Univers ity of Department of Informatics
ZI.I riChUZH University of Ziirich

Department of Informatics
Binzmiihlestr. 14
CH-8050 Ziirich

Phone. +41 44 635 43 11
Fax +41 44 635 68 09
www.ifi.uzh.ch/dbtg

UZH, Dept. of Informatics, Binzmuhlestr. 14, CH-8050 Zirich Prof. Dr. Michael Béhlen
Professor

Jerinas Gresch Phone +41 44 635 43 33

Triemlistrasse 117 Fax +41 44 635 68 09

8047 Zirich boehlen@ifi.uzh.ch

Switzerland

Zirich, January 19, 2016

Bachelor Thesis in Informatik
Datenbanktechnologie

Topic: Temporal Primitives on Partitioned Relations
Overview:

Given an outer and an inner relation, many operators (such as joins, antijoins, and aggrega-
tions) can be computed. When a timestamp 7" = [T, T..) (that is part of the schema of the input
relations) is involved in the operators, we refer to them as Temporal Operators. We are inter-
ested in computing temporal operators efficiently. Up to now, we have developed a partitioning
technique called DIP (Disjoint Interval Partitioning), that partitions an input relation into a set
of partitions, each composed by not overlapping tuples, i.e., by tuples whose interval does
not intersect any other interval in the same partition. The goal of this project is to design and
implement efficient algorithms applying the temporal operators to the partitions. The obtained
results should then be used for computing the total result, i.e., the temporal operator between
the initial relations.

Detailed description: A DIP-partition is a set of tuples whose interval does not overlap with any
other tuple in the same partition. In the following picture, two input relations (r and s) are split
into two DIP-partitions each. In the context of this project, given an algorithm partitioning the
input relations into the minimum number of DIP-partitions, the student is required to compute
efficiently a temporal operator (such as a temporal join, antijoin, or aggregation) on the input

1™ University of 5
7 Zurich™

relations, using the DIP-partitions.

R T S1 S T

¢

! s1|a|[0,10)

T1 b [2,3)

ra|a [618) So g T

r4 | a|[10,12) o b [02)

s3|c|[3,4)

R| T

e s4|a|[5,6)

rs| b|[7,11) o

Given two DIP-partitions, they offer the nice property that it is possible to find all the pairs
with an overlapping interval, doing just one scan of the partitions. Using this property, many
temporal operators can be efficiently computed. The following figure displays the result of a
temporal join, anitjoin, and aggregation applied to our example relations.

TYarAx(5)S
S T
MK s
Y a| [0,1)
R\|S T
b | [1,2)
b | al[23) I s [2,3)
a ;
a | al[6,8) R T (3.4)
C tl
a | a|[6,8) a | [11,12)
a | [4,5)
a|al|l[7,9) :
a | [5,6)
al|all7,9)
a | [6,8)
d | [8,11)
Tasks:

- Jan 16: Read and understand in full detail the report on the Disjoint Interval Partitioning.
Given a memory-based algorithm computing the DIP-partitions of an input relation, implement:

- Jan 16: a disk-based algorithm for computing the same thing, and that places each DIP-
partition in a different file.

Given the equivalence rules in the report and the partitioning algorithm, build a memory-based
and a disk-based implementation for computing:

- Feb 16: A Temporal Join between two temporal relations

- Feb - Mar 16: A Temporal AntiJoin between two temporal relations

- Mar 16: A Temporal Aggregation on a temporal relation

- Apr 16: In your thesis, for each operator, define it and present your solution precisely; de-

sign a representative running example to illustrate the operator computation. Describe your
algorithms using pseudo code.

Present progress and plans once every week to your supervisor.

1™ University of 8
7 Zurich™

All algorithms must be integrated in the same framework computing the partitioning.

All algorithms must output the runtime for computing the partitioning, the runtime for comput-
ing the operator, and the number of unproductive comparisons done (as defined in the given
report).

Supervisor: Francesco Cafagna
Starting date: 13 January 2016

Ending date: 13 July 2016

Department of Informatics, University of Zurich

Prof. Dr. Michael Bohlen

