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Abstract

This thesis develops the up-to-date summary, an automatic approach to aggregate
histories of nutrient measurements in the Swiss Feed Database. Since measurements
are taken irregularly and are sparse in the time, a simple aggregation over the entire
history is not representative of the real world state. We fight this challenge by detect-
ing trends in history of measurements with a set of data fitting functions: uniform
fitting function, linear regression and kernel regression. The experimental evaluation
proves the scalability of our approach to aggregate the measurements of good and
bad quality data. Further, this thesis contributes to the development of the Feed
Database with the integration of the up-to-date summaries into web application and
with the import of the raw temporal data.
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Zusammenfassung

Diese Bachelorarbeit entwickelt die up-to-date summary, einen automatischen Mecha-
nismus für die Aggregation an Chronologien von Nährsto�messungen in der Swiss Feed
Database. Da Messungen selten und in unregelmässigen Zeitabständen gesammelt
werden, ist eine simple Aggregation der gesamten Chronologie kein repräsentatives
Abbild des tatsächlichen Zustands. Wir gehen dieses Problem an, indem wir Trends
in der Chronologie der Messungen mit Hilfe einer Reihe von Funktionen aufzeigen,
welche die Daten fitten: uniforme fitting-Funktion, lineare und kernel Regressionen.
Die experimentelle Evaluation beweist die Skalierbarkeit unseres Ansatzes, Messungen
von guter und schlechter Datenqualität zu aggregieren. Des Weiteren trägt diese Bach-
elorarbeit zur Entwicklung der Feed Database bei, einerseits durch die Einbindung
von up-to-date summaries in die Web-Applikation, andererseits durch den Import von
rohen temporalen Daten.
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1 Introduction
Aggregates of nutrient measurements are crucial parameters that are necessary
for the evaluation and comparison of di�erent feed types by farmers, companies
and research institutions. The main problem of computing the aggregates is
the poor quality of the available data. Data is very often irregularly taken,
sparse or both of them. Thus, aggregates over the entire history of nutrient
measurements often lead to imprecisions, i.e., the aggregates do not correctly
describe the current quality of a feed.

In this thesis we develop a data driven approach, termed the up-to-date
summary, to automatically aggregate the nutrient measurements based on the
data distribution. The up-to-date summary detects trends and adjusts the
aggregates according to these trends. On a technical level we detect trends in
two steps. First, we fit the data with three functions - namely uniform, linear
regression and kernel regression. Since the shape of these fitting functions is
di�erent, we are capable to distinguish between di�erent trends of the data.
Second, we choose such a fitting function that generates the smallest error.

We experimentally evaluate our approach on real world and synthetic data.
The results reveal a strong disadvantage of simple aggregation over the entire
history. First, in case the data quality is good and there are trends in the
data, linear or kernel regressions always result in the smallest error. Second,
in case the data quality is poor and independent from the presence of trends,
the simple aggregation always results in the highest error. Additionally we
show that our approach always recognizes linear and logarithmic trends.

This thesis is done as a part of the Swiss Feed Database and is considered to
be an important step towards the temporal Feed Database, that stores the his-
tory of nutrient measurements. Besides computation of up-to-date summaries,
this thesis makes the following contributions to the temporal Feed Database.
First, in collaboration with researchers of Agroscope and University of Zurich,
we collected and imported the raw data into the temporal database. Second,
we integrated up-to-date summaries into web-application. For that, we devel-
oped a user interface which displays the up-to-date summaries with a text and
graphically.

This thesis is organized as following. Section 2 presents the current online
application of the Feed Database. Sections 3 and 4 describe the temporal Feed
Database and the data warehouse. The up-to-date summaries are explained in
detail in Section 5. Sections 6 and 7 report the implementation of the online
application and the experimental evaluation of the algorithm used to compute
the up-to-date summaries. The data import application is described in Section
8. Section 9 concludes the thesis and o�ers the future work.
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2 The Online Feed Database

The Swiss Feed Database is a public service for companies, private farmers
and research institutions. The feed data characterizes the quality of grown,
imported and synthetic feed types and is derived from feed samples collected
from all parts of Switzerland. The project has been started in 2005 by the Swiss
Agronomic Institute (Agroscope [3]) in collaboration with the ETH Zurich and
has later turned into a collaboration between Agroscope and the University of
Zurich.

The essence of feed data are measurements of nutrients, that are derived
from field samples through chemical analyses. At the moment the Swiss Feed
Database stores aggregated nutrient measurements for more than 600 feed
types and 155 nutrients. The most recent measurements characterize the cur-
rent quality of an animal feed. Typically, the selected measurements of the
recent time period are aggregated and stored, respectively updated, into the
database. For instance, if an aggregated measurement for a certain couple
of feed and nutrient already exists in the database, then the old aggregated
measurement is overwritten by the new one. The aggregated measurements
are used by companies, private farmers and research institutions. The ag-
gregated measurements are critical for planning healthy, e�ective and cheap
animal feed.

Interface:

An online interface gives the users of the database the possibility to search
for aggregated measurements. In order to search for an aggregated measure-
ment, at least one feed type and one nutrient should be chosen from the whole
list of feed and nutrient types. Users also have the possibility to search for feed
types, which fulfill one or more restrictions about their content of the given
nutrients. After selecting the desired feeds and nutrients, the aggregated mea-
surements for the given selection are shown in a table. Like mentioned above,
the aggregated measurements, which are retrieved here, are nothing else than
precomputed aggregations from the most recent measurements.

Example:

Figure 2.1 shows how the aggregated measurements are presented in the
web interface of the database. In this case the selected feed is barley and the
selected nutrients are potassium, iron and raw-fiber, which are shown on the
left side of the figure. Under “Futtermittel” we have the selected feeds and
under “Nährsto�e” the nutrients.
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2 The Online Feed Database

Figure 2.1: Aggregated measurements for barley and nutrients: iron, fiber and
potassium

For every nutrient a table displays the aggregated measurement. The first
column reports the nutrient name, the second the unity, the third the ag-
gregated measurement for the given nutrient. When clicking on the fourth
column more information about the aggregated measurement is displayed, the
fifth column reports the number of measurements used to compute the aggre-
gated measurement, the column “SD” states the standard deviation, the last
but one column shows the date of the last update and the last column contains
possible remarks.

The measurements are aggregated manually by the researchers of Agroscope.
There are no fixed rules about how to aggregate measurements, but depend-
ing on the quality and quantity of the data, measurements are aggregated
di�erently. For instance, if there exists a big quantity of recent measurements,
then a short period of time is chosen to aggregate measurements. Another
example is, when a measurement is exceedingly big or small in comparison to
the average, then it will be discarded as an outlier and not used for the com-
putation of the aggregated measurement. The time period for the aggregation
may also be adjusted based on the feed type. For example, while aggregating
measurements of grass, it is more desirable to use short time periods of about
three months. In other cases, while aggregating measurements of wheat, long
time periods of several years are preferable.

Currently, the Feed Database is extensively extended with temporal and
detailed categorical information. Therefore, measurements must be aggregated
online with as little input from the user as possible. In the next section we
describe in details temporal feed data.
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3 The Temporal Feed Data
This section describes the data of the Feed Database.

• Feed: a Feed describes all the animal feeds and some animal’s side prod-
ucts such as urine and excrements. A Feed has a name which can be
stored in di�erent languages (English, German and French) and an ab-
breviation of its name. Each Feed is uniquely identified by an artificial
ID. Example:

id name_e name_d name_f abbreviation

1 Barley Gerste Orge GER
2 - Erdnüssöl - ERDO

• Nutrient: a Nutrient has a name which can be stored in di�erent lan-
guages (English, German and French) and an abbreviation of its name.
Every Nutrient is uniquely identified by an artificial ID. A Nutrient can
be a nutrient matter or a nutritional value for a given species of animal.
Example:

id name_e name_d name_f abbreviation

1 Lysine Lysin Lysine LYS
2 - Ileal verdauliches lysin schwein Lysine digestible iléale porc IVLS

• Sample: a Sample of a given feed stores its origin, its harvest date, the
sampling date, the arrival date at the laboratory and the analysis date.
Almost every Sample has a LIMS-number, which uniquely identifies a
Sample, and an additional artificial ID is needed to always identify a
Sample uniquely. On each Sample one or more measurements can be
done. Example:

id LIMS_nr origin harvest_date sampling_date arrival_date analysis_date

1 332434-3 Bern 19.03.2004 08.2004 - -
2 947283-1 6596 2007 - - 13.05.2007

• Measurement: a Measurement stores the chemical analysis value of a
certain Nutrient in a particular Sample. A Measurement is uniquely
identified by an artificial ID. Example:

id value sample nutrient

1 8.30432 2 1
2 10.438 1 2
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3 The Temporal Feed Data

• Species: a Species of domestic animals has a name which can be stored
in di�erent languages (English, German and French) and is uniquely
identified by an artificial ID. Example:

id name_e name_d name_f

1 Pig Schwein Porc
2 Horse Pferd -

• NutrientGroup: a NutrientGroup categorizes the nutrients according to
their biological properties. For example we can find groups of minerals,
carbohydrates or vitamins. A NutrientGroup contains one or more Nu-
trients, has a name which can be stored in di�erent languages (English,
German and French) and is uniquely identified by an artificial ID. A
NutrientGroup may have a parent NutrientGroup and also be the par-
ent of one or many other NutrientGroups. A NutrientGroup can also
be bound to an animal Species. Groups which are bound to an animal
Species contain rates of digestibility of various Nutrients for the given
Species. Example:

id name_e name_d name_f parent_group animal_species

1 - Mineralsto�e Minéraux Nährsto�e -
2 - Schweine Porcs Nährwerte Schweine

• FeedGroup: a FeedGroup groups di�erent categories of Feeds. A Feed-
Group contains one or more Feeds, has a name which can be stored in
di�erent languages (English, German and French) and is uniquely iden-
tified by an artificial ID. A FeedGroup may have a parent FeedGroup
and also be the parent of one or many other FeedGroups. Example:

id name_e name_d name_f

1 - Stroh Pailles
2 - Getreidekörner Grains de céréales

The feed data exhibits the following properties. First, it is sparse in all types
of attributes: temporal, categorical and spacial. For example, it is usual that
the harvest and analysis dates are given but the sampling and arrival date are
missing. Also the LIMS-number and an origin are not always given. Second,
granularity of temporal and spacial attributes are not fixed. For example,
sometimes a city name or a canton in Switzerland is given and sometimes a
postal code. The dates are entered entirely (e.g. 04.10.2003) or just as a year
(e.g. 2007).
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4 Data Warehouse
This section describes the data warehouse that stores temporal feed data.
The data warehouse is a non normalized database, that in general decreases
the querying time. That is achieved by building a fact table, where all the
numerical values, which are going to be used during the analysis, are stored.
Then, other tables, called dimensions, are built to give a context to the values
of the fact table, where the dimensions together are assumed to uniquely
determine the measurement [5].

For instance, “Fact Table” is the fact table of our database, in which all
the measurement values and the foreign keys referencing to its six dimen-
sions are stored. The dimensions store information about the Sample, the
Animal Species, the Feed, the Origin, the Nutrient and the Time for every
measurement. The LIMS-number is also reported in the “Fact Table” for ev-
ery measurement in order to not have to make a join with the “Sample” table
every time a LIMS-number is required. In this database every measurement
is stored as a single value and never as an aggregated value. Figure 4.1 shows
the diagram of the database.

In addition to the data described in the section above, the data warehouse
also uses two separate tables to describe the origin of a sample as well as its
harvest, sampling, arrival and analysis date.

• Origin: this table stores the origin of a Sample. An Origin is composed
of a country, a canton or region, a city, an altitude, a postal code and
the animal density. In case the sample comes from an external agency
the table additionally provides a field for the agency name, the agency
address, an e-mail address and a web page. Example:

country region city altitude ZIP animal_density a_name a_address e-mail website

CH Waadt Aigle 415 1860 - - - - -

DE Bayern Hof 315 95032 - F&B Gersteweg 1 - -

• Time: this table stores the exact harvesting date of a sample, the sam-
pling date, the date of arrival at the laboratories and the analysis date.
Example:

harvest_date sample_date arrival_date analysis_date

20.08.2005 21.08.2005 23.08.2005 25.08.2005

03.02.2007 - - -

Figure 4.2 illustrates a reduced example of the data stored in the data
warehouse:
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4 Data Warehouse

Figure 4.1: Data Warehouse

Figure 4.2: Example of data stored in the database
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In this example we stored the measurements done on six di�erent samples
which come from six di�erent places in Switzerland. In the “Fact Table”
the measurements of the di�erent samples are divided by gray and white col-
oration. Every sample is from a given feed - in this case we have two di�erent
kinds of feeds (barley and corn). There are 24 measurements which report the
values for three di�erent nutrients (iron, fiber and potassium) analyzed from
each sample.
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5 Up-To-Date Summaries
There are four aggregates, min, max, mean and var, which must be computed
from a history of nutrient measurements. min and max are the minimal and
maximal values of nutrient measurements, and their computation does not
depend on the data distribution or data quality. In an ideal case, when there
is a large number of nutrient measurements and their values are distributed
uniformly, the mean and the var are the average and the variance of the most
recent measurements in the past.

The up-to-date summary is composed by aggregated mean and var values
that are computed based on the trends of the data, and, in case of poor data
quality, describe the real world state more accurately than simple aggregation
.

5.1 Impact of Data Quality
The up-to-date summary should report the real world state in the most pos-
sible accurate way. This can be ensured if the quality of the data is good,
i.e., if there are many measurements which are taken periodically. Figure 5.1
shows how good quality data looks like. We have many measurements taken
regularly over time. Therefore, the up-to-date summary can be computed by
simply averaging all measurements, yielding 221 as the output.

Figure 5.1: Good quality data, measurements of “TSO” in “Biertreber”

The key challenge in computing the up-to-date summary is that the quality
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5 Up-To-Date Summaries

of the data is poor. It is always the case that measurements are not taken
regularly and are sparse in time.

Figure 5.2 illustrates the case where the number of measurements is su�-
cient, but the measurements are not taken regularly. There are three regions
where the measurements are concentrated and in each region the number of
measurements is di�erent: the first region between 1994 and 1996 contains the
most measurements, while in the second region between the years 2001 and
2002 there are only eight. Averaging the measurements of all the three regions
yields value 162 that is mostly influenced by the measurements of the first re-
gion, i.e., by the past history. However, if we take the average measurements
of the last region only, we come to a value of 158, which is more representative
of the present state of the real world.

Figure 5.2: Irregularly taken data, measurements of “RF” in “Biertreber”

Figure 5.3: Sparse data
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5.2 Data Driven Approach

Figure 5.3 illustrates the case where data is collected regularly but is sparse.
In this example, averaging over the entire history and over the most recent
measurements yields substantially di�erent results. The average for the last
two years 2004 and 2005 is 216.5 and the average over the entire history is
188.2. However, we can observe the linear trend of the data, i.e., the value of
the measurements decreases linearly, and thus both averages are unrepresen-
tative of the current state of the real world.

5.2 Data Driven Approach
Our approach to compute the up-to-date summaries is data driven. For each
history of nutrient measurements we recognize a possible trend in the data
distribution by fitting it with one of the pre-configured function. Then the
value of the function at the most recent date is the average for the up-to-date
summary and the root mean squared error of fitting the data is the variance
for the up-to-date summary.

Figure 5.4: Sparse data with fitting line

Figure 5.4 illustrates our approach on the sparse data. The line in the figure
represents linear regression that fits the data with mean squared error of 10.3.
The average for the up-to-date summary is the value of the regression at 2005,
i.e., 185, and 10.3 is the variance for the up-to-date summary.

In our approach we distinguish between three fitting functions. The uniform
function is a line that goes through the average value over the entire history
and is parallel to the x-axis. The uniform function best describes the data
with no trends. Linear regression is used to recognize linearly increasing and
decreasing trends. The kernel regression applies for the case when the trend
in the data is not linear. The whole process of computing the up-to-date
summary consists of three steps:

1. Fitting the data with all three functions;

23



5 Up-To-Date Summaries

2. Selecting the fitting function;

3. Computing the average and the variance from the selected fitting func-
tion.

The best fitting function is chosen based on the mean squared error (MSE),
i.e., we compute the MSE for each of the three functions and select the one
which generates the smallest error.

We use M to denote a set of measurements and (ti, mi) to denote an element
of M . ti is the timestamp as an integer and mi is the value of a measurement.
For example in Figure 5.4, the set of measurements M corresponds to the
crowd of all blue squares. For each square the coordinate on the x-axes is
time ti and the coordinate on the y-axis is value mi. Table 5.1 summarizes
the notation used in this section.

Notation Meaning Example

M Set of measurements {(1220870000, 1.23) , (1220870000, 2.312)}
(ti, mi) œ M Measurement in the set M (8003840000, 10.122)

ti œ Z Timestamp as an integer representing a
date

2011.June.10 correspond to the
timestamp 1317852000

mi œ R Measurement value 23.231
n Total number of measurements in the

set M

-

i Index of a measurement -
f Fitting function -

f (t) Value of the fitting function f at
timestamp t

-

MSE (M, f) Mean squared error for the set M and
function f

-

Table 5.1: Notation

The mean squared error is defined as following. Given a set of measurements
M = {(t1, m1), ..., (tn, mn)} and a fitting function f , the MSE (M, f) is the
average of the squared di�erences between the given value mi at ti and the
value of f at ti:

MSE(M, f) = 1
n

nÿ

i=1
(yi ≠ f(ti))2 (5.1)

5.3 Uniform Fitting Function

Definition: let M = {(t1, m1) , ... (ti, mi) , ... (tn, mn)} be a set of measure-
ments. The uniform fitting function f is:
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5.4 Linear Regression

f(t) = 1
n

nÿ

i=1
mi (5.2)

Explanation: At each timestamp ti, the uniform fitting function has the
same value. That is equal to the average of all measurements.

Figure 5.5: Uniform fitting function

Example: Figure 5.5 illustrates fitting the data with uniform fitting function.

5.4 Linear Regression

For the linear regression we adopt the description in [8] as following:
Definition: let M = {(t1, m1) , ... (ti, mi) , ... (tn, mn)} be a set of measure-

ments. The linear regression f is:

f(t) = a + b · t ; a, b ‘R (5.3)

where: b = n·
qn

i=1 mi·ti≠
qn

i=1 ti·
qn

i=1 mi

n·
qn

i=1 t2
i ≠(

qn

i=1 ti)2 ; a =
qn

i=1 mi≠b·
qn

i=1 ti

n

Explanation: Linear regression fits the data with a line that has parameters
a and b. a is the intersection point on the vertical axis and b is the slope of
the line. a and b are computed with least-squares approach, that minimizes
the mean squared error [8].

Example: Figure 5.6 illustrates a set of measurements, that exhibit an in-
creasing linear trend. The linear regression is f(t) = 0.0074t ≠ 56.9169.
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5 Up-To-Date Summaries

Figure 5.6: Linear regression

5.5 Kernel Regression
We use the kernel regression method to detect non-linear trends in the data.
The kernel regression method builds a fitting function f (t), with the help of a
non-parametric density estimator. That is an advantage, since no assumptions
are made about the data distribution. For instance, if we want to estimate the
density of the data using a normal distribution N(µ, ‡), we would optimize the
parameters µ (the mean) and ‡ (the standard deviation), and have the same
shape of the density distribution for any dataset. The kernel density estimator
relies on the kernel function Kh of width h. First, the kernel function Kh

is placed at each data point and next, at each point of the domain, where
overlapping kernel functions are summed up [11].

Example: Consider Figure 5.7a, kernel functions are denoted by white bells.
We place a kernel function at the timestamp of each nutrient measurement.
Summing up all the kernel functions yields the density function that is repre-
sented by a light gray color in the figure.

The width of the kernel function h is the most important parameter for
accurate density estimation. Small h values make the density function sensitive
to small changes in the data distribution, while high h values make the density
function smooth. It is possible to compute the optimal h value based on the
standard deviation of the data.

We adopt the definitions of kernel regression in [10, 11] as following:
Definition: let M = {(t1, m1) , ... (ti, mi) , ... (tn, mn)} be a set of measure-

ments. The kernel regression f is :

f(t) =
qn

i=1 mi · Kh (t, ti)qn
i=1 Kh (t, ti)

(5.4)

where:
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5.5 Kernel Regression

• Kh(t, ti) = exp

1
≠ (t≠ti)2

2·h2

2
is the Gaussian kernel function

• h =
14·‡5

t
3·n

2 1
5

is the optimal bandwidth

• ‡t =
Òqn

i=1 (ti ≠ avg (t))2
is the standard deviation of the timestamps

• avg (t) = 1
n

qn
i=1 ti is the average of the timestamps

(a) Non-weighted density function (b) Weighted density function

(c) Kernel regression function

Figure 5.7: Computation of the kernel regression

Explanation: Computation of kernel regression can be viewed as the out-
come of three steps. During the first step we compute the density function of
timestamps that are present in the set of measurements M . That step corre-
sponds to the denominator in Equation 5.4. In the second step we compute
the weighted density function of the timestamps, where the weights are nutri-
ent measurements mi. That corresponds to the numerator in Equation 5.4.
In the last step we divide weighted with non-weighted density functions.

Example: Consider Figure 5.7 and the set of measurements M = {(2, 5) ,

(3, 7) , (4, 6) , (6, 3) , (6.5, 3.5) , (7, 4) , (7.5, 3.3) , (8.5, 6) , (10, 5) , (11, 5.5)}. Fig-
ure 5.7a illustrates the denominator of Equation 5.4, i.e., the density function
of timestamps. Figure 5.7b illustrates the numerator of Equation 5.4, i.e., the
weighted density function of timestamps. The curve in Figure 5.7c is the kernel
regression achieved by dividing weighted with non-weighted density functions.
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5 Up-To-Date Summaries

5.6 Example of Computation of an Up-To-Date
Summary

let M be a set of 24 measurements:
M= {(02.10.2001, 34.19), (02.10.2001, 34.03), (02.10.2001, 39.67), (30.04.2002,

40.52), (30.04.2002, 44.53), (30.04.2002, 42.73), (30.01.2009, 39.06), (18.02.2009,
43.46), (18.02.2009, 42.16), (18.02.2009, 42.31), (18.02.2009, 43.53), (13.03.2009,
36.61), (13.03.2009, 36.55), (04.06.2009, 80.49), (04.06.2009, 36.76), (23.07.2009,
44.14), (13.08.2009, 40.44), (05.11.2009, 39.91), (05.11.2009, 39.60), (11.11.2009,
43.72), (27.11.2009, 44.45), (30.11.2009, 39.83), (21.06.2010, 44.05), (21.06.2010,
44.14)}

Table 5.2 reports the MSE for the three fitting functions.

Method MSE
Uniform 73.1794
Linear 69.6847
Kernel 69.9117

Table 5.2: MSEs of the three fitting functions

Linear regression is the function which returns the smallest MSE, therefore
it is chosen to compute the up-to-date summary.

Figure 5.8: Graphical visualization of the dataset M and the linear regression

The mean value for the up-to-date summary is the value of the linear re-
gression at the most recent date, in this case the mean is equal to 43.9501.
The avg for the up-to-date summary is equal to the root of 69.6847. Table 5.3
reports all the values for the up-to-date summary of the dataset M .
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5.6 Example of Computation of an Up-To-Date Summary

mean 43.9501
var 8.347
min 34.03
max 80.49

Table 5.3: Up-to-date summary for the dataset M
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6 Implementation

The implementation is divided into two parts: the online computation of up-
to-date summaries and the graphical user interface. The user interface gives
the users of the feed database the possibility to set up input parameters, which
are used to compute the desired up-to-date summary. The database used at
the moment contains data only from a single type of feed (hay), so the user of
the online application will not have the possibility to choose between di�erent
types of feeds. The computation of summaries is done primarily in PHP and
some little parts of javascript, while the graphical visualization of the results
is done by a javascript. This application is implemented as an extension of
the prototype from Francesco Cafagna.

6.1 Graphical User Interface
The graphical user interface permits to set up five di�erent parameters:

• A nutrient: the name of a nutrient

• A region: a canton in Switzerland

• An altitude: four di�erent altitude regions

• A harvest year: a choice between all the possible harvest years

• A harvest season: a choice between all the possible harvest seasons

For each setup of input parameters the results are divided into three parts,
like shown in Figure 6.1:

On the left column we can find the list of the samples involved in the com-
putation of the summary. On the right side we have the representation of
the geographical distribution of the samples. Finally, in the middle of the
page, a table reports the up-to-date summaries for all the selected nutrients.
The last-but-one column of the table specifies the fitting function type used
to compute the summary. However, for each nutrient it is possible to gener-
ate three di�erent graphs showing how the measurements are fitted using the
three di�erent fitting functions described in the previous section.

Selecting all the measurements for the nutrient “Phosphor” taken in canton
“Zug” returns the results shown in Figure 6.2. All the measurements are
illustrated using blue points, on the x-axis we can find the harvest date of the
samples and on the y-axis the value for each measurement. The measurements
have been fitted using a uniform, a linear and a kernel function. The red

31



6 Implementation

Figure 6.1: Online application interface
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6.1 Graphical User Interface

(a) Uniform function, RMSE = 0.2817 (b) Linear regression, RMSE = 0.2032

(c) Kernel regression, RMSE = 0.1234

Figure 6.2: Fitting the data with di�erent functions

min max mean var Function type
2.7917 3.5053 3.2169 0.2798 Uniform
2.7917 3.5053 3.4572 0.2029 Linear
2.7917 3.5053 3.3440 0.1232 Kernel

Table 6.1: Up-to-date summaries for nutrient “Phosphor” in canton “Zug”

lines in the graphs represent the functions and their root mean squared error
(RMSE) is displayed in light gray. The width of the light gray area indicates
the amplitude of the RMSE. In Figure 6.2, the best fitting function is the
kernel one, which has the smallest RMSE, followed by the linear regression
function. The uniform function (or mean value line) has the highest RMSE
and performs rather badly in comparison to the other two.

The up-to-date summaries generated using the three di�erent fitting func-
tions are diagrammed in Table 6.1.

The average value is calculated by taking the date of the last measurement,
in this case the date in t6, and by calculating the value of f (t6) for the given
fitting function. This example is illustrated in Figure 6.3, the average value is
reported on the y-axis.
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Figure 6.3: Average calculation

6.2 Computation of Up-To-Date Summaries
The computation of up-to-date summaries can be divided into three steps.
As a first step a query containing the selected parameters - described in the
section above - is generated. As a second step all the measurements selected
from the query are retrieved from the database. For every selected nutrient
an up-to-date summary is computed.

Algorithm 6.1 generates the up-to-date summary for a given set of mea-
surements M , having a total number of measurements n. The intermediate
results sumM, sumT, prodMT, prodTT are used to calculate the linear and the
uniform fitting functions, the intermediate result mseT is used in the kernel
regression formula. Using the results of a first scan (lines 6-11) of the measure-
ments, the mean value of all measurements and the parameters for the linear
regression (intercept and slope) are calculated (lines 12-15), with a second
scan of the data (lines 16-18) the optimal bandwidth for the Gaussian kernel
function is calculated.

Algorithm 6.2 calculates the mean squared error (MSE) for all three fitting
functions (lines 4-11), compares them and, taking the best fitting function,
returns the up-to-date average value like described in the section above (lines
12-16). The data are scanned one more time (lines 4-8) in order to calculate
the MSE of the uniform and the linear functions, and for the kernel regression
the scan of the measurements becomes quadratic, scanning all the data once
more for every value.

Algorithm 6.3 takes a date t as input and returns the measurement value (y-
value) of the kernel function for the given date. All the implemented formulas
are the ones described in sections about the computation of fitting functions.
The whole application is implemented in PHP and javascript and is about 560
lines of code long.
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Algorithm 6.1 summaryGenerator (M, n)
input : a set of measurements M , the total number of measurements n in M

1. meanV alue; //the mean value of all m

i

2. a; //intercept of the linear regression line

3. b; //slope of the linear regression line

4. bandwidth; //the optimal bandwidth for Gaussian kernel function

5. sumM, sumT, prodMT, prodTT, mseT ; //intermediate results

6. for i = 1, ..., n do

7. sumM+ = m

i

;

8. sumT+ = t

i

;

9. prodMT+ = m

i

ú t

i

;

10. prodTT+ = t

i

ú t

i

;

11. end for

12. meanV alue = sumM/n;

13. b = (núprodMT )≠(sumT úsumM)
núprodT T ≠sumT

2 ;

14. a = sumM≠búsumT

n

;

15. meanT = sumT/n;

16. for i = 1, ..., n do

17. mseT+ = (t
i

≠ meanT )2 ;

18. end for

19. sdT =


mseT/n; //Standard deviation of T

20. bandwidth =
1

sdT

5ú4
3ún

2 1
5

21. return bestF itting(M, n, meanV alue, a, b);
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Algorithm 6.2 bestF itting (M, n, meanV alue, a, b)
input : a set of measurements M , the total number of measurements n in M ,

meanV alue as the mean value of all m

i

, the intercept of the linear regression line a,
the slope of the linear regression line b

1. mseUn; //the mean squared error for the uniform function

2. mseLin; //the mean squared error for the linear function

3. mseKer; //the mean squared error for the kernel function

4. for i = 1, ..., n do

5. mseUn+ = (m
i

≠ meanV alue)2 ;

6. mseLin+ = (m
i

≠ (a + b ú t

i

))2 ;

7. mseKer+ = (m
i

≠ kernelFunction (t
i

, ))2 ;

8. end for

9. mseUn = mseUn/n;

10. mseLin = mseLin/n;

11. mseKer = mseKer/n;

12. if mseKer Æ mseLin && mseKer Æ mseUn then

13. return kernelfunction(t
n

);

14. else if mseLin Æ mseKer && mseLin Æ mseUn then

15. return a + b ú t

n

;

16. else

17. return meanV alue;
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6.3 Graphical Visualization of the Results

Algorithm 6.3 kernelFunction (M, n, t)
input : a set of measurements M , the total number of measurements n in M

and a date t

1. numerator, denominator; //of the kernel function

2. for i = 1, ..., n do

3. gaussianKernelFunction = exp

1
≠ (t≠ti)2

2úbandwidth

2

2
;

4. numerator+ = m

i

ú gaussiankernelFunction;

5. numerator+ = gaussiankernelFunction;

6. end for

7. return numerator/denominator;

6.3 Graphical Visualization of the Results
The javascript method, that is used to draw the graphs, takes a set of mea-
surements, a fitting line or curve and the value of the MSE as input. The
graphs are generated using the Google Chart Tool package [1], importing two
javascript files [2, 4]. The points to draw into the graph have to be entered
into a two-dimensional array, specifying the x-value (the date) and the y-value
(the measurement value).

A particularly challenging task has been the graphical representation of
the MSE: since the Google Chart Tool package only permits to draw points or
points connected by a line, it has been impossible to define an area representing
the MSE. This problem has been solved by defining a bright-colored line having
a width that is two times bigger than the MSE and passes exactly through
the fitting function points. The only problem has been, that - since the MSE
squares every error - the resulting MSE line has been too wide (for several
errors bigger than 1) or too small (for several errors smaller than 1), resulting
in an area covering the whole graph or just the fitting function line. The
solution for this last problem has been to take the root of the MSE, thus
decreasing the width for big MSEs and increasing the width for the small
MSEs. For instance, a MSE = 100 would result in a RMSE = 10 and a MSE
= 0.01 in a RSME = 0.1.
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7 Experimental Evaluation

In this chapter, we experimentally evaluate our approach to compute the up-
to-date summaries. The results show that linear and logarithmic trends are
always recognized - independently of how good the data are collected. In ad-
dition the results show that the uniform fitting function, i.e. averaging across
the entire history, is never chosen, because of the highest MSE. Especially in
the cases where the data are collected irregularly, simple averaging leads to
very big imprecision estimating the real values.

The first experiment evaluates the performance of the algorithm. Figure 7.1
reports the execution time of the algorithm for di�erent values of n, where n

is the total number of measurements. The data used in this experiment come
from di�erent selections of nutrients and regions (cantons) of origin. There are
three di�erent curves in the graph, each of them reports the computation time
for a di�erent fitting function. We made the following observations: while for
the uniform and linear function the time elapsed is always some milliseconds
scaling linearly with n, the time elapsed using the kernel function increases
quadratically with n like shown very well in Figure 7.1. This is due to the
definition of kernels. Moreover, object oriented PHP is not optimized to work
with arrays, thus the total time of computation for the kernel regression is
very high.

Figure 7.1: Time elapsed for the computation of the up-to-date summary us-
ing linear, kernel and uniform functions in correspondence to the
number of measurements

The next experiments evaluate the precision of our method. We investigate
the following cases:
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• Case 1: We verify if the algorithm always detects linear trends. In this
experiment the data are assumed to be taken regularly over time, the
number of measurements n, the variance of the data and the slope of the
line are varying.

• Case 2: The second case extends the first case for irregularly collected
data.

• Case 3: The third case verifies if the algorithm always detects logarithmic
trends with the help of kernel regression. In this experiment the data is
assumed to be taken regularly over time, the number of measurements n,
the variance of the data and the curvature of the logarithm are varying.

• Case 4: The last case extends the third case for irregularly collected
data.

The four cases described have been evaluated using synthetically generated
data. For the first two cases the data is generated according to the equation
of a line f (t) = a + b ú t , where a and b are real numbers. For the last two
cases the data is generated according to the equation of the logarithmic curve
f (t) = log— (t) of base —.

In order to simulate data taken regularly, a random date t is chosen uni-
formly over an interval of ten years. After that, the value of f (t) is calculated
and an error (normal distributed) is added to it. The error is retrieved from a
normal distribution N(mean, sd) having mean = 0 and a standard deviation
sd which varies during the experiment in order to see what happens when the
values become sparse on the y-axis. To simulate data taken irregularly, a date
t is randomly chosen from the exponential distribution with parameter ⁄. ⁄

controls how concentrated, respectively sparse, the data are over the time. A
small ⁄ means that the data are more concentrated in one point (data are
taken irregularly), a big ⁄ instead distributes the data more sparse (the dis-
tribution is more uniform over time, data are taken more regularly), ⁄ varies
during the experiment in order to see what happens when data is collected
more and more distributed.

For case 1, di�erent datasets have been generated, choosing di�erent lines
(changing parameters a and b) or choosing di�erent numbers of measurements
n. Figure 7.2 gives two examples of such data. For case 2, the parameters
a and b of the line are fixed as well as the standard deviation. The only
parameter which changes is ⁄, Figure 7.3 gives an example of such data.

For case 3, di�erent datasets have been generated as well, choosing di�erent
curves (changing the base — of the log function) or choosing di�erent numbers
of measurements n, in Figure 7.4 two examples are reported. In case 4, — is
fixed as well as the standard deviation, the only parameter that changes is ⁄,
Figure 7.5 reports an example.

Figure 7.6 evaluates case 1. Graphs (a) and (b) of Figure 7.6 present the
results from data that have been simulated with a line having a small positive
slope, while graphs (c) and (d) come from data that have been simulated with
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(a) a=10, b=0.00000002, sd=0.6, n=100 (b) a=50, b=-0.0000001, sd=2, n=100

Figure 7.2: Synthetic data, distributed linearly and taken regularly

Figure 7.3: Synthetic data, distributed linearly and taken irregularly, a=10,
b=0.00000002, sd=0.5, n=100, ⁄=2.5

(a) —=1.5, sd=0.6, n=100 (b) —=27, sd=0.08, n=100

Figure 7.4: Synthetic data, distributed logarithmically and taken regularly

Figure 7.5: Synthetic data, distributed logarithmically and taken irregularly,
—=1.5, sd=0.6, n=100
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(a) n = 100, a = 10, b = 0.00000002 (b) n = 1000, a = 10, b = 0.00000002

(c) n = 100, a = 50, b = -0.000001 (d) n = 1000, a = 50, b = -0.000001

Figure 7.6: Case 1: MSE for synthetic data, distributed linearly and taken
regularly

a line having a big negative slope. From these graphs we can clearly see how
linear and kernel regressions always perform better than simply taking the
mean value over the entire history. This observation works independently of
the number of measurements, the slope of the line or the value for standard
deviation. The di�erence of the performance between linear or kernel and
the uniform functions also increases, when the slope of the line increases.
As expected, the MSE grows for every fitting function, when the standard
deviation grows. Since the error of fitting the data with a line is always
the smallest one, the linear trend is always recognized and the summary is
computed using linear regression.

(a) n = 100, a = 10, b = 0.00000002, standard
deviation = 0.5

(b) n = 1000, a = 10, b = 0.00000002, stan-
dard deviation = 0.5

Figure 7.7: Case 2: MSE for synthetic data, distributed linearly and taken
irregularly
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(a) n = 100, b = 1.5 (b) n = 1000, b = 1.5

(c) n = 100, b = 200 (d) n = 1000, b = 200

Figure 7.8: Case 3: MSE for synthetic data, distributed logarithmically and
taken regularly

Figure 7.7 reports the MSEs for case 2. For very small ⁄ (data taken more
irregularly) uniform and kernel regressions perform much worse than the linear
one. When ⁄ becomes bigger, linear and kernel regressions produce almost the
same MSE, while uniform function always remains slightly worse. It is very
interesting to see how using linear regression makes the MSE remain almost
constant for every value of ⁄. This means, that linear regression can deal
very well with di�erent data distributions over time (with data which follow a
linear trend), while taking the mean value over the entire history can lead to
big imprecisions, if data are taken irregularly. Similarly to case 1, the error of
fitting the data with a line is always the smallest one, thus linear regression is
always used to compute the up-to-date summary.

Figure 7.8 evaluates case 3. Like in case 1 of Figure 7.6 with linearly dis-
tributed data, the uniform function always performs considerably worse than
the linear and the kernel ones, but this time the kernel regression, as expected,
has always a smaller MSE than the linear regression for every tested standard
deviation. These results show that kernel regression is better for fitting non-
linear distributions.

Figure 7.9 presents the results for case 4. We can clearly see that kernel
regression always performs much better than linear and uniform functions. In
contrast to the results of the data that are taken irregularly and have a linear
trend, the MSE remains constant for every distribution of the data over time
(di�erent ⁄ parameters) and for every fitting function. This comes from the
fact that the logarithmic curve becomes flat very fast, but still has a very steep
shape at the beginning of the function generating the MSE di�erence between
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(a) n = 100, b = 1.5, standard deviation = 0.8(b) n = 1000, b = 1.5, standard deviation =
0.8

Figure 7.9: Case 4: MSE for synthetic data, distributed logarithmically and
taken irregularly

(a) Uniform, lambda = 1 (b) Linear, lambda = 1 (c) Kernel, lambda = 1

(d) Uniform, lambda = 21 (e) Linear, lambda = 21 (f) Kernel, lambda = 21

Figure 7.10: Synthetic data, distributed logarithmically, taken irregularly

the three methods. Figure 7.10 illustrates how the MSEs can remain constant
also choosing very di�erent ⁄ (in this case 1 and 62). The y-axis has the same
scale for every graph, so it is very easy to see how the RMSEs areas (light gray
areas) just slide downward, practically without changing their width. At the
same time the scale for the x-axis becomes smaller for ⁄ = 62. This means that
the data are more compacted, but essentially maintain the same distribution,
managing thus to maintain the same MSE for every tested ⁄.

44



8 Data Import

This section describes the raw feed data and presents an application to import
it into the database. Since no documentation exists about how the researchers
store the raw data of the analyses, we went to Annelies Bracher, who is a
researcher in Agroscope, and with her collaboration we recreated the whole
process of generating a so-called LIMS file, where all the raw data are stored.
A LIMS file is an export file from the LIMS system. The LIMS system is a soft-
ware, which is used by the researchers of Agroscope to store the measurements
derived from the chemical analyses of the feed samples.

8.1 Raw Data - LIMS File

Figure 8.1: LIMS file

A LIMS file is structured according to the samples: every row of a LIMS file
which begins with “XXX” starts the description of a sample. While reading
the description of a sample, it is necessary to distinguish the first row. The
first row contains the meta-data, while the other rows describe measurements
of the nutrients. Each row contains columns separated by the character “£”.
The descriptions of the columns of the first row are listed in Table 8.1, the
descriptions of the columns of the rows containing a measurement are listed
in Table 8.2.

45



8 Data Import

Column

number

Description Example

1 Identification characters for the
begin of a sample

“XXX”

2 LIMS number “315011-5”
3 Project code “ERB2009-01”
4 Always empty “”
5 LIMS category of a feed “RF-GF”
6 Free text to describe a sample

(origin, feed type, etc.)
“EK 964 En vert, teneur ZUCK 04”

7 Free text to describe a sample
(origin, feed type, etc.)

“PHZU-01, parc-6a, 440, 1er cycle”

8 Method of delivery (by mail, by
hand, from the own farm etc.)

“PARC-6”

9 Sample date “22-APR-2009”
10 Arrival date (at the laboratory) “24-APR-2009”
11 LIMS abbreviation of the sample’s

preparation method
“TSO105-LU”

12 LIMS status of the whole sample “A”
13 Always empty “”

Table 8.1: Columns of the first row of the sample description

Column

number

Description Example

1 Abbreviated nutrient name “RA”
2 LIMS status of the measurement

(completed, available, in
preparation, etc.)

“A”

3 Measured value “80.9300”
4 Unity of measure “g/kg”
5 LIMS status of the measurement

(approved, rejected, etc.)
“A”

Table 8.2: Columns of the other rows of the sample description
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8.2 Data Import Application

8.2 Data Import Application
This section describes a java application to import the raw data into the
database. The application permits to read a LIMS file and directly import the
measurements contained in it into the database. The code is about 250 lines
long and is divided into three main methods.

1. As a first step the LIMS file is read row by row and for every row it is
recognized whether the row is the description of a sample or of a
measurement. After this the sample, respectively the measurement, is
imported into the database using the appropriate method:

private void importData(File limsFile) {

if (limsFile.hasNext()) {

while (limsFile.hasNextLine()){

String tempRow = limsFile.nextLine();

tempRow.useDelimiter("£");

String firstToken = tempRow.next();

if (firstToken.startsWith("XXX")){

importSample(tempRow);

}

else{

importMeasure(firstToken, tempRow);

}

}

}

}

2. With this method all the information about a sample is transformed into
the SQL insert statement. If the sample is of a feed type that is not already
present in the database, also the new feed type is inserted:

private void importSample(String line){

//Feed category of the sample
String feedName = line.next().replace(" ", "");
int feedRef = -1;
ResultSet results = executeQuery("SELECT feed_key FROM Feed" +

"WHERE feed_name = \’" + feedName + "\’");
while (results.next()) {

feedRef = results.getInt("feed_key");
}
//If no such feed is found, then introduce it into the db
if(feedRef == -1){
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st.execute("INSERT INTO Feed...);
}
//The line is divided into the remaining information fields
//and a new sample is inserted into the database

}

3. With this method all the information about a measurement is
transformed into the SLQ insert statement. If the measurement is done on a
nutrient type that is not already present in the database, also the new
nutrient type is inserted:

private void importMeasure(String firstToken, String line){

//Abbreviated nutrient name
String nutrientAbbreviation = firstToken.replace(" ", "");
int nutrientRef = -1;
ResultSet results = executeQuery("SELECT nutrient_key FROM Nutrient + "

"WHERE n_abbreviation = \’" + nutrientAbbreviation + "\’");
while (results.next()) {

nutrientRef = rs.getInt("nutrient_key");
}
//If no such nutrient is found, then introduce it into the db
if(feedRef == -1){

st.execute("INSERT INTO Nutrient...);
}
//The line is divided into the remaining information fields
//and a new measurements is inserted into the database

}

The main challenges importing the data from the LIMS files are:

• Since the format of the measured values is not strictly defined,
everybody can write anything as a value for a measurement, inputs like
“<0.001”, “>0.0001”, “~0.02” or “mehr als 5%” can be entered from
the researchers as valid measurement values. For all these cases and
many others we made the choice to eliminate all the invalid characters
like “<” or “~” from the input, since having such characters would not
give us the possibility to do numerical analyses on these values.
Another possibility is to simply skip these measurements.

• In rare cases the sampling date for a measurement is missing, thus we
had the choice to give a default date-value or to skip the entire
measurement.

• Sometimes space characters are included in the “LIMS category of a
feed” field. In this case all the space characters should be removed
from this information field - if not, the names “GRASS” and “
GRASS” cannot be recognized as a unique “LIMS category of a feed”.
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• In general, characters like “ or ’ should be removed or escaped in an ap-
propriate way - if not, the SQL insert statement does not work correctly.

• The last challenge is inserting a new row into the database: since
inserting the raw data row by row into the database is taking too much
time, we decided to create a string, where the measurement values for
approximately 200 samples could be stored and then to insert them in
one go, decreasing the total insert time.

Processing the LIMS file provided by the Agronomic Institute and inserting
every measurement into the database took about 25 minutes. The 334 Mb
file contained data from approximately 110000 di�erent samples on a total of
about 1.2 million measurements. We do not import all the column present in
the LIMS file, as column number 8 of the meta-data row, since is not used by
the current application of the feed database.
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9 Conclusions and Future Work
The poor quality of the available data makes the computation of up-to-date
summaries a challenging task. However, despite this we managed to develop a
method to compute up-to-date summaries, that is better than simply averaging
over the entire history of nutrient measurements. With the help of linear and
kernel regression, we are able to detect linear and non-linear trends and to
compute values for the up-to-date summary, which are more close to the real
world ones than aggregating over the entire history. The online computation
of up-to-date summaries is, at the end of this work, a new functionality of the
web interface of the temporal Feed Database, which can now be fed directly
importing the raw data.

The experimental part of this thesis clearly evidences the better perfor-
mances that linear and kernel regression always have in comparison to aggre-
gating nutrient measurements over the entire history. Especially then, when
the quality of the data decreases, the computation of up-to-date summaries
using such an aggregation can lead to serious deviation from the real world
state.

Although our approach achieved good results, more work remains to be
done. First of all, intensive evaluations on real world data is needed to test the
method used to compute up-to-date summaries. Second, in order to achieve
even better results, data should also be fitted with other regression methods,
for example using logarithmic and polynomial regression, cause we strongly
believe that fitting data using regression functions is much more easy, time
e�cient and powerful than selecting a time interval to be aggregated.
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