1Np2
3 INTERSECT
4 SELECT ∗
5 FROM p2Np1 ;

(1) SELECT-Statement entered by the user

1 SELECT DISTINCT LINEAGE s1 .∗
2 FROM
3 ($ 1) s1
4 JOIN
5 (SELECT DISTINCT ∗
6 FROM ($ 2) s2
7) os2
8 ON s1 . name=os2 . name AND s1 . d e s t

=os2 . d e s t AND s1 . t s =os2 . t s
AND s1 . t e =os2 . t e ;

(2) Intermediate transformation of the SELECT-Statement

1 SELECT s1 . ∗ , l i n e a g e o r (c o n c a t l i n e a g e a n d 2 (s1 . l i n e a g e , os2 .
l i n e a g e)) AS l i n e a g e

2 FROM
3 ($ 1) s1
4 JOIN
5 (SELECT ∗ , l i n e a g e o r (l i n e a g e) AS l i n e a g e
6 FROM ($ 2) s2
7 GROUP BY name , d e s t , t s , t e
8) os2
9 ON s1 . name=os2 . name AND s1 . d e s t =os2 . d e s t AND s1 . t s =os2 . t s AND

s1 . t e =os2 . t e
10 GROUP BY s1 . name , s1 . d e s t , s1 . t s , s1 . t e ;

(3) Transformed SELECT-Statement that will be executed

Except
The except operation is similar to the intersection. There are two differences. The first is that we
use a left join instead of a natural join. Because of that we get all tuples of the left side that do
not match with any of the right side, which is the basic result set of the except operation. But in
addition we also get the tuples that match with the right side. In this case the lineage expressions
of all tuples on the right side that match the given tuple on the left side, must be concatenated
with ’*-’. We achieve this by simply using the aggregation-function lineage andnot instead
of the aggregation-function lineage or which is normally used when a SELECT-Statement in-
cluding DISTINCT is transformed. This is the second difference to the implementation of the
intersection operation.

25

4. Implementation

1 SELECT LINEAGE ∗
2 FROM p1Np2
3 EXCEPT
4 SELECT ∗
5 FROM p2Np1 ;

(1) SELECT-Statement entered by the user

1 SELECT DISTINCT LINEAGE s1 .∗
2 FROM
3 ($ 1) s1
4 LEFT JOIN
5 (SELECT DISTINCT ∗
6 FROM ($ 2) s2
7) os2
8 ON s1 . name=os2 . name AND s1 . d e s t

=os2 . d e s t AND s1 . t s =os2 . t s
AND s1 . t e =os2 . t e ;

(2) Intermediate transformation of the SELECT-Statement

1 SELECT s1 . ∗ , l i n e a g e o r (c o n c a t l i n e a g e a n d 2 (s1 . l i n e a g e , os2 .
l i n e a g e)) AS l i n e a g e

2 FROM
3 ($ 1) s1
4 LEFT JOIN
5 (SELECT ∗ , l i n e a g e a n d n o t (l i n e a g e) AS l i n e a g e
6 FROM ($ 2) s2
7 GROUP BY name , d e s t , t s , t e
8) os2
9 ON s1 . name=os2 . name AND s1 . d e s t =os2 . d e s t AND s1 . t s =os2 . t s AND

s1 . t e =os2 . t e
10 GROUP BY s1 . name , s1 . d e s t , s1 . t s , s1 . t e ;

(3) Transformed SELECT-Statement that will be executed

4.6. Confidence computation

In our implementation the computation of the confidence value is done at the very end and only
for the whole result tuples. We created a PL/pgSQL-function (lineage conf), which computes
the confidence value with the algorithm we described in Section 3. For every result tuple we
call this function and pass the computed lineage as its argument. We see the following example,
where the user defined the keyword CONF instead of LINEAGE, in this case we add the call to
this function.

1 SELECT DISTINCT CONF name , t s , t e

2 FROM pNp ;

SELECT-Statement entered by the user

1 SELECT name , t s , t e , l i n e a g e c o n f (
l i n e a g e o r (l i n e a g e)) AS p

2 FROM pNp
3 GROUP BY name , t s , t e ;

Transformed SELECT-Statement that will be executed

The implemented algorithm retrieves the confidence values of the tuples of the base relations
by calling our function lineage prob. This function returns the confidence value that is stored in
the tuple referenced by the given lineage expression.

26

5. Evaluation

5. Evaluation

In this section we present the evaluation we did to test our implementation. As first we will
show what the limitations of our approach are, this means what are the queries which are not
taken care of. And afterwards we will show how the implementation performs on a synthetically
created dataset.

5.1. Lineage computation

The given implementation approach has some minor drawbacks, which are presented in the
following paragraphs.

Ambiguity of columns
One problem is ambiguity, which can occur after join operations. If a join operation produced
a intermediate relation having columns with similar names, any distinct, difference, intersect
or duplicate eliminating union operation will fail. This is because SELECT-Statements with
DISTINCT are transformed to SELECT-Statements with GROUP BY, where each column must
be listed separately. No ambiguity is allowed here. The problem also occurs for difference and
intersection, since those SELECT-Statements are transformed using a join operation. Here, the
matching clause of the join is the problem when ambiguity occurs.

The following SQL-query is an example of a query that fails. The problem here is that the
Sub-SELECT-Statement has every column twice with the same name. Therefore it is impossible
to group by those columns.

1 SELECT DISTINCT LINEAGE ∗
2 FROM
3 (SELECT ∗
4 FROM p e o p l e JOIN p e o p l e AS p ON p e o p l e . name=p . name
5) s t m t ;

Usage of views
A further problem occurs when working with views. If the user does not specify the keyword
LINEAGE while creating a view, no further lineage or confidence computation can be done using
this view afterwards. It is recommended to only use LINEAGE and not also CONF for views,
since the presence of CONF leads to a table with a column p at the end, which would impede
the usage of temporal operators for continuing queries.

The following statement shows how a view should be defined in order to be able to use it
afterwards to compute lineage or confidence value respectively and in the meantime be able to
perform temporal adjustments.

27

5. Evaluation

1 CREATE VIEW pzh AS
2 SELECT LINEAGE ∗
3 FROM p e o p l e
4 WHERE d e s t = ’ Z u r i c h ’ ;

Probability value in Where-Clause
Finally, another drawback occurs when working with the probability attribute p in SELECT-
Statements. SELECT-Statements work perfectly fine even for comparisons with p unless they
are not specified on base relations. On derived relations, no comparisons using p can be done,
as the probability attribute is not calculated for any intermediate results. This corresponds also
to examples we have shown in Section 2.1, where we omit the probability attribute for each
intermediate result. In regards that it is very unlikely to have such a query, we omitted finding a
complex solution.

The following query would fail, since p is not calculated when required.

1 SELECT CONF ∗
2 FROM
3 (SELECT d e s t , c o u n t (∗)
4 FROM p e o p l e
5 GROUP BY d e s t
6) s t m t
7 WHERE p > 0 . 5 ;

Aggregation
In case of aggregations we decided to implement so called ’High Aggregation’. This means that
we only consider the case, in which all tuples of a group that contribute to an aggregate are true.
Suciu et. al. [4] suggest to calculate all possible outcomes of the aggregation. In the example in
Figure 5.1 this means that we only compute the tuple r1 instead of all 3 tuples.

P1 (People)
Name Dest T p

p1 Ann Zurich [4, 5) 0.8
p2 Jim Zurich [4, 5) 0.3

σT=[4,5)(Dest,Tϑcount(Name)(NDest(P1;P1)))

Dest count(Name) T p
r1 Zurich 2 [4, 5) 0.24
r2 Zurich 1 [4, 5) 0.62
r3 Zurich 0 [4, 5) 0.14

Figure 5.1: Aggregation

Absorb
For the implementation described in this paper we ignore the keyword ABSORB. Nothing will
be absorbed when lineage respectively confidence values should be calculated.

28

5. Evaluation

5.2. Confidence evaluation

In regard of confidence evaluations the limitations are due to the complexity of the evaluation
algorithm. Since the algorithm has a complexity of O(2k) where k is the number of distinct
identifiers. This algorithm is executed for every result tuple, therefore the overall complexity is
of O(2k ∗ n) with n as the number of result tuples.

Runtime dependent on number of distinct identifiers

0 10 20

0

500

1,000

1,500

2,000

distinct identifiers (k)

ru
nt

im
e

[s
ec

]

(a) ∧-concatination

0 10 20

0

2,000

4,000

6,000

distinct identifiers (k)

ru
nt

im
e

[s
ec

]

(b) ∨-concatination

Figure 5.2: Runtime dependent on the number of distinct identifiers

As we expected, the runtime grows exponentially when the number of distinct identifiers
grows. In Figure 5.2 we see that the runtime rapidly grows when the number of distinct identi-
fiers grows about 15.

The computation of a confidence value whose lineage expression is only using ∨-operators
takes about three times more time than one of equal length but using∧-operators. This is because
when ∧ is present only one entry of the truth table evaluates to true, but when ∨ is present all
except one entry of the truth table evaluate to true. In this case much more calls to get the
confidence value of the base tuples are required.

29

5. Evaluation

Runtime dependent on the number of tuples

0 500 1,000 1,500 2,000
0

200

400

result tuples (n)

ru
nt

im
e

[s
ec

]

Figure 5.3: Runtime dependent on the number of tuples

In regards of the performance dependent on the number of result tuples, we can see in Figure
5.3 that the runtime grows linearly. This comes due to the fact that the confidence computation
is executed for every result tuple similarly and therefore needs about the same amount of time.
As we see the performance in this case is not very satisfying too. For 2000 result tuples the
implementation already needs more than 7 minutes to execute.

30

5. Evaluation

Acknowledgements

Many thanks to Aikaterini Papaioannou, who supported us while implementing and writing the
report. Moreover, we would like to thank Prof. Dr. Michael Böhlen, who has given us the
opportunity to do the master project in this interesting topic.

31

References

References

[1] Anton Dignös, Michael H. Böhlen, and Johann Gamper. Temporal alignment. In SIGMOID
Conference, pages 433-444, 2012.

[2] Anish Das Sarma, Martin Tehobald, and Jennifer Widom. Exploiting Lineage for Confi-
dence Computation in Uncertain and Probabilistic Databases. ???, 2007.

[3] Anton Dignös, Michael H. Böhlen, and Johann Gamper. Query time scaling of attribute
values in interval timestamped databases. In ICDE, 2013.

[4] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Dataabses.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.

[5] PostgreSQL. ”PostgreSQL 9.2.4 Documentation”. Web. 28 Aug. 2013.
http://www.postgresql.org/docs/9.2/static/index.html

32

A. Changed Files

A. Changed Files

The stable version 9.2.4 of PostgreSQL Core Distribution was taken as basis and the following
files were modified for the implementation described in this paper. To each file a brief description
of the undertaken modifications is given:

• \src\backend\access\common\heaptuple.c

Create and retrieve the unique tuple identifier as a boolean variable of type text (for lin-
eage)

• \src\backend\catalog\genbki.pl

Definition of lineage as a system column

• \src\backend\catalog\heap.c

Definition of lineage as a system column

• \src\backend\catalog\lineage.sql

Definition of functions and aggregates for lineage concatenation and confidence compu-
tation

• \src\backend\catalog\Makefile

Inclusion of lineage.sql into the source directory

• \src\backend\nodes\copyfuncs.c

Handle the new variables defined the SelectStmt

• \src\backend\nodes\outfuncs.c

Handle the new variables defined the SelectStmt

• \src\backend\parser\analyze.c

Main part of the implementation, where we rewrite the queries and add calls to self devel-
oped PL/pgSQL-functions for lineage concatenation and confidence computation

• \src\backend\parser\gram.y

Definition of CONF and LINEAGE in the grammar

33

A. Changed Files

• \src\backend\parser\parse node.c

Definition of default values for new variables in ParseState

• \src\backend\parser\parse relation.c

Ignorance of lineage and probability column for .* expansion

• \src\backend\parser\parse target.c

Ignorance of probability column. Additional aggregation function for lineage and proba-
bility column if necessary

• \src\backend\utils\misc\postgresql.conf.sample

Set the usage of OIDs as unique identifiers as default

• \src\backend\initdb\initdb.c

Integration of the functions and aggregates defined in lineage.sql

• \src\bin\pg dump\pg dump.c

Definition of lineage as a system column

• \src\include\access\sysattr.h

Definition of lineage as a system column

• \src\include\nodes\parsenodes.h

Definition of the LineageType which will keep track whether and how lineage shall be
computed. Contains also further variables being added to the SelectStmt.

• \src\include\parser\kwlist.h

Definition that CONF and LINEAGE is a preserved keyword

• \src\include\parser\parse node.h

Definition of further variables for the ParseState

34

B. Implemented PL/pgSQL-Functions & -Aggregates

B. Implemented PL/pgSQL-Functions & -Aggregates

We implemented the following functions and aggregates which are required for the lineage and
confidence value computation. They are therefore automatically inserted into the database when
initdb is executed.

B.1 ∨-concatenation
Function concat lineage or(a text, b text)
Return value text
Description Concatenates lineage a with b using +

Example a = 1.1 ∗ 2.1 and b = 3.1 ∗ 4.1 reveals to 1.1 ∗ 2.1 + 3.1 ∗ 4.1

Aggregate lineage or(text)
Description Concatenates a set of lineages belonging to the same group using

+

Example 1.1, 2.1 ∗ 3.1, 4.1 reveals to 1.1 + 2.1 ∗ 3.1 + 4.1

B.2 ∧-concatenation
Function concat lineage and(a text, b text)
Return value text
Description Concatenates lineage a with b using ∗, while placing b in brackets

first due to the higher priority of ∗ against +. This is used for the
lineage and aggregation-function

Example a = 1.1 + 2.1 and b = 3.1 + 4.1 reveals to 1.1 + 2.1 ∗ (3.1 + 4.1)

Aggregate lineage and(text)
Description Concatenates a set of lineages belonging to the same group using

∗
Example 1.1, 2.1 + 3.1, 4.1 reveals to (1.1) ∗ (2.1 + 3.1) ∗ (4.1)

Function concat lineage and2(a text, b text)
Return value text
Description Concatenates lineage a with b using ∗, while placing a and b in

brackets first due to the higher priority of ∗ against +

Example 1 a = 1.1+2.1 and b = 3.1+4.1 reveals to (1.1+2.1)∗(3.1+4.1)
Example 2 a = 1.1 + 2.1 and b = NULL reveals to 1.1 + 2.1
Example 3 a = NULL and b = 3.1 + 4.1 reveals to 3.1 + 4.1

B.3 ∧¬-concatenation for difference operations

35

B. Implemented PL/pgSQL-Functions & -Aggregates

Function concat lineage notand(a text, b text)
Return value text
Description Concatenates lineage a with b using ∗−, while placing a and b in

brackets first due to the higher priority of ∗ against +

Example a = 1.1+2.1 and b = 3.1+4.1 reveals to (1.1+2.1)∗−(3.1+4.1)

Aggregate lineage notand(text)
Description Concatenates a set of lineages belonging to the same group using

∗−
Example 1.1, 2.1 + 3.1, 4.1 reveals to (1.1) ∗ −(2.1 + 3.1) ∗ −(4.1)

B.4 Function and aggregate to retrieve the lineage of the first element in the group

Function lineage first agg (anyelement, anyelement)
Return value anyelement
Description Returns first left element
Example a = 1.1 + 2.1 and b = 3.1 + 4.1 reveals to 1.1 + 2.1

Aggregate lineage first(anyelement)
Description Retreives the lineage of the first element in the group
Example 1.1, 2.1 + 3.1, 4.1 reveals to 1.1

B.5 Retrieve probability of a base tuple

Function lineage prob(lineage expr text)
Return value numeric
Description Given that lineage expr is an unique identifier, it retrieves the

probability of the event of the identified tuple
Example 1.1 and tuple 1.1 = {”Ann”, ”Zurich”, 0.80, ’2013-01-01’, ’2013-

01-03’} reveals to 0.80

B.6 Extract functions for boolean expressions

Function lineage vars(lineage expr text)
Return value text[]
Description Given that lineage expr is a lineage, this function retrieves all

unique identifiers stored in the given expression
Example (1.1 + 2.1) ∗ (1.1) reveals to {1.1, 2.1}

Function lineage tokenize(lineage expr text)
Return value text[]
Description Given that lineage expr is a lineage, this function retrieves all

identifiers, operators and parenthesis stored in the given expres-
sion

Example (1.1 + 2.1) ∗ (1.1) reveals to {(, 1.1, +, 2.1,), *, (, 1.1,)}

36

B. Implemented PL/pgSQL-Functions & -Aggregates

Function lineage postfix(lineage expr text)
Return value text[]
Description Given that lineage expr is a lineage, this function transforms lin-

eage into an array in postfix transformation
Example (1.1 + 2.1) ∗ (1.1) reveals to {1.1, 2.1, +, 1.1, *}

Function lineage true or false(vars text[], var text)
Return value boolean
Description Retrieves whether boolean variable var was set to true or false in

the array of boolean variables
Example {1.1 = 1, 2.1 = 0} and 2.1. reveals to 0 (false)

B.7 Evaluation functions
Function lineage evaluate(lineage expr text, vars text[])
Return value boolean
Description Evaluates whether given lineage is true for the given boolean vari-

ables in the vars-array
Example (1.1) ∗ (2.1) + 3.1 and {1.1 = 1, 2.1 = 0, 3.1 = 1} reveals to 1

(true)

Function lineage conf(lineage expr text)
Return value numeric
Description Computes the confidence value for a given lineage while using

the functions defined above
Example (1.1) ∗ (2.1) and {1.1 = {”Ann”, ”Zurich”, 0.8, ’2013-01-01’,

’2013-01-03’}, 2.1 = {”Marc”, ”Zurich”, 0.6, ’2013-01-01’,
’2013-01-03’}} reveals to 0.48

37

C. New SELECT-Statement synopsis

C. New SELECT-Statement synopsis

The complete SELECT-Statement synopsis with the newly added keywords, for lineage and
confidence computation, LINEAGE and CONF respectively (line 3) is listed here [5].

1 [WITH [RECURSIVE] w i t h q u e r y [, . . .]]
2 SELECT [ALL | DISTINCT [ON (e x p r e s s i o n [, . . .])]]
3 [[] | CONF | LINEAGE | CONF LINEAGE | LINEAGE CONF]
4 ∗ | e x p r e s s i o n [[AS] o u t p u t n a m e] [, . . .]
5 [FROM f r o m i t e m [, . . .]]
6 [WHERE c o n d i t i o n]
7 [GROUP BY e x p r e s s i o n [, . . .]]
8 [HAVING c o n d i t i o n [, . . .]]
9 [WINDOW window name AS (w i n d o w d e f i n i t i o n) [, . . .]]

10 [{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] s e l e c t]
11 [ORDER BY e x p r e s s i o n [ASC | DESC | USING o p e r a t o r] [NULLS { FIRST |

LAST }] [, . . .]]
12 [LIMIT { c o u n t | ALL }]
13 [OFFSET s t a r t [ROW | ROWS]]
14 [FETCH { FIRST | NEXT } [c o u n t] { ROW | ROWS } ONLY]
15 [FOR { UPDATE | SHARE } [OF t a b l e n a m e [, . . .]] [NOWAIT] [. . .]]
16

17 where f r o m i t e m can be one of :
18

19 [ONLY] t a b l e n a m e [∗] [[AS] a l i a s [(c o l u m n a l i a s [, . . .])]]
20 (s e l e c t) [AS] a l i a s [(c o l u m n a l i a s [, . . .])]
21 w i t h q u e r y n a m e [[AS] a l i a s [(c o l u m n a l i a s [, . . .])]]
22 f u n c t i o n n a m e ([a rgument [, . . .]]) [AS] a l i a s [(c o l u m n a l i a s [,

. . .] | c o l u m n d e f i n i t i o n [, . . .])]
23 f u n c t i o n n a m e ([a rgument [, . . .]]) AS (c o l u m n d e f i n i t i o n [, . . .])
24 f r o m i t e m [NATURAL] j o i n t y p e f r o m i t e m [ON j o i n c o n d i t i o n | USING (

j o i n c o l u m n [, . . .])]
25

26 and w i t h q u e r y i s :
27

28 w i t h q u e r y n a m e [(column name [, . . .])] AS (s e l e c t | v a l u e s | i n s e r t
| u p d a t e | d e l e t e)

29

30 TABLE [ONLY] t a b l e n a m e [∗]
31

38

	Introduction
	Lineage computation in TPDBs
	Lineage
	Temporal adjustment in TPDBs
	Relational algebra operators in TPDBs
	Selection
	Duplicate eliminator
	Projection
	High Aggregation
	Set operations
	Join operations

	Confidence evaluation through lineage
	Implementation
	Postgres
	Database setup and usage synopsis
	Implementation approach
	Lineage as system column
	Lineage computation
	Temporal adjustment
	Selection
	Projection
	Duplicate eliminator
	High Aggregation
	Join operations
	Cartesian product
	Set Operations

	Confidence computation

	Evaluation
	Lineage computation
	Confidence evaluation

	References
	Changed Files
	Implemented PL/pgSQL-Functions & -Aggregates
	New SELECT-Statement synopsis

