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Abstract

This thesis aims to provide new insights on data lineage computations within the Credit Su-
isse data warehouse environment. We propose a system to compute the lineage, targeted at
business users without technical knowledge about IT systems. Therefore we provide complete
abstraction for end users. Furthermore, we process only conceptual mapping rules from the
metadata warehouse, in contrast to other approaches which record transformations at runtime,
and consequently do not rely on access to potentially sensitive data. In order to process map-
ping rules, we developed an algorithm that is capable of extracting components generically,
based on their semantic meaning and relation to each other. This thesis describes some pat-
terns in lineage investigations that result from our approach and gives an outlook to future
projects that could be based on this work.



Zusammenfassung
Diese Arbeit erläutert unsere Erkenntnisse bezüglich der Berechnung von Data Lineage im
Bereich des Data Warehouse der Credit Suisse. Hierzu stellen wir eine Methode vor, um Data
Lineage für Business Anwender zu errechnen, welche keine tieferen Kenntnisse bezüglich
der IT Systeme besitzen. Dem Benutzer wird mittels des vorgestellten Ansatzes vollständige
Transparenz und Abstraktion vom technischen Problem ermöglicht. Wir benutzen lediglich
die konzeptionellen Abbildungsvorschriften in Mappings aus dem Metadata Warehouse, wohinge-
gen andere Ansätze die Abbildungen zur Laufzeit aufzeichnen. Daher sind wir nicht auf den
Zugriff auf potentiell vertrauliche Daten angewiesen.
Um die Mapping Regeln auszuwerten, benutzen wir einen Algorithmus, der generisch Kom-
ponenten aus Mappings ausliest. Dabei werden sowohl die semantische Bedeutung der Kom-
ponenten, als auch deren Beziehung zueinander berücksichtigt. Weiterhin beschreiben wir in
dieser Arbeit Muster in der Lineage Berechnung, die sich aus unserem Ansatz ergeben, und
bieten ein Ausblick auf zukünftige Projekte basierend auf unseren Erkenntnissen.
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1. Introduction
One of the core competencies of a a bank is the ability to maintain and efficiently utilize a data
processing infrastructure [Lle96]. Especially analyzing large data sets to make market-based
decisions or create a risk assessment for certain events provides valuable advantages [NB04].
As a middle-ware layer between transactional application and those decision supporting appli-
cations, data warehouse systems are the technology of choice [Win01]. They serve as means
to decouple systems used for the support of decision making from the business transactions.
But by using those systems, data from different sources is quickly mixed and merged. In sev-
eral steps complex computations are performed and results re-used in other steps. That makes
it hard to keep track of distinct sources and influences during the numerous transformations
that are necessary to compute the final result [EPV10], even though knowing the derivation
history of data can be quite useful in many cases. For instance finding out about the trust-
level attributed to certain sources and then assessing the reliability of the result is often very
important [MM12]. Moreover, providing an audit-trail is common practice in many financial
applications and has to be kept in great detail. In the simplest case, the user might just want to
see and understand how exactly the result was created and which data items were used in the
process.
The information about history and origins of data is called data provenance, or also data lin-
eage [BKWC01]. In this thesis, we will address the issue of computing and analyzing the data
lineage in data warehouse environments. In contrast to other approaches, we will not trace
executed transformations, but use the conceptual logic behind single transformation rules to
compute the flow of data independent from the technical implementation. This enables us to
follow the lineage of data across various systems and implementations.
The transformation rules that we use are therefore not concrete implementations, such as SQL
statements, but conceptual specifications of rules. They define on a conceptual level how
data is transformed and moved along the system. Those rules are stored within the existing
Credit Suisse metadata warehouse and called mappings [JBM+12]. By following a sequence
of mappings in reverse order, we can therefore find every source that may contribute to a
given result according to the utilized sources in each mapping. In some cases, a sequence of
mappings completely excludes data items from one or more sources by applying exclusive
filters in different mappings. To recognize those restrictions, we process the conditional logic
that is incorporated in every mapping and evaluate the combined conditions of the mapping
sequence.
Consequently we propose a system to search for the source which contains the original data
where a given result is effectively based on. We call this the golden source and the com-
putation process active lineage. However, the provided approach allows for many possible
extensions in different directions, such as impact analysis or optimization of mappings.
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The structure of this thesis is as follows: we will first describe the practical use case for
our application in section 2. Then we define the scope of the thesis and describe the concrete
task in chapter 3. To give the reader an idea of alternative solutions an how our approach
compares to those, we will present the most common concepts in section 4. After presenting
the existing elements on which we base our work in section 5, we will then explain the lineage
computation in our system in section 6 and describe the developed algorithm in great detail.
That is followed by an outline of common patterns that emerge from the proposed technique
and what conclusions we can draw from them. Chapter 8 illustrates how the devised prototype
implements the presented algorithm. In the last chapter 9 we will then give an outlook on
future extensions of the algorithm based on its current limitations.
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2. Use Case Description
As explained in chapter 1, lineage information describes the origins and the history of data.
That information can be used in many scientific and industrial environments. A well docu-
mented example of the importance of lineage information are tasks using SQL queries [MM12].
Here, the users often wants to find out why a particular row is part of the result or why it is
missing. Those questions can usually be answered without much effort, since the user has
direct access to and knowledge about the used queries.
While we will focus on a business related application, the usage of data lineage is of course not
limited to those. Scientists in several fields such as biology, chemistry or physics often work
with so-called curated databases to store data [BCTV08]. In those databases, data is heavily
cross-connected and results originate from a sequence of transformations, not dissimilar to
our application. Here it is vital for researchers to obtain knowledge about the origin of data.
Depending on the source, they can then find the original, pure datasets and get a picture of
their reliability and quality.

In the scope of this thesis, we primarily consider the internal processes in an internationally
operating bank. Here exist many data sources that are part of different business divisions,
such as Private Banking or Investment Banking. All of them serve different purposes and are
maintained from different organizational units. Now, to create a reliable analysis or report
as a basis for important decisions on a global scale, a system to support this has to take into
account data from a potentially very large number of sources. In order to provide the expected
result, data items may undergo a sequence of transformations over several layers in the system
and are mixed or recombined [JBM+12]. We call such a transformation mapping, where a
sequence of mappings defines a data flow, i.e. the path that data items take in the system,
from their respective source to the final result. The full concept of those mappings and the
implications will be explained in chapter 5.1. When the responsible user finally gets access to
the report, there is practically no way for the human reader to grasp the complete data flow and
its implications on single data items. Usually that would not be necessary for a business user
who is only the initiator of the process and receiver of the result. But what if the user discovers
a discrepancy in the generated data values? She might be able to verify the result or identify
a possible error if she was presented with the details, since she is familiar with the purpose
and operational origin of the data. Yet she can not be expected to have knowledge about the
system on a technical level, especially not about the physical implementation of mappings.
We therefore aim to provide a system that enables the user to gather lineage information about
a given data item independent from her technical skills and knowledge. In order to built such
a system, there are a number of issues to be addressed.
For example not every user has access to every part of the system. Especially in the financial
sector where sensitive customer data is very common, there exist very strict regulations on
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data access. For this reason we need to rely on the mapping rules instead of actually recording
the transformations, where access might be required that is not granted for ever user.
Additionally we need to represent both the results and potential user input in easily under-
standable form. There is no gain in providing the user with yet another abstract interface or
even special query language if we want to make the system accessible to a broad spectrum of
business users. We solved this issue by supplying a verbose syntax based on a well defined
grammar as basis for representations, which will be explained in section 5.2.
To utilize existing mapping data from the current system, we have to face another challenge.
Credit Suisse is successfully running a metadata warehouse [JBM+12], hence we build our
system on the available infrastructure and model. This has an major impact on the design
since the system deals not with flat files or relational databases, but uses the RDF (Resource
Description Framework) data model. In this implementation data resides in graph structures
instead of a traditional flat representation. Yet we ignore the specifics of RDF, since the gen-
eral approach is unchanged for data in any type of graph, independent of the actual storage
technology. We generally assume the set of all mappings to form a connected graph and data
items to follow paths in this graph according to mapping rules.
In order to provide the promised level of abstraction to the user, we need to automate every
step of the computational process. We decided to modularize those steps so that similar re-
quests can be computed with only small changes to the algorithm without affecting the rest of
the system. Similar challenges might include impact analysis, where the user is not interested
in the origins of a result, but in which results the original data is used. This could be the
continuation of the above example, where the user spots an error in a data source. She might
be interested where else the error-prone data was utilized in order to learn about other affected
computations. Or from a more technical perspective, an IT user could want to speed up the
system by optimization. Finding loops of dependencies or dead-ends in data-flows might help
to reduce the complexity of the system.
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3. Task
From the use case specification in chapter 2 we can take away that there is a high value in
lineage computations in a company’s data system. Following that, the main goal of this thesis
is to provide new insights into the matter of data lineage in the context of data warehousing
within Credit Suisse. In this chapter we will provide an outline of the scope of the task that is
given for this thesis and then show the power of the resulting lineage computations.

3.1. Description
As mentioned in chapter 2, we built our system on the existing metadata warehouse infras-
tructure and model of Credit Suisse. Accordingly, we assume the data sets to form a directed
graph, where nodes are sources or (intermediate) results and edges symbolize mapping trans-
formations of data. In this context, data is moved along a number of paths through the graph,
starting on each involved source and ending at the final result. To determine all the original
sources of a given data item, we need to traverse those paths backwards along the graph until
we reach the starting points of the sequence of applied transformations.
However, traversing the graph simply in a brute-force manner might result in an exponentially
growing number of potential paths to consider. Therefore we try to reduce the number of
followed paths by evaluating the logic that is incorporated in every mapping. We call this the
active lineage that dynamically processes the transformation logic behind every step, in con-
trast to the passive lineage where paths are considered only statically. Detailed explanation of
this distinction follows in chapter 3.2.
Following this, we are not only observing isolated mapping rules but the sequence of map-
pings and can make assumptions about their combined impact. For example mappings with
contradicting conditions on data processing are individually seen both valid and relevant for
lineage computation, but applied in sequence may exhaustively restrict the conveyance of data
items. This potentially allows to reduce the number of followed paths significantly and gives
us the chance to determine the lineage of data even more accurately by excluding false pos-
itives. Figure 3.1 illustrates the potential benefit of active lineage for theoretical data flows.
Assuming we are interested in the lineage of items in H, the evaluated paths and resulting
golden sources are painted red. In the case that both sequences of mappings e2 � b2 and e2 � c2
could be excluded based on the logic in the respective mappings, source B can be identified
as a false positive. Passive lineage, however, evaluates only the static data flows and therefore
includes B as a golden source.

The system to be built uses the already existing rules about the structure of mappings, that are
given in the form of a context-free grammar. By using those grammar rules, it is possible to
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generate a generic system that filters the path according to certain criteria such as particular
value ranges or attributes. Those filters may be user specified or a result of active lineage
computations. To achieve that, there are two basic steps necessary:

1. Extract logic and meta information from mappings

2. Traverse the graph according to those results

We will explain both steps in great detail and then take a look at common patterns that occur
during graph traversal based on the results. Additionally we will present a prototype that
implements the results of our considerations as an empirical proof of concept. Finally there is
an outlook on the possible extensions of the system as well as its current limits, especially in
regard to the developed algorithm and the underlying system.

3.2. Lineage Specification
In order to explain our solution for the given task, we first need to elaborate on the possible
degrees of lineage computations. We distinguish two types of lineage for our purposes: the
passive lineage and active lineage. What we want to offer to the user is the more advanced
active lineage. In chapter 4 we will compare those two forms of lineage to other common
definitions.

Passive Lineage

Passive lineage denotes the more basic, static computation of data lineage. It finds all poten-
tial sources of data items for a sequence of transformations. However, it does not consider
further conditions or constraints that are given for data flows and therefore includes sources
that effectively do not contribute to the result. For example data flows that are restricted
through exclusive transformation rules may still be listed in passive lineage, even if no data
item reaches the result table.

Let us consider the given database in 3.2 where we apply to both tables query Q:

Q : SELECT b.X, a.Z FROM A a, B b WHERE a.X = b.X AND b.V = v1

Now we are interested in the passive lineage of the result. For this it is sufficient to find the
exact location from where data items were copied. Hence we look at Q and find that the
SELECT statement reads both A and B but returns only data from A. This is apparent from
the fragment "a.X, a.Z". Therefore we identify the passive lineage to be {A1}.
Additionally we consider another query Q2 which produces the same result but by different
means:

Q2 : SELECT b.X, a.Z FROM A a, B b WHERE a.X = b.X AND b.V = v1

The passive lineage is now {A1, B1}.
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Figure 3.1.: Active lineage may reduce the lineage paths (red) for data items in H.

Active Lineage

In contrast, active lineage actively computes the conditions that need to be fulfilled in order to
include a source in the lineage. This potentially reduces the number of sources, for example
if an accumulated set of conditions along the way evaluates to false for a particular source. In
the end, active lineage is effectively the passive lineage with evaluated conditions on the data
flow. Let us consider the given database in figure 3.2 and again apply query Q, then the active
lineage results in {A1, B1} with the attached condition a.X = b.X AND b.V = v1. We call
such an effective source of data a golden source.

Definition 1 While a source may be in general both target and data source for transforma-
tions, a golden source is a source that serves only as data source and is not targeted by any
transformation.

This makes the golden source the storage location of some or all of the original data items
which were used in the computation of the given result. It does however not include sources
that occur solely in conditional parts of the transformation.
Furthermore a source is only a golden source if its data items may in fact be part of the result
and are not logically excluded by a combination of transformation steps beforehand. However,
a golden source is not determined by the actual values of data items. An empty source may
still be a golden source.

A
X Y Z

A1: x1 y1 z1
A2: x2 y2 z2

B
X U V

B1: x1 u1 v1
B2: x1 u2 v1
B3: x3 u3 v3

Result of Q
X Z
x1 z1

Figure 3.2.: Example database for provenance considerations
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4. Related Work
The following sections present the most common categorizations used in other works. We
provide the reader an overview of the scope of similar procedures and how our approach, as
outlined in chapter 3, relates to those.
While there exist many different ideas on how to solve the data lineage question, we go with
a new and innovative approach. As described in the use case, the ultimate goal is to offer a
service for users who have little or no knowledge in the technical area, but are interested in
the lineage of data for further analysis. This makes a huge difference to other approaches,
where the user may be required to understand the process in order to produce results. For
instance Karvounarakis et al. use a custom query language in order to pose requests to the
system [KIT10]. Glavic et al. designed their provenance system Perm as an extension of the
PostgreSQL DBMS and expect the user to execute SQL queries for provenance information
[GA09].
Furthermore most of the existing lineage algorithms work on the assumption that the actual
content of the database is known and available. They trace or record real transformations by
running them, like Cui et al. do in their work on lineage tracing in data warehouse transforma-
tions [CW03]. But we have only access to structural information about transformations, not
the transformed data. Therefore we do not only record the lineage at run-time, but evaluate
the computational steps based on the structural information.

Regarding common terminology, it can be noted that many works use data provenance as
synonym to data lineage [Tan07] or also pedigree [GD07, BT07]. Moreover it is a common
approach to define three major categorizations for provenance information. Those are tradi-
tionally why-, and where-provenance [BKWC01] as well as how-provenance in later works
[CCT09, GM11]. Every category aims to find out a specific form of provenance. In order
to classify our approach we will shortly describe the main differences between each of those
categories.

Why-Provenance

The search for why-provenance leads to the contributing source, or witnesses basis as others
call it [CCT09, GD07]. Why-provenance captures all source data that had some influence on
the existence of the examined data item. Intuitively it explains why any data item is part of the
result. This does not only include the actual data that is present in the result, but also data items
that have to be used in order to select the final data. But even though many data items might
be part of the computation (the set of witnesses), why-provenance denotes only the minimal
set of data items that is necessary to produce the result (the witness basis). A simple example
would be the following scenario: Take again two tables A and B as shown in figure 3.2.
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For a given query like

Q : SELECT a.X, a.Z FROM A a, B b WHERE a.X = b.X AND b.V = v1

we get the result that is presented in the figure. Now we can immediately see that the origin of
the result is solely table A, more precisely A1. But according to the given explanation, we have
to include both B1 and B2 into our consideration, since they were used by the query. However,
there is no need for both of them to exist in order to derive the same result. Either B1 or B2

would suffice. Therefore the witness basis, i.e. why-provenance of C1 can be expressed as the
set {{A1, B1}, {A1, B2)}}. For our goal to provide active lineage, we apply some of the same
operations that are also necessary to compute why-provenance. But instead of simply stating
the why-provenance, we evaluate it after each step and draw further conclusions regarding
relevance of sources. This concept is used in the preservation of conditions (chapter 6.3.1).

Where-Provenance

In contrast to why-provenance the where-provenance, also called original source, focuses on
the concrete origin of data [GD07]. It respectively answers the question where exactly data
items come from, regardless of the reasons why they are part of the result. This relates strongly
to our definition of passive lineage. While we need to compute the while provenance as a part
of active lineage, it is not sufficient. We basically evaluate the why-provenance for each item
in the where-provenance and then remove non-relevant items from the result.

How-Provenance

The concept of how-provenance is relatively new compared to the other two provenance types.
It was introduced for the first time in 2007 by Green et al. [GKT07]. Following the nomen-
clature of why- and where-provenance, how-provenance answers the questions how the result
was produced and how data items contribute. It is easily confused with why-provenance, but
goes one step further.
In order to record why-provenance, most systems use a special notation. In order to keep the
introduction short, we relinquish the in-depth explanation of such a notation as it can be found
in [GKT07] and [CCT09]. But by using the given example from figure 3.2 and again apply-
ing query Q2, we can also derive the (in this case) very simple how-provenance. The result
is a combination of two tuples A1 ^ B1, effectively preserving the computational expression
that was used. By following such provenance information through the set of transformations,
we get a picture not only where data items come from, why they are part of the result but
also how exactly they were computed in each step. This is definitely the most advanced and
thorough type of provenance. For our purposes however this yields no advantage over active
provenance. It is not important for us how the data was computed, only the fact that the com-
putation allows for its contribution to the result.

To summarize, our goal is ultimately to compute active lineage in contrast to other systems
that process only one of the previously presented provenance categories. We do not only
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follow along the lineage path, but also use the gathered information to dynamically decide
which paths and sources are effectively relevant for the lineage. Furthermore we want to
provide the user with complete abstraction from the processing, which distinguishes our work
from most of the other systems that require advanced user-interaction.
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5. Approach
Now that we have outlined the task and how we want to approach it, we first need to intro-
duce some of the tools that we have defined before we can start in-depth explanations of the
developed algorithm in chapter 6. We will therefore address the definition of mappings as
mentioned in chapter 2, as well as the grammar and the generic graph representations.

5.1. Mapping
The basic element that we use in this work is a mapping. While the meaning of "mapping"
can differ depending on the context, we follow the definition used by Credit Suisse, which is
also incorporated in existing works:

Definition 2 A Mapping is a set of components that are used to describe the creation of
rows in a target table. They contain descriptions of rules and transformations that have to be
applied in order to move data from one area to another one in the required form.

It is basically used for three purposes:

1. To specify the elements that are necessary to create rows in a given database table (e.g.
other tables, columns, values).

2. To specify how to manipulate and transform those elements under certain conditions.

3. To document the whole process.

A concrete example of such a mapping is given in figure 5.1. In accordance to the defini-
tion, it describes the mapping of columns from table CUSTOMER_MASTER_DATA to table
AGREEMENT and provides instructions on how to transform elements under different cir-
cumstances.
Mappings are a very powerful tool to describe those transformations. They include not only
data flows inside of single databases, such that pure SQL statements could cover. Mappings
can specify how data is moved from database to database within the data-warehouse, or how
to populate a table from flat files based on a given file structure. The mapping description as
part of the metadata is not concerned with concrete implementations and therefore can express
the complete data flow on a conceptual level.

There exist various mapping components that can be part of a mapping. They include
for example elements such as Entity, Attribute, Entity Attribute Population, Entity Attribute
Population Condition Component and many more. Every component is represented in the
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WHEN POPULATING Entity: AGREEMENT
FROM Entity: CUSTOMER_MASTER_DATA

POPULATE Attribute: AGREEMENT.ACCOUNT_CLOSE_DT
WITH CUSTOMER_MASTER_DATA.LAST_ACCOUNT_CLOSING_DATE IF

CUSTOMER_MASTER_DATA.LAST_ACCOUNT_CLOSING_DATE != 01.01.0001
WITH "DEFAULT MAX"

POPULATE Attribute: AGREEMENT.ACCOUNT_FIRST_RELATIONSHIP_DT
WITH CUSTOMER_MASTER_DATA.FIRST_ACCOUNT_OPENING_DATE IF

CUSTOMER_MASTER_DATA.FIRST_ACCOUNT_OPENING_DATE != 01.01.0001
WITH "DEFAULT MIN"

POPULATE Attribute: AGREEMENT.ACCOUNT_OPEN_DT
WITH CUSTOMER_MASTER_DATA.CIF_OPENING_DATE IF

CUSTOMER_MASTER_DATA.CIF_OPENING_DATE != 01.01.0001
WITH "DEFAULT UNKNOWN"

Figure 5.1.: Real world example of a mapping from CUSTOMER_MASTER_DATA to
AGREEMENT.

conceptual mapping data model, designed by Credit Suisse experts. The mapping data model
"describes the data required to document the population of Entities (Feeder Files, Tables,
etc) and to provide a means for reporting data lineage" [Bud12]. This model includes every
element that is needed to express any mapping within the given system. That means that every
mapping can be constructed using only components from the model. A simplified excerpt
is shown in figure 5.2 (see appendix A for the full model). It can be seen as a blueprint for
mappings and therefore served as an important basis for our work.
The mapping data model describes data sources and targets of mappings as entities, which
are in our case tables in the underlying database system. Similarly the entity’s attributes
are columns of the table. Each of those entities can potentially be both source and target.
Therefore we call those entities generally source (of a mapping) and refer to them as target
only in the explicit case for a specific transformation to avoid confusion. However, we use
entity and attribute when describing more conceptual ideas.

5.2. Grammar
However, instead of working with the data model from section 5.1, we utilze the existing
formal context-free grammar (see figure 5.3) that is based on the model. It describes the struc-
ture of any mapping in accordance to the mapping data model and includes all elements that
were specified there. Consequently it is it sufficient to express every possible composition of
mapping components in the given syntax (see appendix B for the full grammar). Mappings
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Figure 5.2.: Excerpt from the conceptual data model for mappings

written in this form are meant to be human readable and therefore more verbose than tech-
nically necessary. A user should be able to understand the meaning of the mapping without
further reference material. At the same time they can be processed by a computer, since they
are structured according to the given grammar rules, unlike natural language. Figure 5.1 from
the last section is written according to this syntax.
In order to use the grammar for our purposes, it was expedient to change the structure of
some production rules so that we can represent these rules in a tree structure. This is far more
convenient than a relational representation, as we will explain in section 5.3 in more detail.
From this it follows that the grammar is not only used for its traditional purpose only, namely
parsing input, since we plan to use already well-structured data. Mainly it is used as a basis
for further processing of the mapping, independent from the technical implementation of any
input.

mapping ::= population filter? navigation?
population ::= WHEN POPULATING targetEntity

FROM drivingEntity populationClause
populationClause ::= (POPULATE populationComp)*
populationComp ::= attribute withClause+

withClause ::= WITH expression (IF condition)?
expression ::= string | computation | concatenation

Figure 5.3.: Excerpt from the used grammar
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5.3. Grammar And Model In Comparison
To explain why we decided to use the grammar as a basis for our computations, we now com-
pare the grammar with the model to show similarities and argue how the grammar is superior
for our purposes.

First of all, the grammar is suited to give a human reader, who has no knowledge of technical
details, insight on the content of mappings. It defines a syntax and allows a human reader
to deduce the purpose of a component based on its written context. For example does the
mapping always include exactly one main source and one target entity. The data model in
figure 5.2 represents this with two relations between Entity and Entity Mapping. An Entity
Mapping "is driven" by exactly one Entity, which makes that the declared main source for the
mapping. Similarly exactly one Entity "is populated from" the Entity Mapping, which makes
this Entity the target. But given only the relational tables, it is difficult for a human to derive
which is a source or a target. It is necessary to follow the respective keys in the physical
mapping table and therefore to have technical knowledge about the concept of databases. The
grammar, however, attaches semantic meaning to each element with the syntax and provides
needed context regardless of any technical implementation. Considering a mapping such as in
figure 5.1, let us examine at the first lines:

WHEN POPULATING Entity: AGREEMENT
FROM Entity: CUSTOMER_MASTER_DATA

By comparing this to the rule "population" in the given grammar from figure 5.3, we can im-
mediately identify the main source as CUSTOMER_MASTER_DATA and the target table as
AGREEMENT.

Now one could argue that apart from readability both model and grammar are equal in
power and coverage and therefore we could also use the model for our lineage computations.
However, the latter is a far more suitable tool for our purposes. The reasoning for that is the
following:
It is definitely possible to describe a mapping with the data model as well as with the gram-
mar. Both define the structure of the mapping and determine how to compose the elements.
However, the grammar is built hierarchically, whereas the model is flat, as it is meant to be
implemented in a database system and can be directly converted into a relational table schema.
This gives the grammar an advantage since we want to work on graph structures, as has been
stated in chapter 2. A mapping can therefore be extracted directly from the underlying map-
ping graph in a graph representation, in contrast to a relational representation.
We gain then further advantages over a relational model when processing mappings in tree
form. For example recursive rules, such as groupings or computations that are part of other
computations can be traversed easily in a hierarchical representation, but on a relational schema
this would lead to multiple self-joins of potentially very large tables.
Additionally, the grammar allows to easily validate given mappings. Parsing an error prone
input is immediately noticed, whereas the population of tables may include many unknown
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mistakes. Although this does concern the input of mappings more than the lineage compu-
tations, it played an important role in the decision to devise a grammar. Since therefore all
mappings are in a form compatible to the grammar, we can perfectly use it to describe the
general structure of mappings.

To conclude this argumentation, we can summarize that the model is perfect to represent
data in a relational schema that is only accessed by computers. However, once human interac-
tion is necessary, the grammar offers superior comprehensibility. Additionally, the hierarchical
structure offers easier integration into the graph based system on which we are building our
solution.

5.4. Utilization Of The Grammar
After we have shown that it is beneficial to use the grammar as a basis for our system, we now
explain how we utilize the grammar.
For one, the grammar defines how concrete instances of mapping trees are structured. The im-
portant requirement we set for those tree representations is that no semantic information may
be lost during tree construction, it must be possible to unambiguously recreate the mapping.
For instance it is necessary to distinguish between source table and target table, not just to
include two equal tables. Therefore we include targetEntity and drivingEntity, as figure 5.3
illustrates. We also need to preserve the mathematical computations according to the order of
operation rules instead of order of appearance and similar information. Our grammar fulfills
this requirement since it is completely compatible to the data model, as we explained in sec-
tion 5.2. For a given mapping as in figure 5.4, the corresponding tree representation according
to the grammar is shown in figure 5.5.

Consequently the grammar rules enable us to create a "map" of all components that may be
part of a mapping. Looking at the grammar, we can immediately see where attributes occur or
where computations may be used. Without this map, we would have to rely on actual instances
of data to get a grasp of the structure on a per-mapping basis. However, we want to present
an algorithm that works universally on any mapping. Therefore we can not rely on concrete
data items, but have to work with the abstract mapping structure and then apply the resulting
strategy to the concrete instances. Once this structure is known, we can determine all possible
compositions of mappings beforehand and define algorithms universally for every mapping in
the system.
The great advantage in this approach lies in the opportunity to use this to search not only for
elements by occurrence but also by semantic meaning. We are for instance able to look specif-
ically for the target table instead of any occurrence of a table, since we can exactly determine
how and where it is specified in a mapping.
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WHEN POPULATING Entity: AGREEMENT
FROM Entity: CUSTOMER_MASTER_DATA

POPULATE Attribute: AGREEMENT.ACCOUNT_CLOSE_DT
WITH CUSTOMER_MASTER_DATA.LAST_ACCOUNT_CLOSING_DATE IF

CUSTOMER_MASTER_DATA.LAST_ACCOUNT_CLOSING_DATE != 01.01.0001
WITH "DEFAULT MAX"

Figure 5.4.: Simple example mapping

Figure 5.5.: Parse tree built from a simple mapping. Nodes are represented as squares, the
content of leaf nodes is attached as an oval shape. Numbers in brackets denote the
Id of each node for quicker reference.
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6. Lineage Computation
Having explained the concepts that we use in our system, we can now commence with the
in-depth explanation of the algorithm.
In order to answer a given question such as the request for the golden sources, we generally
have to convert the input into a set of computations. For this we must address two basic
aspects. Firstly it is necessary to follow the paths through the system and therefore to navigate
from one intermediate source to the next by selecting all appropriate mappings, as we will
describe in section 6.1. This is a high level process and can be expressed by a query over
the set of all mappings. However, to identify those relevant mappings, we need to retrieve
information from each mapping separately. Using those results is a more complex and requires
different data depending on the posed request. This will be addressed in section 6.2. Secondly,
to avoid false positives, it is necessary to preserve possibly stronger constraints in population
conditions after each step. Section 6.3.1 will explain this aspect in more detail. It should be
noted that by dividing the algorithm into several modular steps, we offer the basis for other
investigations that were mentioned in chapter 2, such as impact analysis. Depending on the
type of the request it is possible to retrieve different information from each mapping with a
generic query. The affected parts of the algorithm can then be adapted for different situations,
while the remaining implementation stays intact. However, we will focus purely on the data
lineage aspects in this thesis, as it has been stated in the task description in chapter 3.

6.1. Moving Along The Graph
We already explained in section 3 that the main goal is to determine the lineage of a given
data item all the way back through the graph of mappings. This eventually leads back to one
or more golden sources. We therefore call this concatenation of mappings the lineage path
in the mapping graph. Note that a source for one mapping can also be the target for another
mapping.

Mapping Graph

The mapping graph MG(S,M) is composed of vertices S := {s0, s1, ..., si} and directed
edges M := {m0,m1, ...,mj

}, i, j 2 N. S is the set of all sources and M is the set of all
mappings which are present in the system. where |S| � 2 and |M | � 1.
An edge m

k

= hs
m

, s
n

i is considered to be directed from s
m

to s
n

for s
m

, s
n

2 S.
Using the previously explained mapping data model we can deduct the following property:
Each mapping always contains exactly one source and one target entity. Therefore we can
define s

m

to be the source and s
n

to be the target of the mapping m
k

.

24



Lineage Path

The lineage path is a subset of mappings L ✓ M in the mapping graph. It describes the path
that a data item took in the mapping graph from the golden source up to the user specified
target, i.e. the set of mappings that were used during the computation of the result.

To find the lineage path, we need to navigate from the final result back in the mapping graph
step by step and follow the edges in reverse order from source to source. We need to execute
the same process recursively, until we reach the end of each path, i.e. the golden source. This
algorithm can be roughly outlined as follows:

1. Find all mappings that use the current source as target

2. Extract the responsible sources from each of those mappings

3. Preserve the constraints for each source

4. Treat each result from step 2 as new target and continue with step 1 until no more
mappings can be found

The first step can be expressed in one simple query over the set of all mappings and results
in a set of zero or more mappings. Since we start with one single item, we select this item as
starting point in the mapping graph and move on from that.
But it is not sufficient to follow the lineage paths on the entity level as one would assume
intuitively. Each attribute can be populated from numerous sources. So we need to follow the
lineage path explicitly for each attribute. Following that, the second step needs therefore to
return a list of all source attributes that populate the corresponding target attributes. This can
be achieved with a separate algorithm which is explained in the next chapter. After retrieving
the source attributes, we then need to make sure that no false positives are included in the path.
This is an important part of our approach and one of the key features. We therefore collect
and process any constraints on the attribute level for every lineage path. Detailed explanation
of this issue follows shortly.

6.2. Extracting Information From Mappings
As explained in 6.1 it is necessary to extract some information from each mapping according
to the results from the last step. In this case we are generally interested in the same elements
of a mapping in every iteration, but it is very likely that every mapping is structured differently
than the one before. Therefore we cannot re-use the same static query over and over again,
but have to make adaptations to the parameters and cater for any feasibly mapping structure.
In order to formulate those queries, we have to follow several intermediate steps and consider
several factors. In a simple implementation, the user might need to work some of this parts
out on her own. However, in our scenario, the user cannot be expected to have extensive
knowledge about both the mapping structure and database systems. Therefore we offer a high
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degree of abstraction. That leaves us in a position where we have to interpret the input and
then generate the corresponding queries automatically from that. However, we do not want to
constrain the user with limited power of the system. As a result, the now proposed algorithm
is more than just a necessary tool to compute data lineage. It is a general solution to extract
information from mappings while considering the semantic meaning of each element. This
might prove very useful when addressing similar issues as later described in chapter 9, where
we are interested in other components of the mapping.

The first challenge is to create some kind of processable mapping blueprint, that gives us an
idea of the structure of a mapping. We can then find out which elements we are interested in
and where to find them. This part of the process can be re-used in every iteration. The next
step is the extraction of information from the specific mapping at hand where given parameters
are used to find matching elements as output.
Before we can describe the algorithm in detail, it is necessary to explain some of the used
constructs and definitions.

6.2.1. Meta Tree
As a basis for the process of data retrieval from mappings, we introduce the so-called meta
tree. This is a simplified representation of the grammar rules in graph form, which describes
what the instance graphs of mappings parsed with the grammar can possibly look like. To
support the tree representation, the changes to the grammar that are mentioned in section 5.2
were made. We normalized the rules in such way that now every rule is either a composition
of several other rules or a set of mutually exclusive alternatives. Therefore we can now distin-
guish between two cases: the compositions of rules and the list of alternative rules.

Rules in the form of

aggregation ::= ’SUM(’attribute’)’ | ’AVG(’attribute’)’ | ’MIN(’attribute’)’
| ’MAX(’ attribute’)’;

are called alternative rules. There can be only one alternative element selected at a time and
each alternative element may consist of only one component. In contrast, rules in the form of

navigation ::= ’NAVIGATE’ fromEntity ’TO’ toEntity ’USING’ (usingClause)+;

are called composition rules. Every non-terminal symbol on the right hand side of a compo-
sition rule is element of the same alternative and the composition rule itself may contain only
a single alternative.
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We made two simplifications in the transformation of the grammar to the meta tree. This
happens in order to construct a tree and not just a directed graph with possibly cycles. The
first simplification therefore attacks recursive rules. Such a rule is for example condition:

condition ::= multiCondition (condComponent)* ;
condComponent ::= andOrOperator multiCondition;

We reduce those rules by ignoring the recursive element. The condition rule is instead as-
sumed to be equal to

condition ::= multiCondition;

The reason for this follows the purpose of the meta tree. We want to create a map of possible
occurrences of certain elements. While a condition may be a sequence of other conditions that
are linked with AND or OR statements, we are interested only in the fact that an attribute may
be part of a condition, not where specifically in the recursive chain of condition it is located,
i.e. on which level of the tree.
Second, compositions of equivalent non-terminal symbols such as

concatenation ::= attribute ’||’ attribute;

are considered to be equal to the reduced composition rule

concatenation ::= attribute;

Again, we only need to know that an attribute may be part of a concatenation, not if it is the
first or second element.

The tree representation according to this hierarchical structure of the grammar rules is the
meta tree.

Definition 3 The meta tree is a graph MT(R,E) with a set of vertices R := {r0, r1, ..., ri} and
directed edges E := {e0, e1, . . . , ej}, i, j 2 N where |E| � 0 and |R| � 1.

R is considered to be the set of all rules in the grammar. Those can either be alternative rules
or composition rules. r

i

denotes the i-th rule in the grammar and is therefore represented in
the meta tree as node with Id i, i.e. Id(r

i

) = i. E is the set of all edges that represent the
hierarchy of grammar rules. An edge e

k

= hr
m

, r
n

i is considered to be directed from r
m

to r
n

for r
m

, r
n

2 R. Edges connect a grammar rule r
m

with each non-terminal symbol r
n

on the
right hand side of the rule. The root of the tree is always r0, i.e. the first grammar rule.

As an example let us have a look at the mentioned composition rule navigation and alterna-
tive rule aggregation. The tree representation of the navigation rule can be seen in figure 6.1a
and similar figure 6.1b illustrates the aggregation rule. Figure 6.2 shows an larger excerpt of
the full meta tree, where aggregation in incorporated.

27



navigation

usingClauseto

Entity

from

Entity

(a) Composition rule

aggregation

MAX

attribute
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attribute

AVG

attribute

SUM

attribute

(b) Alternative rule

Figure 6.1.: Example for meta tree construction

In a grammar, every production rule is eventually resolved to one or more terminal symbols.
In the same way a parse tree contains only terminal symbols in leaf nodes. Since our meta
tree does not visualize an actual input but merely the allowed structure, similar to the plain
grammar, we include all non-terminal rules and not the terminals themselves. The nodes that
form our leafs are therefore: entity, attribute, string, value and date. With this structure, we
have now created a map to locate individual parameters for our blueprint query within their
respective contexts.
If we want for example check every mapping that uses a certain value, we can immediately
see in the meta tree where exactly a value may occur. In the example, this would be only one
place, as part of a computation in the withClause. So without any further action, we immedi-
ately know exactly where we have to look for a value in mappings and its context.

The meta tree is not to be confused with the abstract syntax tree (AST) or the parse tree.
While the AST and parse tree both display a concrete instance of the rules, we have created
a generic presentation of the rules independent from any input. For example a computation
in a parse tree can contain another computation and several values, while the meta tree only
indicates the possible existence of a computation. The important information stored in the
meta tree is the possibility of an occurrence of the computation at this position and therefore
its context.

6.2.2. Affected Leafs
Once the meta tree is established, it allows us to select the parameters for the query. Possible
examples for parameters are very specific requests, such as

"get all occurrences of ’5’ as value in a computation within the withClause" (I)
"get all occurrences of AGREEMENT.ACCOUNT_CLOSE_DT in a population" (II)

While (I) is a very specific parameter and can be directly resolved, the second request (II) is
more general and needs some processing. By using the meta tree as it is displayed in 6.2,
we can identify the relevant leaf nodes in both cases. Imagine the request is positioned at
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Figure 6.2.: Part of the meta tree built from the grammar rules. Oval nodes represent compo-
sition rules, square nodes alternative rules. Numbers in brackets denote the node
id for more convenient references.

the given node in the tree, i.e. (I) at the corresponding ’value’ node with Id 14, (II) at the
’population’ node with Id 2. When traversing the subtree with the selected node as root, we
visit all leaf nodes and add the appropriate leafs as well as their expected content to a list of
matches. This has to be done for each parameter and results in one list of parameterized nodes.
In the case of (I) this is easy, since we get a subtree with only a single node. Here ’value’ (14)
is already a leaf so we add it to the list and are done. For (II) this requires a more complex
reasoning. Starting from the ’population’ (2) node, we find 7 leafs of type ’attribute’. One
directly as target of the populate (7) clause, 5 of them within a computation (12) and another
one in concatenation (24). Thus we get a total of 9 parameterized nodes for the two example
requests (I) and (II). An excerpt from the list of matching nodes after the process was executed
is shown in Table 6.1. To simplify the description of requests, we propose the following short
notation for the selection of parameters:

context Id, node type, expected content

For instance the two previous examples can be expressed as

10, value, 5 (I)
2, attribute, AGREEMENT.ACCOUNT_CLOSE_DT (II)

29



Node Expected Content Parent Id
value 5 computation 14

attribute AGREEMENT.ACCOUNT_CLOSE_DT population 8
attribute AGREEMENT.ACCOUNT_CLOSE_DT computation 13
attribute AGREEMENT.ACCOUNT_CLOSE_DT sum 17

. . . . . . . . . . . .

Table 6.1.: Parameterized Nodes

6.2.3. Computing The Context
To correctly identify all involved leaf nodes in the actual parse tree later on, we need to make
sure that we can identify the semantic meaning of every node. For a given set of nodes in the
parse tree P = {p0, p1, ..., pi}, i 2 N and nodes in the meta tree R = {r0, r1, ..., rj}, j 2 N
we define

Definition 4 The semantic context (Context
s

) of a leaf node p
n

, n 2 N in the parse tree
describes the exact position of its semantic representation r

m

, m 2 N in the meta tree. This
may be expressed with the unique Id of the node r

m

.

This is equal to the n:1 mapping defined by 8p 2 P 9r 2 R : Context
s

(p) = Id(r) that maps
each leaf in the parse tree to one leaf in the meta tree. In other words, the semantic context
shows the semantic circumstances of the usage of a node p

i

. For example the context of the
target entity AGREEMENT in the parse tree in figure 5.5 is 4, as can be seen in the meta tree
in figure 6.2. Therefore Context

s

(p5) = 4.
In order to compute the semantic context Context

s

(p
i

), we need to utilize another tool, the
set of identifying ancestors.

Definition 5 An identifying ancestor is a non-leaf node in the meta tree that necessarily has
to exist exactly once in the set of ancestors for a given node in the meta tree.

This includes every ancestor in the meta tree, where the corresponding grammar rule does
not start and is not part of any recursion. Each identifying ancestor is used to unambiguously
identify the semantic context of the succeeding nodes.
We consider IA(r

n

) = {r
i

, ..., r
j

}, i, j 2 N to be the set of all identifying ancestors of r
k

,
k 2 N in the meta tree. In contrast allAncestors(x), x 2 P _ x 2 R describes the set of all
ancestors of node x, including those that are not identifying ancestors for x 2 R. We write
isIdentifying(r

i

),i 2 N to express the fact that r
i

is an identifying ancestor.
To underline this definition, we look at a simple example in our meta tree in figure 6.2. The
set of identifying ancestors IA(r14) = {r10, r9, r7, r2, r1}. Node r12 is not part of the set of
identifying ancestors, since computations may occur recursively.

Furthermore we introduce the computational context (Context
c

) of a leaf node p as follows:
Let be C = {r0, r1, ...}, C ✓ R ^ 8r

i

2 C : isIdentifying(r
i

) = true, further
let be D = {p0, p1, ...} ^ D ✓ P , 8p

j

2 D : p
j

2 allAncestors(p
n

) and r
j

2 C for
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j = Context
s

(p
j

).
Then we can say Context

c

(p
n

) = r
k

| k = Context
s

(p
l

), p
l

2 D, r
k

2 R.

From those definitions, we can make the following deductions:

• Context
c

(p
i

) = IA(r
j

), j = Id(Context
s

(p
i

))

• Context
c

(p
i

) = Context
c

(p
j

) , Context
s

(p
i

) = Context
s

(p
j

)

Using those, we can now compute the semantic context as

Context
s

(p
x

) = Id(r
y

) | r
y

2 R, Context
c

(p
x

) = IA(r
y

), y = Context
s

(p
x

)

As an example, let us look at the parse tree and consider the node Attribute with Id 12
and content CUSTOMER_MASTER_DATA.LAST_ACCOUNT_CLOSING_DATE. According
to the presented definitions, we can compute Context

s

(p12) = 13, since the corresponding
node in the meta tree is r13.

With those tools at hand, we can now generically compute and compare the context of each
node in the parse tree. This is an advantage, since we do not need to take the actual structure
of the current tree into consideration, but have defined a general solution that works for every
possible parse tree and therefore every possible mapping.

6.2.4. Select Data
In this step we now load the actual data from a mapping according to the parameters selected
in 6.2.2. To find matching data items in the parse tree, we need to consider and check for two
properties of every data item:

1. Node type and content

2. Semantic context

This is reflected in our proposed notation from section 6.2.2. It is necessary to consider those
properties, since not every occurrence of a given node content happens in the same type of
node. For instance the content AGREEMENT may occur as an entity with this name or as a
simple string without computational value. Depending on the situation we may be interested
in only one of both manifestations, say the entity. Now an entity may be used in several dif-
ferent contexts, which we also have to distinguish. In the given sample from the meta tree in
figure 6.2 entity may occur with the semantic context 4 and 6, i.e. as target or source. But if
we are looking only for a target entity, the entity with semantic context 6 is not relevant.

We assume as a simple example that we are given the same mapping as in figure 5.4. Let us
say we are now interested in the request

13, attribute, CUSTOMER_MASTER_DATA.LAST_ACCOUNT_CLOSING_DATE
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That means, we want to see where attribute LAST_ACCOUNT_CLOSING_DATE of table
CUSTOMER_MASTER_DATA is used as component of an population that in turn is used to
populate another attribute. Figure 6.3 shows the matching attribute in bold.

WHEN POPULATING Entity: AGREEMENT
FROM Entity: CUSTOMER_MASTER_DATA
POPULATE Attribute: AGREEMENT.ACCOUNT_CLOSE_DT
WITH CUSTOMER_MASTER_DATA.LAST_ACCOUNT_CLOSING_DATE IF

CUSTOMER_MASTER_DATA.LAST_ACCOUNT_CLOSING_DATE != 01.01.0001
WITH "DEFAULT MAX"

Figure 6.3.: Simple example mapping. The attribute of interest is written in bold.

However, as can be seen in both figure 6.3 and 5.5, this attribute occurs at two different
locations, once in a with clause and once as part of a condition. Yet we are only interested in
the first one.
As explained, we have to determine all relevant leaf-nodes in the parse tree first and then check
the semantic context of those in order to eliminate the false positive. The first step is to query
for any occurrence of LAST_ACCOUNT_CLOSING_DATE. The result is shown in table 6.2
and contains both of the mentioned nodes.

Id Content Node Name Parent Semantic Context

12 CUSTOMER_MASTER_DATA. Attribute 11 13LAST_ACCOUNT_CLOSING_DATE

17 CUSTOMER_MASTER_DATA. Attribute 16 29LAST_ACCOUNT_CLOSING_DATE

Table 6.2.: Result of the query and the respective semantic context of each node

The semantic context of each node was added manually for a better overview. The calcula-
tion of the semantic context for each element in the parse tree was outlined in 6.2.1 and won’t
be repeated here. It is now easy to see that both elements are used in a different semantic
context. We can gather from the meta tree that the semantic context that we are interested in
is 8, taken from the Id of the corresponding node. By comparing the semantic context of each
node with the relevant semantic context, we can see that only one node remains. This is our
final result in this step and shown in figure 6.3.

Id Content Node Name Parent

12 CUSTOMER_MASTER_DATA. Attribute 11LAST_ACCOUNT_CLOSING_DATE

Table 6.3.: Result from the data selection
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6.2.5. Compose Data And Project Result
The previous section 6.2.4 showed how to extract elements from mappings. But since we are
not only interested in the basic fact that a certain element exists in a mapping, but also how it
relates to others, we offer a more complex query mechanism that can answer requests such as

"get all attributes that occur in the semantic context 10 and are in the same population as the
attribute table0.attribute0 with semantic context 8 "

We translate this request into the query

8, attribute, A : 10, attribute

The first parts defines the look-up, as explained before: an attribute in the semantic context
8 or below in the meta tree, with the content A. The second part defines the projection from
the mapping to all attributes with or below the semantic context 10, independent from their
respective content. We assume implicitly that both should be semantically related in such way
that they are both used in the same part of a mapping. In this case, we are looking for pairs
of attributes that occur in the same population, not just in any population clause. One should
have the given semantic context and content, the other is within a given semantic context and
can have any content. To explain this relation formally, we need to introduce the following
notations:

The lowest common identifying ancestor (LCIA) of two nodes p, q 2 R, where R is the set
of all nodes in the meta tree, is the lowest common ancestor of p and q that is identifying, i.e.
r = lca(p, q) ^ isIdentifying(r) = true, or short r = lcia(p, q).

Two elements p, q 2 P where P is the set of all nodes in the parse tree are said to be seman-
tically related in the lowest common identifying ancestor r

related

, or shorter in the semantic
context Id(r
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), if the following set of conditions hold:
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To apply this definition to an example, let us examine the mapping from figure 5.4, and pose
the request

8, attribute, AGREEMENT.ACCOUNT_CLOSE_DT : 10, attribute

We can split this up into the two mentioned steps of executing the look-up and then the pro-
jection.

Look-Up

By looking at the mapping tree in 5.5, we can see that AGREEMENT.ACCOUNT_CLOSE_DT
occurs only once in the mapping as p8. Its semantic context computes as Context

S

(p8) =
8, i.e. it is the attribute that gets populated by the population. We are looking exactly for
attributes with context 8, therefore it is a match.

Projection

Now we consider the projection of results for the items found during the look-up. This means
we have to look up all remaining attributes in the table and then check the context for each.
Querying the tree for this delivers a small result set:

Id Content Node Name Parent

12 CUSTOMER_MASTER_DATA. Attribute 11LAST_ACCOUNT_CLOSING_DATE

17 CUSTOMER_MASTER_DATA. Attribute 16LAST_ACCOUNT_CLOSING_DATE

We are now able to compute both the computational and semantical context for all the at-
tributes and find:

p
i

Context
S

(p
i

) Context
C

(p
i

)
p12 13 10, 9, 7, 2, 1
p17 29 15, 13, 9, 7, 2, 1
p8 8 7, 2, 1

Since we are interested only in attributes that are used in a sub-context of context 10, we can
discard p17 since context 10 is not part of its computational context. The lowest common
identifying ancestor of the remaining attribute p12 and the given p8 can now be computed as

lcia(p12, p8) = 7

Expressed in natural language that means p12 and p8 are both part of the same populate clause,
as stated in the initial request. This can be verified with a look at the mapping or parse tree.

In terms of lineage calculations, we use exactly this type of request recursively. More general
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8, attribute, X : 10, attribute

where X is a placeholder for the currently investigated attribute. This request lists all attributes
that were used to populate the given attribute X. If we were interested in further lineage cal-
culations for our example, we would now proceed with p12, find all mappings that populate
CUSTOMER_MASTER_DATA and run the query with the new found attribute on those, i.e.

8, attribute, CUSTOMER_MASTER_DATA.LAST_ACCOUNT_CLOSING_DATE : 10,
attribute

6.3. Condition Evaluation
What we offered so far was the passive lineage of attributes. But one of the advantages of
our approach is the incorporation of the logic behind each mapping, that leads us to active
lineage. We therefore examine the conditions under which different data items are used for
the computations. This allows to reduce the number of lineage paths in some cases, as we
indicated in section 3. While each mapping may allow for a broad band of data items to be
processed, a sequence of mappings potentially removes some attributes from the result by
applying excluding conditions on populations. This is not necessarily an error in the design of
mappings. Intermediate sources may be starting point for several different computations with
different purposes and therefore serve as sources for many mappings that require different
data.
We therefore collect conditions along the lineage path and evaluate them after every step.
However, the selection of paths may be further restricted if the user has additional knowledge
about the composition of attributes or wants to constrain the lineage on given properties. In
order to provide this functionality, we differentiate between preserved conditions, which are
a collection of conditions along the lineage path and the initial conditions, which are user
specified.

6.3.1. Preserved Conditions
While traversing the mapping graph, we dynamically record and update the conditional logic
according to previous steps. The usefulness of maintaining and updating the combined con-
ditions along the lineage can be shown in a quick example. Imagine a scenario with five
intermediate results which are represented in the graph as five nodes N

i

, 0  i  4 where the
data flow is directed from N

n+1 to N
n

for 0  n  2. That means every attribute from N
n+1

has a corresponding source in N
n

. Additionally we insert a mapping from N4 to N3 and one
from N5 to N3, but with slightly different properties, which will be defined shortly. Figure 6.4
visualizes the corresponding mapping graph.
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Mapping Target Source Source Condition
M0 A0 A2 D

Europe

[D
Americas

A1 A3 D
Europe

[D
Americas

M1 A2 A4 D
Americas

A3 A5 D
Americas

M2 A4 A6 D
Europe

[D
Americas

A5 A7 D
Europe

[D
Americas

M3 A6 A8 D
Americas

M4 A7 A9 D
Europe

Table 6.4.: Mapping components in a population

Every mapping M
j

, 0  j  4 contains a set of mapping rules, or more specifically rules
about populations of certain attributes. Let us denote the attributes that are populated by those
rules as A

k

, k = 0, 1, 2, . . . which we use as an arbitrary numeration to distinguish individual
attributes from several entities in this example. Table 6.5 shows a list of all exemplary nodes
with their respective attributes.
In a mapping every A

k

is provided with a condition C
k

that adds a certain constraint which
has to hold true in order to allow the population to be executed. Let those constraints for
instance be set in a way that they select a subset D

r

of all data D for which the population
transformation is applied, with r 2 {Europe, Americas}. This could be translated as a
selection only consisting of data connected to a specific region. In Table 6.4 we can see the
list of mapping elements to consider in this example. So in accordance with the grammar, the
relevant part of the rules could be written as

. . . POPULATE A0 WITH A2 IF A2.REGION = Europe OR
A2.REGION = Americas. . .

. . . POPULATE A1 WITH A3 IF A3.REGION = Europe OR
A3.REGION = Americas. . .

. . .

Now let us assume we are interested in the lineage of the two data items A0 and A1 in the last
node, namely N0. It is easy to see from the table that the source of A0 is A2 and the source of
A1 is A3. On first glance it is sufficient to apply the initially given constraint about the region
within every following iteration, which dictates that data from both Europe and Americas is
considered in both attribute populations. But if we follow the next step back from N1 to N2

and then from N2 to N3 while keeping that initial constraint, we will now start to include false
positives. M1 only relays data from Americas. Yet when processing M2, we again consider
data from Europe in further lineage inquisitions, even though the data contained in A0 and A1

is solely associated with Americas. At the lineage path junction in N3 we should therefore
follow M3 exclusively in further investigations and ignore M4. The same issue arises if we
instead apply only the current constraint of every population and not the initial one, as can be
seen at the example of M2 and M1.
Two conclusions can be drawn from those considerations. Mainly we have shown that it is
vital to dynamically update the constraints after querying each mapping, rather than using the
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Node Attribute
N0 A0

A1

N1 A2

A3

N2 A4

A5

N3 A6

A7

N4 A8

N5 A9

Table 6.5.: Node attributes

N4

M3

✏✏
N0 N1

M0

oo N2
M1

oo N3
M2

oo

N5

M4

OO

Figure 6.4.: Visualization of nodes and mappings

static conditions in every population. If the last constraint is stronger than the one before, we
only apply the last one and vice versa. This can be achieved by detecting the strongest con-
dition after every step and then evaluating the aggregated condition accordingly. Secondly it
is obvious that we need to work on attribute level, since each attribute has to follow different
constraints according to their individual population rules.
But how can we update the conditions properly? There are certain limitations, due to the se-
mantic meaning of certain decisions. We include for example France as a region as part of
Europe. A human user can intuitively understand that data from France might be included in a
mapping for data from all of Europe, but not vice versa. To consider such a conclusion in the
algorithm, we would need to formulate a potentially unnumbered amount of additional and
very specific rules. What we can include however, is the purely logical aspect of conditions.
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6.3.2. Basic Computation
For a given set of two population rules

. . . POPULATE A0 WITH A1 IF A1 = X OR A1 = Y . . .

. . . POPULATE A1 WITH A2 IF A2 = X OR A3 = Z. . .

where we follow the active lineage of A0, we now need to combine both conditions. Since the
passive lineage leading to A0 can be reduced to A2 ! A1 ! A0, we substitute those three
attributes with a general A:

A = X OR A = Y
A = X OR A3 = Z

Now we can deduce the strongest common condition along the transformation path as

A = X

meaning that only data is conveyed through the transformations for which the given attribute
A equals X, where A is the original attribute in the golden source. Following the potential
next step can be handled accordingly with the source of A2 and its population rules. By
applying this technique we can reduce the amount of followed lineage paths. If a combination
of conditions results in a logical FALSE, for example A > 0 AND A < 0, we can stop
the graph traversal at this point without further consideration, since no single data item can
possibly fulfill this condition and therefore no data was relayed along this path. The same
holds true if no common condition exists.
When we finally reach the golden source of the data transformations, we have accumulated a
set of conditions that must hold for any data item within the source. It is now possible to run
a query according to these conditions and select only the data items which are relevant for the
final result that we examined in the beginning of the process.

6.3.3. Advanced Transformation
Since mapping transformations are not always formulated in such a simple form, we need to
address the issue of combinations of several attributes, such as computations like

. . . POPULATE A0 WITH A1 + A2 IF A1 < A2

WITH A1 � A2 IF A1 > A2. . .
. . . POPULATE A1 WITH A3. . .
. . . POPULATE A2 WITH A4. . .

To follow the active lineage of A0 we have to examine two paths, one leads over A1 to A3, the
other over A2 to A4. When investigating each path, the previously explained approach works
for each path separately. We determine the first transformation to be A3 ! A1 ! A0 and the
second A4 ! A2 ! A0 and substitute accordingly. The final result in terms of lineage is the
union of data from each path.
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6.3.4. Initial Conditions
In contrast to the preserved conditions, the initial conditions are given by the user and not
part of a mapping. There are many reasons why the user might want to further constrain the
lineage computation. For one, she might be interested only in a subset of data items from the
result. More reasons to specify initial conditions are given in Chapter 7. It should be noted
that in order to give meaningful constraints, the user has to be familiar with some the contents
of tables and at least vaguely with the structure of the system.

It is obvious that tables often include data that is not relevant for every mapping that uses
this table as a source. In the same way it may be a target for many different mappings. For
example a table such as PARTNER_CSID_MASTER includes data about every partner of the
company, may it be an individual or a business. A lineage computation for a given attribute
such as PARTNER_CSID_MASTER.BIRTH_OR_FOUNDATION_DATE must therefore yield
the lineage of both individual and business data. Now the user might be interested in only
individuals. Therefore she has to specify that she wants to compute the lineage for only those
mappings that process data from individuals. If the only indicator for those mappings is the
partner type attribute, she has to add a constraint on the content of this attribute, e.g. "PART-
NER_CSID_MASTER.PARTNER_TYPE = 2", where 2 is the index for individuals. It is then
necessary to evaluate those constraints accordingly. We therefore consider them to be the first
condition that is then updated in the first step according to the process in 6.3.1.

6.4. Complete Algorithm
Now that we have defined each step that is necessary in order to move along the path and
extract the information that are needed, let us have a look at the complete algorithm to set the
single steps into context. As explained, the approach can be divided into two parts. At first we
prepare the static elements of the system, such as the meta tree. Then we run the algorithm
recursively until all golden sources are determined. We are generally interested in the lineage
of one attribute A, which we use as starting point.

1. Preparations:

• Build the meta tree

• User defines the starting point A⇤ as A

• User may define initial condition C0

2. Find all relevant mappings M which populate the selected attribute A⇤:

• Find all mappings that use the entity of attribute A⇤ as target

• If no mappings exist, then A⇤ is stored in a golden source for A

3. Extract all used attributes U from M for given A⇤:

• Find occurrences of A⇤ in M
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• Compute the context of each A⇤ in M

• Project the result U accordingly from M

4. For each attribute A0 in U do the following:

• Record all conditions C 0 for A0

• Evaluate the new set of conditions together with those that were recorded for A⇤

• If they result in a definite false then stop here

• Else start again at 2. with A0 as new A⇤
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7. Graph Traversal Patterns
In this section we are going to explain some of the most likely reoccurring patterns that emerge
from the traversal of the lineage path and the conclusions we draw from them. In a complex
real world application, like the metadata warehouse of Credit Suisse, there exist numerous
layers and stages of mappings [JBM+12]. This system will grow dynamically in the future
and therefore will most likely get new inputs and outputs attached in various ways.
One very real issue in that context is that our system assumes a limited amount of resulting
lineage paths. Although our main goal is to reduce the number of followed paths and we have
shown an approach that tries to achieve this, in reality there may occur situations that our al-
gorithm cannot cover. Most likely there will at some point emerge a chain of mappings where
repeatedly only very weak conditions are specified and numerous inputs are used so that they
produce a very large amount of paths to follow. Even with active lineage the complexity of
the provenance may then exceed the feasible computational effort. There is also no gain in
following dozens or even hundreds of highly branched paths, only to present the user with an
overwhelming result that includes most likely many sources she is not interested in.
The reason for such an exploding number of results are often weak filter criteria. The whole
concept of active lineage is based on the idea that paths can be excluded early in the traversal
based on given filters, as we have shown in section 6.3. To apply this concept, we need to
assure that those filter criteria are strong enough to adequately reduce the amount of paths.
However, we have no influence on the quality and strength of the criteria in mappings, there-
fore we need additional information from the user in that situation. A possible indication
of weak filters could be a crossed threshold on the number of followed paths. This threshold
should be user specified and depends on the underlying system of mappings. Once this thresh-
old is reached, the user then has to take responsibility and add stronger conditions, based on
the expected result. She might for example specify a certain country code for relevant data
items if mappings are organized by countries and she is interested only in data about certain
areas or agree to continue the computation with the knowledge that it could yield a unneces-
sarily large result set.
Yet even with user specified initial conditions, the pure size and complexity of the system leads
to other problems. Mapping paths stretch over several layers of the system that are structured
differently. For example data that is organized according to country codes could very well
originate from tables that are sorted by market segments and only then further diversified into
countries. Filters that are accumulated over mappings that differentiate populations based on
country codes naturally have no relevance for conditions based on market segments. Even
with the active lineage algorithm and accumulated conditions we would then need to follow
paths from every market segment. This could increase the number of results exponentially,
even if we reduced the paths significantly in the steps before. Figure 7.1 illustrates this. Map-
pings that populate the two market segments Investment Banking and Private Banking filter
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accordingly. But data that is structured in country tables is filtered differently. Therefore even
after reducing the lineage path to US data only, we are then forced to follow every data flow
out of both market segments.
Here again user interaction is needed. In the case that filters are not compatible anymore
with the processed mappings, the user could make a manual decision which paths should be
followed. Imagine for instance a multiple choice selection for the user, where she can select
different conditions that are read from the mapping. The chosen conditions would then serve
as new initial conditions for further lineage computation. In our example she might consider
only Private Banking data as relevant, but did not know that the differentiation was relevant
when starting the process based on country codes.

EU

CH

US

IB

PB

Figure 7.1.: Mappings based on locations (red) and market segments (blue)

A second issue that arises from the real world application concerns the selection of at-
tributes. We follow lineage paths on an attribute level and assume a single attribute as a starting
point. In reality a user is more likely interested in the lineage of a table record which includes
multiple attributes. A record is often a result of aggregated data from different sources, where
the structure of single rows is preserved or extended, but not recombined. For example a
table like PARTY contains information about every party the company does business with.
This includes employees, business partners and customers. The table has a column called
PARTY_END_DT that specifies the date this party ceased being of interest to the financial
institution, may it be an employee that leaves the company or a business that cancels the con-
tract. PARTY also own an attribute PARTY_ID which is the unique identifier for an individual,
organization or household that is of interest to the enterprise. As a result the mapping with
target PARTY aggregates records from three tables, one for each type of party, but does not
modify the respective rows. A record in PARTY with the identifier of an employee can only
include the end date of the corresponding employee contract and may never be paired with
that of a business agreement.
Now obviously lineage investigations for PARTY_END_DT yield sources for all of employ-
ees, customers and partners, including every sources that may be relevant in different date
computations during the sequence of mappings. In the same way another lineage investigation
for PARTY_ID results in sources for all three types of party. But in reality, the record can
contain only pairs of data grouped by the respective source. Figure 7.2 illustrates this problem
by magnifying the attribute lineage for customer data in PARTY. While the resulting record in
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PARTY is always created from data in C, mappings to an intermediate result may mistakenly
introduce alternative lineage paths for PARTY_END_DT. A possible countermeasure for this
problem is to compose the intersection of both lineage paths in order to find only common
sources. In this scenario, the intersected lineage of the record would point only to C.

PARTY

E

P

C

Figure 7.2.: Linage paths for record in PARTY, to customer, partner and employee data. Mag-
nified on attributes in customer data: PARTY_ID (red) and PARTY_END_DT
(blue).

The last aspect that we have to consider is our strong dependence on the quality and cover-
age of mappings that is needed to supply the desired precision of lineage. If the documented
mapping path is disconnected by faulty mapping specifications or sources outside the avail-
able system, the lineage computation is interrupted. This is one of the issues that deters us
from deploying recording or tracing methods, as they are used in other systems (cf. chapter
4). While there is no technical solution to this problem, it may ,however, help to detect errors
in the mapping specification an could be used as indicator for inadequate data quality.
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8. Prototype
Having explained the algorithm and its application in detail, we will now present a running
prototype that was developed based on the theoretical work. It serves as a proof of concept and
implements the algorithm that has been developed in this thesis. As we will explain further
in section 8.2, we focused on the extraction algorithm and restricted the implementation on
passive lineage. As programming language we chose Java.

8.1. Architecture
First we will outline the overall architecture and individual elements of our prototype. In
order to keep the approach modular, we decided to split the implementation into five parts.
This keeps the concrete implementation of different subtasks interchangeable. Each of those
modules can be run individually and provides interfaces for structured input and output. Figure
8.1 shows the rough outline of the structure as well as the interaction between modules. In the

Mapping Parser Meta Tree Builder

Navigator

Extractor

Graph Painter

Core

Figure 8.1.: Architecture of the Prototype

following sections we will explain the five individual modules, their respective task and how
it is solved.
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Mapping Parser

The mapping parser serves as an interface to load mappings into our system. This module
is necessary since the structure of currently available mappings is pure text only. Once data
is available in RDF form, the parser can be interchanged with a module that offers database
access and processes RDF data directly.
As a parser generator we used ANTLR 1 and created a suitable tree structure using the ANTLR
specific rewrite rules to build a parse tree over the given grammar. This step allows for some
optimizations, such as reducing the necessarily verbose input to only relevant tokens for the
tree construction. For example we do not have to include the three tokens "WHEN", "POPU-
LATING" and "FROM" into a parse tree, if we define that the following entity is the drivingEn-
tity and insert a single node "driving" instead. Appendix B shows the grammar rules including
the rewrite rules. The resulting parse tree is then utilized as outlined in as outlined in chapter 6.

Meta Tree Builder

An important element in our approach is the meta tree. We describe its application in section
6.2.1. In the current implementation, the meta tree creation is not automated and does not use
the grammar as direct input. The user is responsible to define nodes and their role in the tree
manually. Those roles include Alternative (A), Composition (C), Terminal (T) and a list of
nodes that are identifying ancestors in the meaning of the definition from section 6.2.3. The
structure and roles have to be updated according to changes in the grammar by the user. We
offer a text file to store those definitions and load the file at system start.
Once the tree is built, we index individual nodes in a depth first traversal with pre-order. Those
indices are used for the context computations, as explained in section 6.2.3.

Navigator

The navigator is part of the core implementation. It defines all steps that are necessary to
compute data lineage along the mapping graph and therefore represents the implementation
of section 6.1. It reads incoming mappings and poses corresponding requests to the extractor
in order to compute the next steps in the mapping graph. This module can be interchanged
in order to pursue different tasks, like impact analysis, instead of lineage investigations. Only
alterations to the requests and conclusions that are drawn from the results have to be made. To
visualize the results, it invokes the graph painter and renders the lineage path as a picture.

Extractor

As can be taken from of chapter 6.2, the main challenge in this task was to provide a generic
algorithm to extract information from mappings. The extractor implements this algorithm
and can be run on any mapping that is structured according to the data model. It utilizes the
meta tree that was created by the meta tree builder and processes mapping information that is

1http://www.antlr.org
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provided by the mapping parser. Request to the extractor are posed by the navigator according
to the current task and results are sent back accordingly.

Graph Painter

As we need to represent most components in the form of a tree, the graph painter can be used
to draw a graphic representation of any graph structure that is built in our system. This helps
the user to visualize results or intermediate steps. Supported structures include parse tree,
meta tree and accumulated lineage paths but can easily be extended. The painter is based on
the open source framework JGraphX 2 and provides output as png or svg (Scalable Vector
Graph) file.

8.2. Limitations Of The Prototype
The biggest limitation of the prototype is currently the computation of passive lineage only. It
is possible to record all conditions along the lineage path, however, evaluating them requires
a complex system to solve advanced logical expressions. We work with conditions such as
comparisons between attribute and attribute, string and attribute, value and attribute, aggrega-
tions and combinations of all of those, all together linked with AND or OR statements as well
as grouped in parenthesizes. A module that can minimize and check those expressions has to
be very powerful in order to meet our requirements and would surpass the scope of this thesis.
However, we have already introduced the principles of those mechanics in section 6.3.1.

Secondly, we read data locally from a a text file only and not from a database. While this
has no impact on the functionality of the prototype, it limits the size of the evaluated set of
mappings, since every mapping has to be included manually. This is mainly due to the limited
availability of mappings in compatible format. However, an extension to connect to a database
can be introduced in the future, as hinted in section 8.1.

2http://www.jgraph.com/
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9. Future Extensions
After presenting both the theoretical approach and the implementations that serves as a proof
of concept, we will now outline the conclusions that we can draw based on those results. We
will address the possible extensions that might be addressed in the future, and give an idea on
how to approach this.

Checking Data Quality

We noted in section 7 that the quality of mappings in some areas is possibly below the needed
level in order to provide accurate lineage information. This may be induced by a lack of doc-
umentation, a disruption of the data flow caused by the switch from one medium to another or
too weak filter criteria on mappings. While this is troublesome in the aspect of lineage compu-
tations, it helps to find weaknesses in the existing data. Based on those finds, the responsible
data owners can improve the quality of data accordingly. However, from this point of view, it
is highly inefficient to rely on serendipity to spot affected mappings. Consequently, a possible
extension would be a system that periodically checks on data quality. In other words, it could
run automated lineage investigations on the whole system and report interrupted lineage paths
that point to inadequate mapping specifications.

Different Use Cases

A second feasible enhancement of the presented algorithm would be a modification that allows
to investigate for other use cases that were mentioned in chapter 2:

• Impact Analysis
This modification is fairly straight forward. The use case in chapter 2 already showed
the possible benefit of this functionality. So instead of following the lineage path from
a target back to all its sources, we could invert the process and list all the targets that
are affected from a given source. Using the generic query expressions that are used to
pose request to the system, as outlined in section6.2.5, it is also possible to search for
attributes that are populated by given populations instead of vice versa.

• Optimization
The proposed system to check for data quality is one facet of the general optimization of
mappings. It is possible that several mappings are redundant in such a way that the are
part of the mapping graph and passive lineage path, but not of any active lineage path.
While this does not mean that there could be no future inputs or outputs that access those
mappings, it might point to errors in mapping specification from a design perspective.
This stands in contrast to the technical aspect like in the data quality considerations.
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Extending Grammar Rules

However, extending the algorithm to serve different use cases may lead to problems. It it
possible that the simplifications we made when creating the meta tree in chapter 6.2.1 become
relevant in another use case. However, this could be solved by increasing the granularity of
the mapping rules. If we assume for instance that the order of concatenations of attributes
is of importance for a given problem, we can adapt the grammar and therefore the meta tree
accordingly. In this particular case, we would introduce two more rules, that represent the left
hand side (lhs) and right hand side (rhs) of concatenation:

concatenation ::= lhs ’||’ rhs;
lhs ::= attribute;
rhs ::= attribute;

Now it is possible to specify parameters accordingly, whether an attribute is part of the rhs, or
lhs respectively. The growth of the meta tree does not impact the algorithm.
Similarly more terminal symbols could be introduced, such as year, month and day as part of
a date or for attributes the attribute name and the entity name. In general, it could be beneficial
at some point to extend the grammar and therefore the meta tree in such way that every single
element of a mapping can be queried.

Assert Filter Relevance

Following the explanations in section 6.3.1 and the resulting patterns as shown in section 7,
it becomes obvious that we need to evaluate the conditions of every mapping and assure that
they are effective. Once the aggregated filter does not apply anymore, we basically loose the
advantage of our system over a brute-force approach. Therefore a possible extension to the
algorithm would be a process to check whether a filter applies to the next step or not. This
could be started with user input, where it is currently only in the users responsibility to supply
relevant filter conditions. In the case that a filter is too weak to filter and therefore reduce the
next fork of lineage paths, the user should be informed. She then might want to apply stronger
filter criteria, as suggested in chapter 7.
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10. Conclusion
In this thesis we have presented a new concept to compute data lineage within the Credit Su-
isse warehouse environment. In contrast to other approaches, we do not access the concrete
data in order to record executed transformations, instead we evaluate the conceptional map-
ping rules. In the financial industry, where data access is often restricted to users, this gives
us a significant advantage. We are able to provide complete abstraction from sensitive data
while still achieving full coverage on data lineage. To access the needed metadata, we built
our system on existing infrastructure, namely the Credit Suisse metadata warehouse.
An essential component of our system is the algorithm that is used to gather information from
mappings. This algorithm can extract mapping components based on their semantic meaning
and recognizes the context in which components are used. By providing a generic interface
for this algorithm, we built a basis that can be utilized to query for any element in the map-
ping structure. Consequently, this mechanism can be applied to answer many further inquiries
besides data lineage.
The interface is completely abstracted from the implementation and uses the grammar syntax
to offer intuitive interaction to users. Consequently, it can be used by any business user who
has only minimal knowledge of mapping structures. Following that, our system fulfills the
goal that no user interaction on a technical level should be necessary for the end user. Yet it
provides precise and intuitive lineage information. In combination with the complete abstrac-
tion from actual data, this is a big step forward towards bridging the gap between business
users and IT systems.
In conclusion, we believe that this thesis will provide valuable insight on data lineage, as well
as general processing of mappings in the Credit Suisse metadata warehouse. While we focus
on data lineage computations in this thesis, the developed algorithm might serve as starting
point for many different applications in the future.
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Appendices
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A. Conceptional Model For Mappings
see next page
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B. Grammar Production Rules
Including Rewrite

mapping : p=population (f=filter)? (n=navigation)? -> ˆ(Mapping $p $f? $n?);
population : ’WHEN POPULATING’ t=targetEntity FROM d=drivingEntity

p=populationClause -> ˆ(Population $t $d $p);
populationClause : (’POPULATE’ populationComp)* -> ˆ(Populate populationComp)*;
populationComp : attribute withClause+;
withClause : (’WITH’ exp=expression (’IF’ cond=condition)?) -> ˆ(With ˆ(With-

Clause $exp) (ˆ(Condition $cond))?);
expression : stringExpression | computation -> ˆ(Computation computation) | con-

catenation -> ˆ(Concatenation concatenation);
concatenation : attribute ’||’ attribute -> attribute attribute;
computation : (comp1 -> comp1) (’+’ c1=comp1 -> ˆ(Addition $computation $c1))*;
comp1 : (comp2 -> comp2) (’-’ c2=comp2 -> ˆ(Subtraction $comp1 $c2))*;
comp2 : (comp3 -> comp3) (’x’ c3=comp3 -> ˆ(Multiplication $comp2 $c3))*;
comp3 : (compElement -> compElement) (’/’ c4=compElement -> ˆ(Division

$comp3 $c4))*;
compElement : attribute | value | aggregation | LBRACK computation RBRACK ->

computation;
filter : ’SELECT ROWS WHERE’ condition -> ˆ(Filter ˆ(Condition condi-

tion));
navigation : ’NAVIGATE FROM’ e1=fromEntity ’TO’ e2=toEntity ’USING’

(u=usingClause)+ -> ˆ(Navigation $e1 $e2 ($u)+);
fromEntity : entity -> ˆ(From entity);
toEntity : entity -> ˆ(To entity);
usingClause : ((’,’? a3=attribute ’=’ a4=attribute) -> ˆ(Using $a3 $a4));
condition : m=multiCond (c=condComp)* -> ˆ(ConditionComp $m $c*);
condComp : a=aoOperator m=multiCond -> ˆ($a $m);
multiCond : a1=attribute c1=condOperator a2=attribute -> ˆ(Aa ˆ($c1 $a1 $a2))|

(a1=attribute c1=condOperator v1=value) -> ˆ(Av ˆ($c1 $a1 $v1)) |
LBRACK condition RBRACK -> condition;
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targetEntity : entity -> ˆ(Target entity);
drivingEntity : entity -> ˆ(Driving entity);
entity : (’Entity:’? STRING) -> ˆ(Entity STRING);
attribute : (’Attribute:’? STRING) -> ˆ(Attribute STRING);
aggregation : ’SUM(’ attribute ’)’ -> ˆ(Sum attribute) | ’AVG(’ attribute ’)’ -> ˆ(Avg

attribute) | ’MIN(’ attribute ’)’ -> ˆ(Min attribute) | ’MAX(’ attribute
’)’-> ˆ(Max attribute);

compOperator : ’>’ -> ˆ(Gt) | ’>=’ -> ˆ(Ge) | ’<’ -> ˆ(Lt) | ’<=’ -> ˆ(Le) | ’=’ -> ˆ(Eq) |
’!=’-> ˆ(Ne);

condOperator : compOperator | string;
value : DATE -> ˆ(Date DATE)| VALUE -> ˆ(Value VALUE);
aoOperator : ’AND’ -> And | ’OR’ -> Or;
string : substring | STRING;
stringExpression : ’"’ STRING* ’"’ -> ˆ(String STRING*) | substring -> ˆ(String sub-

string);
substring : ’substr’ LBRACK attribute position RBRACK -> ˆ(Substring position

attribute);
position : ’,’ v1=VALUE ’,’ v2=VALUE -> ˆ(From $v1) ˆ(To $v2);
STRING : (’a’..’z’ | ’A’..’Z’) (DIGIT |’a’..’z’ | ’A’..’Z’ | ’_’)*;
ATTRIBUTE : STRING ’.’ STRING;
VALUE : DIGIT+;
DATE : DIGIT DIGIT ’.’ DIGIT DIGIT ’.’ DIGIT DIGIT DIGIT DIGIT;
fragment DIGIT : (’0’..’9’);
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C. Full Meta Tree (split)
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