Department of Informatics, University of Zurich

Vertiefungsarbeit
A Database Systems’s Storage Layer
Implementation

Jonas Schmid
Matriculation number: 06-908-677

Email:j onas. schm d@izh. ch

19. September, 2011

FL1) University of Zurich D

o5 =7/ Department of Informatics TG

1 Introduction

This paper deals about the storage layer of a database nmeapsystem. A storage layer
consists mostly of three main parts, namely the file mandgdier manager and the storage
manager. Figure 1.1 shows an overview over the interacticheothree managers of the
storage layer. Important to mention is that the file managesdot know about the content
nor structure of the data it writes, it is just some data opiamt of view. On the other side

does the storage manager not know how the file manager starelata, namely splitting up

the data in blocks as explained later.

This report can be viewed as a summary of my implementatitimesgtorage and file manager,
it describes how | organized the files, how | deal with fixed eadable length data types and
the block buffering.

Storage Layer

Storage Manager

A
Y

Buffer Manager

A

Y

File Manager

A

Figure 1.1: Detailed Storage Layer

2 Implementation

To abstract data types and provide extensibility, | creatél namedttypes.c and its header
ctypes.h (see Listing 2.1). There | defined a typedebl which should represent the boolean
data type. Further | wrote an enumerataitr Type for the types of an attribute of a relation.
At the moment there are only Integer, Float and String imgletad. | defined also two helper
functions getSzeOfType() andisvVarlenType(), whereas the first one returns the size of the
attribute type given in the function parameter and the secme returns TRUE respectively 1
or FALSE respectively 0 depending on the function paramétetata type is variable length
or not. The following Listing 2.1 shows the structure / fuontdeclaration of ctypes.

Listing 2.1: ctypes.h

typedef char bool;
#define TRUE (bool)1l
#defi ne FALSE (bool)0

enum attrType
INT = 1,
FLCAT,

STRI NG
}s

size_t getSizeO Type(enum attrType type);
bool isVarlenType(enum attrType type);

2.1 File manager

The file manager is the connection between the hard disc arleél we would like to operate
with files. Instead of working with offsets on a file, the file mager abstracts this by arranging
a file into list of blocks. The argument for this decision igttfiles divided into blocks are
way more "cache-friendly" than without. As soon as a buffenagger is implemented, this
will matter because this one will then cache several blodkss means every time a tuple is
wanted, the buffer manager first checks if the tuple is aljreadhe cache. If yes, it can be
read directly from the cache and needs no disk access. Ithehuffer manager then reads
and buffers the whole block where the wanted tuple is in it.

Figure 2.1 shows an example with a file consisting of threekd@nd a cache with a size
of one block. As the figure shows, block 1 is already in the eatfra query now needs access
to tuple T1 or tuple T2, the cache can immediately returndites. If a query needs access to
tuple T3 or T4, the buffer manager then needs to read and lheadarresponding block from
the hard disk / file into the cache.

Block 1 Block 2 Block 3

File: [T [2i[_13] [14]

access CaChe request Block *
- <
Query: load Block

return |

Figure 2.1: Caching example

A relation can consist of multiple fork files, depending or #torage structure implemented
in the storage manager. With that architecture the file manstgqys more generic and keeps
the opportunity of modularity in the storage manager. Ircpical this means that the imple-
mentation can also handle for example column store.

The implementation of the file manager consists of thdifiigr.c and its headeimgr.h (see
Listing 2.2 and Listing 2.3). The file manager has two struatgr Relation andfmgr RelInfo.
fmgrRelInfo contains the path of the tablespace, database and retati@neagmgrRelation
has an array of file names and an array of fork files. The foligwliisting 2.2 shows the
structure of the structs of fmgr.

Listing 2.2: Structs of fmgr.h
Eypedef struct fngrRel ation

char = fil eNanmes[MAX_FKN];
FILE » fil es[MAX_FKN];
} fngrRel ation;

typedef struct frngrRellnfo

char tbl Sp[MAX_FI LENAMESI ZE + 1];
char db[MAX_FI LENAMESI ZE + 1];
char rel [MAX_FI LENAMVESI ZE + 1];

} frgrRel I nfo;

Further the file manager must provide a couple of functiomsigure its minimal functionality.
First it must be able to create a file to the correspondindioglavhere to write the data. In
addition it must also provide a function to remove a relatids a second "function couple" it
needs to provide functions to write and read data. And agd dime it should provide some
functionalities to either extend or truncate a file whichressgnts a relation.

As the first and last functionfngrinit() andfmgr Shutdown() have to be called at the startup
and the shutdown respectively of the file manager. WhibrCreate() and fmgrClose() my
implementation of the file manager provides the functidpad create and remove a relation.
Before one can read or write wifimgrRead() andfmgrWrite(), the file on which one would
like to operate, needs to be opdmgrOpen() provides this. To extend or truncate some data
from a relation, one can call eithengr Extend() respectivelyfmgr Truncate(). As the file man-
ager works with multiple fork files per relatiofingrUnlink() allows additionally to remove
single fork files. To ensure that the file manager writes toxastiag file, it can validate with
fmgrExists() whether the specific fork file already exists or not. Whthgr NrBlocks() it can
be checked how many blocks of data the fork file contains. Adahkt functionfmgrFlush()

provides to write the content of a fork file permanently to diek. The following Listing 2.3
shows the function declarations of fmgr.

Listing 2.3: fmgr.h

/* Initialize File Manager =/
void fmgrinit();

/* Shutdown File Manager =/
voi d f ngr Shut down() ;

/+* Create a Relation =/
frmgrRel ation =fngr Create(const fngrRel Info *rel I nfo);

/+ Close a Relation =/
int frgrd ose(frgrRel ation *rel);

/+* Open a Fork File fromRelation */
int frgrOpen(frgrRel ation *rel, unsigned int frkNr, bool create);

/+ Read one Block froma Fork file fromRelation */
size_t fngrRead(fngrRelation *rel, int frkNr, int blckN, void *buffer);

/+* Wite one Block to a Fork file from Relation =/
size t fmgrWite(fnmgrRelation *rel, int frkNr, int blckNr, void *buffer);

/+ Drop a Fork file fromRelation */
int frgrUnlink(frgrRelation *xrel, unsigned int frkNr);

/+ Check if a Fork file fromRelation exist */
bool fngrExists(frgrRelation *xrel, unsigned int frkNr);

/* Number of Blocks froma Fork file fromRelation */
int frgrNrBl ocks(frmgrRelation *rel, unsigned int frkNr);

/+ Extend a Fork file fromRelation =/
bool fngrExtend(frmgrRelation *rel, unsigned int frkNr, int blckN, void xbuffer);

/* Truncate a Fork file fromRelation =/
int frgrTruncate(fngrRelation *rel, unsigned int frkNr, int blckNr);

/* Wite the Content of a Fork file fromRelation permanently to disk */
int frgrFlush(fngrRelation *rel, unsigned int frkNr);

2.2 Heap file / Heap tuple

A heap file is a file without any order. It is implemented as adtas shown in Listing 2.4.
This struct contains a data section where the actual daaexdsa tuple descriptor and the
size of the tuple itself. Important to mention is the struetof the heap tuple (see Figure 2.2).

There are 9 bytes reserved for the header. The first byte ¢fgader is indicating whether
the tuple is used or not (more about an unused tuple latersireiport). The next 4 bytes
contain the size of the whole tuple. And in the last 4 byte$iefrteader one can find the offset
of the heap tuple in the heap file.

The content data is directly written into the data sectidhefattribute type is of fixed length
(like Integer or Float), since the schema gives enoughimétion about it. For variable length
data types, we first write the length of the attribute and thenvalue itself. As an advantage
of this, we don’t need to parse the file since we know the sizeefariable length data. This
design decision was also made due to the aim of keeping tie agpsmall as possible. In

Header String Integer

Heap file ——~—— — A ——
Heap tuple

Size of |Offset in Size of
Tuple File strin String data int
4096 | 1488 g

="InUse"

0x05d0 * data
0x0000

Figure 2.2: Structure of the data section of a heap tuple

example, if "hello” should be stored in a VARCHAR(100) field, wershd need 100 bytes but
rather only 4 bytes to save its length as a number plus 5 byt&eete the data.

The heap file itself is written in binary rather then ASCII. Tdavantage of this decision is
noticeable when writing numbers like integers or floats. Tiierna number as an integer may
requires 4 bytes (depending on the operating system). Thahs) it takes 4 bytes to store
a number like 1'000’000'000’000°’000, but it takes 16 chaeas in ASCII, each 1 byte long,
which means 16 bytes (see Figure 2.3).

Represenation of the number 1'000'000'000'000'000

1'000

in binary / int: 1000000 4 bytes

'000'000

o
o
=)
o
o
o
o
o
o
o
o
o
o
o
o

in ASCII / String:

16 bytes

Figure 2.3: Presentation of a large number in ASCII and binary

Additionally there is a tuple descriptor, which has all resagy information about the schema
of a tuple / relation. The tuple descriptor itself is implarted as a struct too (see Listing 2.4).
It keeps track of the quantity of attributes a tuple has amgb&elso a list of the description of
the attributes.

An attribute itself is implemented as a struct again (se&érigs2.4). It keeps the name of
itself, its type (string, int, float...) and its position Wi the array of all attributes.

If we now want to read a tuple, we go to the start position ofnid aead the first byte to
ensure, if this tuple is used or empty. To access the dataymp jo the data section, which
is the starting address plus 9 bytes from the header. To gefllnes of each attribute, we go
trough the data part and read either the size of its type, #ttibute has a fixed length type,
or read then first 4 bytes to get the size of the value and thehtree data itself. Due to the
tuple descriptor we are able to check if the actual attrisifexed length or variable length.
The last part is the empty tuple we introduce. As one can t&eran empty tuple is very use-
ful when reading multiple tuples likeselect * request. To handle with the free space between

two data tuples, we create an empty tuple instead of the fr@ees As a result of this, a heap
file consists only of tuples, either used or empty ones. Tlhaeléeof an empty tuple consists
only of a used byte, which value is 0, and a 4 byte number whéaitages the size of the the
free space. The remains of the unused tuple is just some tdd da

Heap file

Size of
Tuple

Size of
Tuple

Size of | Offset in Data

Tuple File Tuple File

= "InUse"
© "InUse”
= "InUse"
Size of Tuple

[
Size of |Offset in| pata §
0

© "InUse”

Empty tuples Used tuples

Figure 2.4: Heap file with empty and used tuples

To navigate through a heap file should be very easy now. Onateainat the beginning of
the file and check if the first byte in the first tuple is an empte @r one with data. If it is
an empty one, we can read the next 4 bytes to determine thefsize empty tuple. So we
just add the size of this to the starting position of the helepdi get to the second tuple. The
same procedure is also applicable for a used tuple. Thatsweahave now the possibility to
navigate through the heap file by jumping from one tuple tootier without care about free
space between them. The following Listing 2.4 shows thectira / function declaration of

htup.
Listing 2.4: htup.h

typedef struct Attribute

char att Nanme[MAX_ATTL] ;
enum attrType type;
int attNum

} Attribute;

typedef struct tupDesc
int nrCFAttr;
Attribute * attrs;

} tupDesc;

t ypedef struct hTup
void * data;
tupDesc xdesc;

size_t size;
} hTup;

void *get Attr(hTup *tup, unsigned int attrNr, size_t =*size);

2.3 Storage manager

As the file manager deals with files and offsets, the storageagex should operate now on a
higher level with relations, forks and blocks. Because tbeagfe manager has access to the
catalog, it knows how a relation is structured and saved.t &an be seen in the Listing 2.5
below, the storage manager is not that far implemented yet.

The storage manager should be able to read and write tupbeslless delete them. The latter
comprised also to insert an empty tuple for the deleted oAsdong as there is no structure
implemented which administrate the empty tuples, it shdaddoossible to jump from one
empty tuple to the next one. Further this jump mechanismldhalso be available to used
tuples.

Listing 2.5: smgr.h

void sngrinit();

voi d sngr Shut down() ;

hTup *readHt up(fngrRel ati on *rel, tupDesc xdescriptor);
int witeHup(fngrRelation *rel, hTup *tup);

2.4 Testing and Errors that can occur

Because | have most of the projects developed in Java by noedl o create some kind
of unit test. For that issue | used cuTest [1], because it @llsamd light, therefore easy to
understand, but nevertheless quite useful as it also cFeatesuite with multiple test functions
and it provides already a few handy assertion functions.

But as the project is written in C, the testability is limitededio for example no boundary
checking at arrays (one can write theoretically at the mositl of an array and no error
will be printed) and so on. That means that a theoreticaltyem implemented function can
produce malicious data if it will be called with the wrong utip.

3 Difficulties

As | had already some courses which where database rellagethain problem was primarily
with the programming language C since my experience with @lg based on some small
exercises and examples from other courses. The remainiagneee a question of design
decisions which | made together with my supervisor.

Bibliography

[1] CuTest: C Unit Testing Framework. http://cutest. sourceforge. net/,
[19.08.2011]

10

