
Department of Informatics, University of Zürich

Facharbeit

Development of a Database System
based on geographical information

Kristin Kruse
Zürich, Switzerland

Matrikelnummer: 04-720-983

Email: kristin.kruse@uzh.ch

August 31, 2011

supervised by Prof. Dr. M. Böhlen and F. Cafagna

BSc Thesis: Temporal Support for Procedural
Code in PostgreSQL

Advisor: Amr Noureldin (noureldin@ifi.uzh.ch)
Supervisor: Prof. Dr. Michael Böhlen (boehlen@ifi.uzh.ch)

Start date: TBD
Duration: 6 months

Background

Temporal databases are those that provide support for the time dimension. There are two time aspects asso-
ciated with temporal data: valid time, and transaction time. Throughout this project, the emphasis will be on
Valid time, which is the time frame through which a particular fact is true in the real world [1, 3].

Table 1a illustrates a temporal version of an Employee table in a database. Looking into the first entry that
belongs to Employee C, we can deduce that C was employed on 2010-11-15 until 2011-01-15 with a
salary of 6000. He received a salary increase later on and thus, a new entry was created that is valid from
2011-02-15. In a traditional database, the entry would have just been updated and consequently, losing
historical information. Assuming that we take a snapshot of the temporal table at Time = 2010-12-15, a
non-temporal snapshot of Table 1a would be as shown in Table 1b.

Name Salary TS1 TE2

A 9000 2010-08-15 2010-09-15
B 5000 2010-10-15 2011-03-15
C 6000 2010-11-15 2011-01-15
C 7000 2011-02-15

(a) Temporal

Name Salary
B 5000
C 6000

(b) Non-temporal

Table 1: Employee table

Figure 1 visualizes the input temporal data of Table 1a on a graphical timeline. Computing the maximum
Salary of a given temporal table, such as that illustrated in Table 1a, one would not expect the result to be

1TS = Time Start (Valid time)
2TE = Time End (Valid time)

1

Abstract

These theses document the working process of a database constructive web application with
name Swiss Feed Database System, Version 2.0. One major point is hereby the inclusion of
geographical information such as address specifications and the procedure to display the result-
ing locations usefully on a map. Next to a short introduction into the topic of Geographical
Information System (GIS), a tutorial in embedding Google Maps will mostly cover that theme.
Furthermore, the construction of an interactive web page by using a PostgreSQL database, PHP
server scripts and JavaScript along with its Asynchronous JavaScript and XML (Ajax) object is
part of this documentation.

I Contents

Contents

1. Preface 1

2. Introduction 2
2.1. Swiss Feed Database Project . 2
2.2. Geographical information system (GIS) . 2

3. Analysis 5
3.1. Swiss Feed Database, Version 1.0 . 5

3.1.1. Application . 5
3.1.2. Data . 5
3.1.3. Database . 5

3.2. Input from AGROSCOPE and AGRIDEA . 5
3.2.1. AGRIDEA Dürrfutterenquête . 5
3.2.2. Data input . 7
3.2.3. Parameters and values . 7
3.2.4. Queries . 9

4. Requirement 11

5. Design 14
5.1. Graphical outline in HTML . 14
5.2. System architecture . 15

5.2.1. PostgreSQL . 15
5.2.2. PHP 5 . 15
5.2.3. Expendable Hypertext Markup Language (XHTML) 16
5.2.4. Javascript . 16
5.2.5. Asynchronous JavaScript and XML (AJAX) 17
5.2.6. Google Maps . 17
5.2.7. Google Visualization . 18

5.3. System application flow . 18
5.3.1. Module INIT . 20
5.3.2. Module M1 . 20
5.3.3. Module M2 . 20
5.3.4. Module M3 . 20
5.3.5. Module M4 . 20
5.3.6. Module M5 . 21
5.3.7. Module M5+ . 21

5.4. Database design . 21
5.4.1. Objects and relations . 21
5.4.2. Triggers and Views . 23

Contents II

6. Implementation 26
6.1. Introduction . 26
6.2. Database . 26

6.2.1. Extraction, Transportation, Loading (ETL) of data 26
6.3. Application . 31

6.3.1. Generating dynamic SQL . 31
6.3.2. Asynchronous client-server communication 36
6.3.3. Geocode locations with Google Maps service in PHP 40
6.3.4. Embed a map of Google Maps with information from the database . . . 41
6.3.5. Using Google Visualization . 44
6.3.6. Interactive result display with JavaScript event listeners 47

7. Testing 52
7.1. Surveillance of implementation . 52

7.1.1. Single functionality . 52
7.1.2. Module . 52
7.1.3. System . 53
7.1.4. Testing environment . 53

7.2. Application practice . 53

8. Maintenance and outlook 54
8.1. Updates . 54
8.2. Future data input . 54
8.3. Future features and adaptations . 54

9. Summary 56
9.1. Database system with geographical information 56

A. Code appendix 59
A.1. Start pages . 59
A.2. General JavaScripts . 68
A.3. Modular JavaScripts . 70
A.4. Ajax triggered PHP scripts . 82

III List of Figures

List of Figures

2.1. Schematical outline of the distribution of information into separated layers [Geo-
stat 1994, p.3] . 3

2.2. Architecture and assigned tasks of a GIS [Longley et al. 2011, fig. 10.1] 3
2.3. Example of a data item stored in two database tables subject and geometry. . . 3

3.1. Screenshot of the result display of the current Swiss Feed Database online Ap-
plication [Agroscope 2009, "Berechungsprogramm"] 6

3.2. A possible database design of the Swiss Feed Database 1.0 [very abstracted and
only estimated]. 6

3.3. Two examples of a data delivery spreadsheet and its contents. Above: "Rohdaten_-
Durrfutter_2005-2009.xls", below: "Zusammenfassung_09_def.xls" 7

3.4. Simplified input structure, indicating the five categories with additional infor-
mation about statical legends and potential cardinalities, data types and field
names . 7

3.5. Developed feed content namespace. The dashed lines indicate combinations
with Null-values, the italic names are later translations supplied by the AGRIDEA
publications. 9

3.6. Example of statistical subsets, left the use of quartiles, right use of standard
deviation in 2sigma range . 10

4.1. UML use case diagram of the next Swiss Feed Database 11
4.2. The users activites in the Swiss Feed Database online application as UML ac-

tivity diagram . 13

5.1. Basic outline of the HTML web page. The icons are pointing to additonal ar-
chitectural components, required for the requested activity 15

5.2. Design of the Swiss Feed Database system architecture 16
5.3. UML state chart to illustrate the cooperation of the scripting languages on client

and server side. Including also the state condition of the AJAX. 18
5.4. UML sequence diagram of the complete Swiss Feed Database including all

major components . 19
5.5. Illustration of the composition of samples. 21
5.6. Relational concept of the Swiss Feed. Bold: used attributes so far (the others

contain only NULL). Also indicated on top of ever table is the distribution of
the test data into the tables. 22

5.7. A close up of the two tables d_origin and d_time with a illustration of the de-
signed attribute hierarchy . 23

6.1. Example of a spreadsheet preprocessing to extract workable information con-
cerning the sample’s content. 27

6.2. Schematical example of the referances between the <select> fields 32

List of Figures IV

6.3. The outline of the PHP class ’SelectField’ . 33
6.4. Modeling of the ’generate SQL WHERE IN part’ algorithm 37
6.5. Modeling of the ’Geocode’ algorithm. 42
6.6. Modeling of the combined ’transform samples into Google Maps marker’ (dark

gray) and ’fill the visualisation dataTable’ (light gray) algorithm 46
6.7. Illustration to the task to transform an XML input, with minimalistic storing

principles into a table with static columns . 47
6.8. Illustration of the statistical definition of a outlier 48
6.9. Screenshot of the Swiss Feed Database 2.0 surface with activated interactivity

’show outlier for nutrient’ . 48

7.1. The technical environment during the implementation and testing phase of the
Swiss Feed Database 2.0. 53

9.1. Final presentation of the selection part in the Swiss Feed Database 2.0. 56

V List of Tables

List of Tables

2.1. Overview of the four main data types in a GIS. Each type with it separate defi-
nition of geometry [BFS 1994, p. 4, modified] 3

5.1. Summary of the view triggering attributes in the database table d_time. 25

6.1. Illustration of the importance of NULL values for tuple specification. Bold are
the attributes, which are covered in the new data delivery. 29

9.1. Composition of the application output. 58

Appendix: code listings VI

Appendix: code listings

A.1. feeddb-start.php . 59
A.2. styles-feeddb.css . 62
A.3. class-selectfield.php . 65
A.4. pg-dbinfo.php . 67
A.5. jsA_global-variables.js . 68
A.6. jsB_ajax-object.js . 68
A.7. jsC_loader.js . 69
A.8. jsD_sql-from-where.js . 69
A.9. js1_update_selectfield.js . 70
A.10.js2_result_coordinator.js . 72
A.11.js3_result_list-map.js . 74
A.12.js4_result_diagram.js . 77
A.13.js5_result_aggregate.js . 79
A.14.ajax-pg-options.php . 82
A.15.ajax-pg-result-google.php . 82
A.16.ajax-pg-result-linediagram.php . 85
A.17.ajax-pg-result-scatterdiagram.php . 86

1. Preface
These present thesis will document the implementation process of the Swiss Feed Database
System Version 2.0., a database constructive web application. In order to do so, the structure of
content is designed according to the ’waterfall model’ of software development.

In this sense, a first part contains the project preproduction, with the outline of the general
surroundings and technical possibilities (chapter ’Introduction’), meanly affected by the pre-
sentation of the geographical information systems (GIS). Next in line is the analysis of the
given input data along with the accessible ongoing research queries in the topic of historical
feed development (chapter ’Analysis’) which is followed by the formulation of the required
functional specifications of the system (chapter ’Requirement’).
A second part is dealing with the construction of the application. The chapter ’Design’ is
covering the appearance of the web application, but about all things, the different required
components, its characteristics, its appliance and the communication between them. In the
chapter ’Implementation’, selected topics of the construction will then be discussed in a manner
of tutorials. The presented excerpts are exemplary for the processing of the practical work and
thereby, the most attention is concentrated into this part.
In the end, two chapters concerning the testing and the maintenance of the application are
building, in combination with an overall summary, a concluding part with an outline for future
revisions.

As an endnote in this preface, it has to be mentioned that these thesis are neither a strict software
documentation nor a more general project protocol. Although it includes a little bit of both, it
is principally a documentation of the learning process of the application’s creator. The most
basic knowhow were acquired from scratch and many later ’simple’ constructions were keeping
the author occupied for long times. That’s why some features, especially in the implementation
chapter, are discussed little bit more detailed.

2. Introduction

2.1. Swiss Feed Database Project
The Swiss Feed Database is a project on federal level hosted by the laboratory AGROSCOPE
of the Department of Agriculture. The goal is to collect information about the chemical and nu-
tritional content of the inland production of animal feed, aggregate and display this information
for scientific research, and make the results usable for farmers in form of consultable guidelines
and interactive forms [Agroscope 2011].
As a result of this project a first version of an online application was established. But a next
development should now take place in collaboration with the Department of Informatics of
the University of Zurich. One task will be to include geographical information about the feed
sample’s origin into the Swiss Feed Database.

2.2. Geographical information system (GIS)
The illustration of the sample’s origin will be handled in this new application by including the
Google Maps service. Since this service is only one of many tools, dealing with the same
technical possibilities to embed geographical information, a little excursus will be taken by in-
troducing the geographical information system.

A geographical information system is a model in a scientific sense: it displays the world sim-
plified yet specialised on a specific topic.

• The geographical in the name reveals the main purpose of a GIS to display a specific mat-
ter in topographical space. Therefore, the base of every GIS is a geographically encoded
coordinate system in two or three dimensions (graticule and elevation model).

• Based on this grid, information referring to any topic with a spatial distribution can be
added in form of layers connected to the coordinate system (fig. 2.1). Again, this infor-
mation is normally simplified and originates either of random enquiries (e.g. population
density) or optical surface analysis (e.g. road network).

• In the end, a GIS is a computerized, interactive system not a static, analogue publication.
The user is allowed to choose the scale of the grid and the combination of the information
layers according to his requests.

The technical implementation of this required system is always based on a database (object-
relational DBMS and data in the fig. 2.2). It stores the previously mentioned information as
data, where every data unit combines the thematical value (subject) along with its spatial refer-
ence (geometry), as the example in figure 2.3 illustrates. According to the geometry, every data
item can be further distinguished into four data types (table 2.1).

3 CHAPTER 2. INTRODUCTION

Figure 2.1.: Schematical outline of the distri-
bution of information into sepa-
rated layers [Geostat 1994, p.3]

Figure 2.2.: Architecture and assigned tasks
of a GIS [Longley et al. 2011,
fig. 10.1]

Subject�(e.g.�Cites) Geometry

SID City_name City_size Population Geometry GID Latitude longitude

1 Zürich 91.88 385'468 A A 47.379022 8.541001

Figure 2.3.: Example of a data item stored in two database tables subject and geometry.

MATRIX REPRESENTATION VECTOR REPRESENTATION

Cell geometry, defined by the co-
ordinate of a grid cell, e.g. population per
square

Point geometry, defined by the coor-
dinate of a point, e.g. city centers

Line geometry, defined by the coor-
dinate of start, end and points in between of
the line, e.g. rivers

Polygons geometry, defined by the
coordinates of its boundaries, e.g. lakes

Table 2.1.: Overview of the four main data types in a GIS. Each type with it separate definition
of geometry [BFS 1994, p. 4, modified]

2.2. GEOGRAPHICAL INFORMATION SYSTEM (GIS) 4

In addition to the database, the GIS application has to be developed, which will be used as
graphical user interface (geographic information system in fig. 2.2). Its first and most im-
portant job is the so called mapping, where selected data items will be visually placed on the
geographical reference system to build a map. Next to this the assignment, the application is
also implemented to execute predefined algorithms, especially on the geometry values of the
database items. Popular algorithms are dealing with the geographical relationship of selected
data units, e.g. least cost paths from one point/cell to another or the analysis of the visibility
of the surrounding elements of a point/cell. Other algorithms are producing new information
layers by calculating with several existing layers, e.g. the combination of the layers about ge-
ology, insolation and precipitation generates a map of agricultural suitability. As long as the
database is covering all needed information in a good relational organisation, the algorithms
know (almost) no bound.

The idea of the geographical information system to build an interactive map, where zoom,
excerpt and content can be changed to own will, is interesting for an applying in scientific
research as well as in daily use. That’s why, GIS is very popular and more and more GIS basing
tools will be developed. The largest of it is the very famous Google Maps service, to which we
will come again later on in this thesis.

3. Analysis

3.1. Swiss Feed Database, Version 1.0

3.1.1. Application
The first version of the database is online since 2007. It implements an interactive interface
in which a user can choose one or several feed types on one hand and scientific parameters
like nutrients and animal energetic and digestive parameters on the other hand. The application
delivers as a result the value of the chosen nutrients for every chosen feed type or the information
concerning the values of a feed’s nutrient content for a specific animal type or both (fig. 3.1).
The application can be accessed in German and in French [Agroscope 2009].

3.1.2. Data
The values used in this application are static mean values, evaluated and updated manually by
AGROSCOPE in advance and stored in a database. The input for the animal dependent param-
eters originates from several agricultural research projects from 1999 until 2006 which are the
official reference for animal feed composition [Agroscope 2009]["Datenherkuft"]. The origin
of the nutrient values is not declared except of the annotation, that they are aggregated mean
values [Agroscope 2009]["Startseite"]. But they will most likely originate from the laboratories
of AGROSCOPE itself together with collections from the AGRIDEA Dürrfutterenquête (see
chapter 3.2.1).

3.1.3. Database
Derived from the online application, the database seems to fulfil two purposes (fig. 3.2):

1. It organises the families, groups and subgroups of the scientific parameters, so that these
can be chosen by a user without difficulties.

2. It associates a value to every "feed type-parameter" connection whereupon the value can
also be derived by formula from other parameters in runtime.

3.2. Input from AGROSCOPE and AGRIDEA

3.2.1. AGRIDEA Dürrfutterenquête
Next to AGROSCOPE with its three belonging laboratories, there is also a second source pro-
viding data in this research field that is included into the database project. Since thirty years,
AGRIDEA - an association of agricultural organisations and institutions - collects measure-
ments of animal feed samples from various producers in Switzerland every year.

3.2. INPUT FROM AGROSCOPE AND AGRIDEA 6

 Sie sind nicht angemeldet: anmelden

Passwort bestellen | Impressum | Glossar | Hilfe

 Suche

deutsch | français

Ihre aktuelle Auswahl:

Suche mit Restriktionen
Suchkriterien (0):
 nichts ausgewählt

Futtermittel Auswahl
Futtermittel (3):
- Englisches Raigras, Stadium 1, Dürrfutter
- Italienisches Raigras, Stadium 1, Dürrfutter
- Knaulgras, Stadium 1, Dürrfutter

Parameter Auswahl
Nährstoffe (3):
 ausgewählte Parameter anzeigen

Wiederkäuer (1):
 ausgewählte Parameter anzeigen
Mastkälber (0):
 nichts ausgewählt
Schweine (0):
 nichts ausgewählt
Geflügel (0):
 nichts ausgewählt
Pferde (0):
 nichts ausgewählt

Ausgabeoptionen

 g/kg TS g/kg FS
 Futterdaten drucken (deaktiviert)

Futtermittel K
[g/kg TS]

Na
[g/kg TS]

P
[g/kg TS]

NEL
[MJ/kg TS]

Englisches Raigras, Stadium 1, Dürrfutter 37.2 0.20 4.4 5.87

Italienisches Raigras, Stadium 1, Dürrfutter 37.6 0.20 4.2 5.96

Knaulgras, Stadium 1, Dürrfutter 40.3 0.20 4.6 5.80

 Klicken Sie auf einen Wert, um weitere Details zu erhalten.

Forschungsanstalt Agroscope Liebefeld-Posieux ALP | Kontakt | Rechtliche Grundlagen

ALP

 schliessen

Futtermittel: Knaulgras, Stadium 1, Dürrfutter {Heu} (lat. Dactylis glomerata)

Parametername: Kalium
Werte-Typ: Fixwert eingegeben.
Formel: native
Wert ungerundet: 40.34
Labormethode:
Datenherkunft:
Autoren-Hinweise:
weitere Hinweise:
Änderungsdatum: 2007-07-27 10:02:59

Startseite - Schweizerische Futtermitteldatenbank http://www.feed-alp.admin.ch/start.php?action=show_diagram

1 von 1 31.08.2011 17:24Figure 3.1.: Screenshot of the result display of the current Swiss Feed Database online Appli-
cation [Agroscope 2009, "Berechungsprogramm"]

Feed

PK feed_key INTEGER

 feed_name CHAR(100)
 feed_group CHAR(100)
 feed_family CHAR(100)
 ... CHAR(100)

Dependencies

FK1 feed_key INTEGER
FK2 parameter_key INTEGER
FK3 fact_key INTEGER
 formulas COMPLEXTEXT
 ... CHAR(100)

Facts

PK fact_key INTEGER

 mean_values NUMERIC(6;3)

Parameter

PK parameter_key INTEGER

 parameter_name CHAR(100)
 parameter_subgroup CHAR(100)
 parameter_group CHAR(100)
 parameter_measure_unit CHAR(100)
 animal_dependency CHAR(100)
 ... CHAR(100)

Figure 3.2.: A possible database design of the Swiss Feed Database 1.0 [very abstracted and
only estimated].

7 CHAPTER 3. ANALYSIS

As a connection between the farmers and the governmental research facilities, such as AGRO-
SCOPE, they are also responsible for the definition of the scientific parameters as well as the
quantity, the quality, the temporal and geographical representation of a big partition of the over-
all data input. This sample testing happens in four associated laboratories [Agridea 2011].

3.2.2. Data input
As mentioned, the data used in the old as well as in the new application are provided by the labo-
ratories of AGROSCOPE and AGRIDEA. As exchange media, spreadsheets have been chosen.
Unfortunately, several spreadsheets have been generated and the combination of its columns as
well as the column names and the distribution of information to columns are different in several
cases, depending on the year, the laboratory or on the language. All in common is that every
row corresponds to one unique sample, while one sample consists of several measurements.

Pnr Jahr APDE APDN Ca PLZ Material Belüftung Bezeichnung Bot Zus Bot Zus Kurz Schnittdatum müM Bemerkungen Region Höhenstufe
07-14779-001 7 87.44 78.19 7302 Dürrfutter belüftet Heu / Emd (4) AR ausgewogen (Raigras) (4) 00.01.1900 800 - 999 m 10 3
07-14778-001 7 91.53 85.93 7302 Dürrfutter belüftet Heu / Emd (1) unbek. bot. Z-setzung (1) 00.01.1900 600 - 799 m 10 2
07-14768-001 7 88.19 78.03 7302 Dürrfutter belüftet Heu (4) AR ausgewogen (Raigras) (4) 00.01.1900 > 1000 m 10 4
07-14761-001 7 85.37 84.81 9.13 8308 Dürrfutter belüftet Heu / Emd (3) G gräserreich (andere) (3) 00.01.1900 600 - 799 m 8 2
06-17008558766581 6 91.89911246 89.3840547 3475 Heu / Emd belüftet (4) AR ausgewogen (Raigras) (4) 600 - 799 m Stock 06 3 2
06-16835558765581 6 86.39460204 74.9557598 6210 Heu / Emd belüftet (4) AR ausgewogen (Raigras) (4) < 600 m 0 6 1
06-16828558765580 6 94.04778616 90.15480913 6170 Heu / Emd belüftet (5) A ausgewogen (andere) (5) 800 - 999 m 0 3 3
06-16827557765580 6 96.7473819 100.2477762 6170 Emd belüftet (5) A ausgewogen (andere) (5) 800 - 999 m 0 3 3
06-16824555765580 6 84.03907254 59.64233354 6170 Heu belüftet (5) A ausgewogen (andere) (5) 800 - 999 m 0 3 3
06-16808548758568 6 85.14281263 78.612329 6212 Heu / Emd belüftet (5) A ausgewogen (andere) (5) < 600 m St. Erhard / Knd Nr. 63 6 1
06-16788564771585 6 88.08294582 76.34813266 1816 Foin / Regain belüftet (3) G gräserreich (andere) (3) < 600 m 1816 Chailly-Montreux 3 1
06-16788562769585 6 90.81255608 85.37545348 1801 Foin / Regain belüftet (3) G gräserreich (andere) (3) 600 - 799 m 1801 Le Mont-Pèlerin 3 2
06-16756548759569 6 90.87281655 84.55211427 9107 Heu / Emd belüftet (1) unbek. bot. Z-setzung (1) 800 - 999 m Ruppen, 9107 Uräsch 9 3
06-16743554763577 6 86.97423184 80.98923456 6207 Heu / Emd belüftet (3) G gräserreich (andere) (3) < 600 m 0 6 1

Labor PLZ Altitude HöhenstufeRegion TS RP RF APDE NEL APDN Ca P Mg K Sample Code Art Sample Reference
Eurofin 2336 1000m 4 1 138 271 75 5.4 87 107-2009-00815196 3 Ensilage herbe botte carrée juin
Eurofin 2714 1030m 4 1 150 305 75 5.3 95 6.4 3.6 107-2009-00815188 3 Ensilage herbe, 1er coupe fin mai
Eurofin 2350 1050m 4 1 154 303 81 5.3 97 107-2009-00815189 3 Ensilage herbe 1e coupe début juin 2e 6 semaine, 3e 6 semaine
Eurofin 8553 460m 1 8 118 279 79 4.9 75 107-2009-00814529 1 Dürrfutter belüftet
Eurofin 8586 480m 1 8 120 268 82 5.1 76 107-2009-00814513 1 Dürrfutter belüftet
Eurofin 8242 500m 1 5 159 286 72 5.2 100 10.4 4 107-2009-00812251 3 Grassilage
Eurofin 8535 500m 1 8 106 318 72 4.4 67 6.3 3.2 1.7 34 107-2009-00814514 1 Dürrfutter belüftet
Eurofin 8535 500m 1 8 139 271 84 5 89 8.2 4.1 2.4 36.7 107-2009-00814515 1 Dürrfutter belüftet
Eurofin 8536 500m 1 8 107 288 77 4.8 68 6.2 3.6 1.8 36.1 107-2009-00814522 1 Dürrfutter belüftet
Eurofin 2824 500m 1 1 77 179 62 6.3 48 107-2009-00815829 4 Ensilage de Maïs
Eurofin 8564 550m 1 8 137 293 82 4.7 87 107-2009-00814530 1 Dürrfutter belüftet
Eurofin 8556 580m 1 8 122 275 81 5 77 7.3 3.6 2.1 38.1 107-2009-00814517 1 Dürrfutter belüftet
Eurofin 1117 580m 1 2 100 365 67 3.9 63 107-2009-00815326 2 Foin balles rondes
Eurofin 6314 600 - 799m 2 7 127 244 86 5.3 81 107-2009-00807937 1 Dürrfutter belüftet
Eurofin 4614 600 - 799m 2 6 81 223 64 5.8 53 2.8 1.5 107-2009-00812992 4 Maissilage

Figure 3.3.: Two examples of a data delivery spreadsheet and its contents. Above: "Rohdaten_-
Durrfutter_2005-2009.xls", below: "Zusammenfassung_09_def.xls"

3.2.3. Parameters and values
In general the usable data from the spreadsheets can be assigned to 1 of 5 categories.

Includes�content�about

Sample�ID Labratory Nutrient�1 Nutrient�2 Nutrient�3 (…) year harvest�day postal�code region* altitude alt.�Level** content cont.�code variety

number

empty

�or� n

em

ame�or�
pty

number,

or�empty

�0� number,�0�
or�empty

number

or�emp

,�0�
ty

number date�o
empty

r� number�or�
empty

number�or�
empty

value�or�
interval

number�or�
empty

scatterd�information number�or�
empty

drop�down

Sample�code Labor TS RP RF … >�Filename Ͳ PLZ Region Altitude Höhenstufe Sample�Referance Art Ͳ
Pnr Ͳ ADPE APDN Ca … Jahr Schnittdatum PLZ Region müM (müM) Material Ͳ Bot.�Zus.

Belüftung
Bezeichner

**Legend: *Legend:

1/A�=�<600 1 = JU-NE
2/B�=�600Ͳ799 2 = VD
3/C�=�800Ͳ999 3 = BE-FR
4/D�=�>1000 4 = Mittelland

5 = BS-BL
6 = LU-AG

feed�group

7 = 4 cantons
8 = ZH-TG

feed�name

9 = GL-AR-AI
10 = GR

ventilation

11 = TI
12 = VS

Topic: Sample�ID Labratory Nutrient�1 Nutrient�2 Nutrient�3 (…) year harvest�day postal�code region�* altitude alt.�Level** description desc.�code
Description: number

empty

�or� n

em

ame�or�
pty

number,

or�empty

�0� number,�0�
or�empty

number

or�emp

,�0�
ty

number date�o
empty

r� number�or�
empty

number�or�
empty

value�or�
interval

number�or�
empty

scatterd�information

Values: 07Ͳ44798987 Agroscope 311 0.487 61.557 2007 10.07.2007 2300 1 <600 1 Dürrfutter�belüftet 1
(…) (…) (…) (…) (…) (…) (…) 3210 2 400 1 Foin�ventilé 1

(…) (...) 480 1 Regain�véntilé 1

600Ͳ799 2 Dürrfutter�unbelüftet 2

Figure 3.4.: Simplified input structure, indicating the five categories with additional information
about statical legends and potential cardinalities, data types and field names

3.2. INPUT FROM AGROSCOPE AND AGRIDEA 8

1. Information concerning the sample itself, e.g. sample key and laboratory name
• Less than 50 % of the samples have a communicated sample key. The laboratory, where the

data is coming from is not always indicated.

2. Measurements of the sample composition (nutrients) and measurements concerning the
absorption of the feed, e.g. energy level, grease etc. (nutritive values).

• Every spreadsheet has its own composition of nutrients and nutritive values.

• Not taken measurements are stored as empty cells or with the value 0.

3. Information concerning the time, e.g. year or harvest day.
• A sample can always be associated with a year, mostly because a whole sheet is associated

to a specific year (Filename: data_2009.xls).

• Only a small amount of samples have a higher resolution than the year (for instance: harvest
day or season).

• Sometimes this closer information is mentioned in commentary columns or in the more
detailed entries of other categories - therefore this information cannot be collected.

4. Information concerning geographical references e.g. postal code or altitude.
• Almost every sample is associated with a postal code and an altitude.

• Sometimes not existing postal codes are used (as a result of a spelling mistake) and some-
times it is not clear if the postal code refers to the farm or the laboratory - as a consequence,
the postal codes will be stored as they come (no corrections will be made).

• If the altitude is used it always assigned to one of four altitude levels (see legend in fig. 3.4).

• In addition, a secondary column with a specific altitude value can be given, but the values
differ from absolute to rounded numbers to intervals.

5. Information concerning the material of the sample, like feed name, feed variety or feed
treatment.

• This information is the most scattered one, because there is no real classification of the topic
’feed content’.

– There is no column with distinct feed names since the information is mixed up with the
material description.

– There is an overall code for the material and its drying conditions, but no assigned
overall legend.

– The two languages German and French are mixed up, whilst depending on the lan-
guage, the information is associated to different columns.

– Some entries are more detailed than others.

– French and German vocabulary doesn’t necessarily match.

• [With the goal to catalogue the material content for later use, a description structure was
developed (fig 3.5). This was done by analysing all possible combination of content and
content code (by leaving out too detailed information). In addition a French AGRIDEA
publication was needed for a proper translation [Python 2010, p.159]]

• The sample variety (used in 50 % of the samples) has been catalogued by a numerical code
with corresponding legend.

9 CHAPTER 3. ANALYSIS

Dürrfutter (de)

Heu (de) Emd (de) Foin (fr) Regain (fr)NULL

ventilé (fr)belüftet (de) unbelüftet (de) Séché au sol (fr)

Grassilage (de) Ensilage (d'herbe) (fr)Maissilage (de) Ensilage de maïs (fr)

C
od

e
1

C
od

e
1

C
od

e
2

C
od

e
2

C
od

e
3

C
od

e
3

C
od

e
4

C
od

e
4

Fourrages secs (fr)
Feed group

Drying condition

Feed name

dummy

Figure 3.5.: Developed feed content namespace. The dashed lines indicate combinations with
Null-values, the italic names are later translations supplied by the AGRIDEA
publications.

3.2.4. Queries
AGRIDEA - the agricultural association - is not only collecting measurements, they are also
elaborating statistical evaluations on these measurements for agricultural use as well as scien-
tific research. The following part shows the most important queries derived from the ongoing
approaches. The enlistment is broken down to the lowest thematical queries. In real life, a
combination of these queries is applied.

Agricultural approach queries:

• Provide up-to-date mean values for every parameter (nutrients and nutritive values) of
every feed. These mean values are later used as current references in consulting farmers
for the next feeding season. (Covered by the Swiss Feed Database Version 1.0)

1 SELECT feed_name, parameter_name, avg(parameter_quantity)
2 FROM samples WHERE year = "up-to-date"
3 GROUP BY feed_name, parameter_name; [Estimated SQL query]

Scientific research queries:

• Elaborate the historical shifting over time of the measurements for a later attempt to
correlate the development of feed quality to weather conditions or to agricultural systems.
This elaboration calls mostly for the use of mean values.

1 SELECT [year||season||day], avg(parameter_quantity)
2 FROM samples WHERE feed_name="x" AND parameter_name="y"
3 GROUP BY [year||season||day];

• Elaborate the geographical shifting of the measurements. Thematically by region [Boessinger
2010] or canton1 , topographically by altitude or in combination. The results of these
queries are used for a spatial determination of different qualities.

1Oral request of AGROSCOPE made in the meeting June 17, 2011.

3.2. INPUT FROM AGROSCOPE AND AGRIDEA 10

�deviation�(2ʍ)Quartiles Standard

average avg(upper�25%) avg(middle�50%) avg(lower�25%) average�ʅ avg(>�ʅ+2ʍ) avg(in�2ʍ�range) avg(<�ʅͲ2ʍ)
nutrient 86 90 85 80 nutrient 86 92 84 80

Figure 3.6.: Example of statistical subsets, left the use of quartiles, right use of standard devi-
ation in 2sigma range

1 SELECT [canton||altitude],[...], avg(parameter_quantity)
2 FROM samples WHERE feed_name="x" AND parameter_name="y"
3 GROUP BY [canton||altitude],[...];

• Elaborate the statistical composition of certain values (used as a statistical background
and as extension to the mean values from above).

– Additional aggregations: count of involved measurements; lowest vs. highest mea-
surement; the standard deviation

1 SELECT COUNT(parameter_quantity), MIN(parameter_quantity),
2 MAX(parameter_quantity), STDDEV(parameter_quantity)
3 FROM samples WHERE feed_name="x" AND parameter_name="y";

– The creation and comparison of subsets of the measurements, either as quartiles in
percentage [Boessinger 2010] or by the standard deviation2, mostly used to identify
outliers and sharpen the aggregation values (fig. 3.6).

1 BEGIN
2 float average, stddev = SELECT AVG(parameter_quantity),
3 STDDEV(parameter_quantity)
4 FROM samples
5 WHERE feed_name = "x" parameter_name = "y";
6 float measurements[] = SELECT parameter_quantity
7 FROM samples
8 WHERE feed_name="x" AND parameter_name="y";
9 foreach (array[] as quantity){

10 case (quantity > (average + stddev)):
11 /* higher then stddev upper bound */
12 case (quantity < (average - stddev)):
13 /* lower then staddev lower bound */
14 else: /* inside the stddev range */
15 }
16 END

• Last but not least: display all measurements to make them accessible and verifiable as an
ultimate principle in scientific research.

1 SELECT * FROM samples;

2Oral request of AGROSCOPE made in the meeting July 15, 2011.

4. Requirement
The analysis of the input data together with the ongoing research and the first version of the
Swiss Feed Database allows it to briefly outline the future functionalities of the Swiss Feed
Database Version 2.0.

(1) The next Swiss Feed Database should additionally provide the possibilities to be applied in
the scientific research concerning temporal and spatial shifting of measurements.

Swiss Feed Database 2.0

Agricultural user

Scientific user

labratory

check for
guidelines

query on temporal
distribution

query on spatial
distibution

include new
mesurement

*

*

*

*

reseach on the
samples

*
*

«subclass»

«uses»

«uses»

dummy

Figure 4.1.: UML use case diagram of the next Swiss Feed Database

For the database, this calls for an extension to store not only up-to-date mean values, but all
samples in separate. Additional database relations are necessary to include also the information
about the geographical origin of the samples, which were not covered so far. The same needs
to be done for the new temporal values.

In the application, this means to establish interactive filter options on parameters like year and
harvest day (temporal selection), canton (spatial selection), feed name and nutrient name (result
selection) or more, used in a search to allow every user to specify the sample selection for
his enquiry himself. By using such interactive filter options, the implementation of generating
dynamic SQL queries is absolutely necessary. A second task would be to realise a predefined
set of scientific operations with a well-arranged display of results. Especially for the display of
special distribution, the geographical information system Google Maps should be included.

12

Set of covered operations:

1. Computation of the aggregate values count, minimum, maximum, average, standard de-
viation (of a sample) of the involved measurements.

2. Computation of the aggregate value average in every statistical subset.

3. Computation of the aggregate value average for every distinct temporal value (= develop-
ment of mean value over time).

4. Enlistment of all involved measurements with temporal information (= distribution of
values over time).

5. Enlistment of all involved measurements with information about their origin (= distribu-
tion of values in space).

6. Enlistment of all involved measurements with their parameter quantities (= access to orig-
inal data).

(2) The next Swiss Feed Database should become a tool with a simple and easily adaptive in-
terface.

When it comes to the users activities, the online application should be very linear to guide the
user through his inputs. On the other side it should not be too static, so that changes in the user’s
mind can be turned quickly. An optimal application flow would incorporate the following (see
also the activity diagram in fig. 4.2):

• The user is called upon to delimit the sample’s quantities in the database to his request by
the selection of multiple sample parameters of the dimensions ’feed content’, ’measure-
ment content’ ’space’ and ’time’.

– First constraint:
Every next selection is dependent on the previous one, so that no invalid combination
parameters (such with no result) can be made.

• The users input ends with a call for results.

• This result is then the predefined set of operations applied to the previously made selection
choice, displayed in four major categories: the result of presented measurements (opera-
tion 6), the result of presented locations (operation 5), the result of a presented temporal
development of every chosen nutrient(operation 3 & 4) and the result of aggregations for
every chosen nutrient (operation 1 & 2).

– Second constraint:
Allow the user to correct his selection choice whenever he wants and on any point
he wants it. It includes also the possibility to to send more then one enquiry in his
session. If a correction occurs, it means that old results and parameters needs to be
properly overwritten.

13 CHAPTER 4. REQUIREMENT

load page select feed(s)

all feed displayed valid nutrients displayed

select nutrient(s)

valid locations displayed

select location(s)

valid dates displayed

select date(s)

call for results

measurements presented locations presented temporal development presented aggregations presented

output per nutrient

dummy

Figure 4.2.: The users activites in the Swiss Feed Database online application as UML activity
diagram

5. Design

5.1. Graphical outline in HTML
The requirements formulated in the previous chapter determine the appearance of the online ap-
plication. Because of the second constraint ’to provide the possibilities to change the selection
and load new results all the time’ the application needs to be set in one view only, which is then
divided into two subparts ’selection’ and ’result’.
The decision of building one page only is reducing the usable space enormously and requires a
good organisation of the layout.

For the implementation of the basic structure the very common Hypertext Markup Language
(HTML) shall be adopted, which is supported by all browsers. In a first step the focus will lie
on the nestable block elements (<div>), which will be applied to divide the one web page into
several regions and subregions. The basic outline can be seen in figure 5.1. By manipulating the
style-attributes of every <div>, for example in a separately stored Cascading Style Sheets (.css),
a two dimensional distribution, relative in size to the changeable client’s browser window can
be reached.
The interior of the blocks is then designed according to its purpose. The selection part will
contain a <form>, filled with several <select muliple> elements, so that more then one option
of the corresponding filter parameters can be displayed and selected at the time.

Example: HTML code a ’multiple’ select field
1 <form name="exampleOne" multiple>
2 <select name="selectOne" multiple>
3 <option value=1 >Choose me</option>
4 <option value=2 >Chooose me</option>
5 <option value=3 >Choooose me</option>
6 <option value=4 >Chooooose me</option>
7 </select>
8 </form>

In the subpart ’aggtable’, an old fashioned HTML <table> should be generated in runtime to
display the aggregations of every selected nutrient, according to the requirements. All other
result presenting subparts will be generated in combination with selected web services, which
exceeds the normal possibilities of HTML. As already mentioned, a Google map should be em-
bedded to display sample locations. In addition another Google service, called Visualization,
shall be used to create and present interactive charts to illustrate rather statistical results, like the
temporal development of measurements (line chart) or the enlistment of all involved samples
(sortable table chart).

As an concluding note at the end of this section, it should be indicated that an HTML page itself
is static as soon as it got loaded. To provide the activity of the requirement, additional scripts
on client (browser) and server side are needed. This will be the topic of the next section.

15 CHAPTER 5. DESIGN

<div id=“result_overall“/>

<div id=“selection“/>
Form

<selectfield name=“feed[]“/>
<selectfield name=“nutrient[]“/>
<selectfield name=“canton[]“/>
<selectfield name=“altitude[]“/>

<selectfield name=“harvestyear[]“/>
<selectfield name=“harvestseason[]“/>

Group of <selectfield />

<div id=“sidebar“/>

Sample enlistment
(Google visualization)

<div id=“map_canvas“/>

Map (Google Maps)

<div id=“chart_div“/>

Diagram over time (Google
visualization)

<div id=“aggtable“/>

Table of aggregates

button

Browser script

Server script

Database

Interactive illustration

Web service

dummy

Figure 5.1.: Basic outline of the HTML web page. The icons are pointing to additonal architec-
tural components, required for the requested activity

5.2. System architecture
To realise an interactive application, which is set on only one HTML page and includes a
database as well as web services, several architectural components on different locations have
to be considered. The resulting design of architecture is illustrated in figure 5.2. In following,
the major parts will be described in their functionality and discussed in their purpose of this
application.

5.2.1. PostgreSQL
The object-relational database system used in this second Swiss Feed Database version consists,
like all database system, of two components: there is the actual database where all the measure-
ments along with its further associated information are stored, and then there is the Database
Management System, which accepts communication from outside, executes queries and main-
tains the consistency of the database [PgSQL 2010, "Preface"] [Kemper 2006]. Similar as in the
geographical information systems, the database system is the foundation of the complete Swiss
Feed Database. The whole build-on application is only an additional tool for easier access and
more visualising output.

5.2.2. PHP 5
The shortcut PHP originates from the name Personal Homepage Tool and Hypertext Preproces-
sor and indicates the use for the development of web pages. It is a server-side scripting language
and a processor module, which provides interfaces to any bigger Database Management Sys-
tems, like PostgreSQL (extension ’php_pdo_pgsql.dll’) [Achour et al. 2011, "Introduction" and
"PostgreSQL"]. PHP operations can be embedded directly into HTML, as well as it itself can
generate new HTML expressions. Because the PHP script runs on the web server before being
loaded by the client, PHP is used in this application to run the SQL queries on the database and

5.2. SYSTEM ARCHITECTURE 16

HTTP Server (e.g. Apache)

PostgreSQL

Client

Google

PHP 5

extension
'php_pdo_pgsql.dll'

GIS Google
Maps

Http request:
geocoding

Http request:
load page

Maps API

Browser

XHTML

DBMS

HTML

Swiss Feed DB
Files

PHP JavaScript

All
Files

HTML

Javascript

Http connection:
SQL query

Visualization

JavaScript

JavaScript

Jscript

http request:
load script

Jscript

Database
XML

result tuples

hallo

Figure 5.2.: Design of the Swiss Feed Database system architecture

dynamically generate HTML expression out of database result tuples. PHP 5 is the first version
being object oriented.

Example: HTML with embedded PHP to print the current weekday
1 <html>
2 <?php

3 $dateArray = getDate();

4 echo "<p>Today is ".$dateArray[weekday]."</p>";
5 ?>

6 </html>

5.2.3. Expendable Hypertext Markup Language (XHTML)
HTML is a language used for the basic web programming. It includes a large set of elements
(like titles, paragraphs, tables, select fields...) and corresponding attributes (among them also
the Internet links), which are used to shape the appearance of a web page similar to a classical
typesetting tool. In the Swiss Feed Database, the higher improved language version eXpend-
able Hypertext Markup Language will be used, which uses a more stricter and cleaner code.
But besides this no bigger differences to the non-expandable version exist [Refsnes Data 2011,
"XHTML intro"]. The purpose of this component is the optical output design, like already
discussed in section 5.1.

5.2.4. Javascript
This client-side scripting language supports the possibilities of dynamic HTML or also known
as DOM scripting, where the complete appearance of a page can be changed even after the
page has been loaded. This happens by calling and (re-)setting the values, children or just
the formatting attributes of any HTML elements by a script operation in runtime. As triggers
for such operations act the so called event handlers (onload, onclick, mouseover...), which are

17 CHAPTER 5. DESIGN

embedded in the HTML code of specific elements. The JavaScript files, containing the as-
sociated operations, are loaded together with the HTML page by an script import tag in the
header, if a JavaScript capable browser is used (Annotation: all modern browsers are JavaScript
enabled)[Refsnes Data 2011, "Javascript" and "Browser statistics"].
In the online application, Javascript is the backbone of all user interactivity, which is required
since everything is handled on just one web page with different states.

Example: HTML code with embedded Jscript
1 <html>
2 <head>
3 <script type="text/javascript"

4 src="scriptFile.js"></script>

5 </head>
6 <body>
7 <p id="example" onClick="getDate()">
8 Click on me...</p>
9 </body

10 </html>

Example: scriptFile.js with ’date’ operation
1 function getDate(){
2

3 DOM-scripting operation: replace text ’click on me’ with current date expression
4 document.getElementById("example").innerHTML=Date();
5 }

5.2.5. Asynchronous JavaScript and XML (AJAX)
Ajax is the special XMLhttpRequest object of JavaScript and will be provided by the client’s
browser if asked for. By the use of this object, it can be avoided to reload an HTML page on
the client side in order to get new information from the terminated server. Ajax establishes
an HTTP-connection from the running web page to the server and sends a request to (re-)call
a certain server script. Then Ajax waits until the server delivers back the result (fig. 5.3)
[Refsnes Data 2011, "AJAX" (hidden chapter)]. If this request was successful, the result can
then be transformed into HTML code and displayed on the screen by using the dynamic HTML
functionality as presented above.

In the Swiss Feed Database application, Ajax is used several times to call and receive query
results by PHP from the postgreSQL database whilst the web page is loaded. This is needed for
the dynamic output of the select fields as well as for the end results.

5.2.6. Google Maps
The Maps service of Google is a geographical information system (remember chapter 2.2),
which covers the whole planet with different granularity of information content. Google pro-
vides basically two functionalities, which both are embedded in this application:

1. To use the content of the Google Maps database to cross reference own information
[Google 2011b].
Application: sending a postal code and get its coordinates as return.

5.3. SYSTEM APPLICATION FLOW 18

Entry / load from server (by HTML command)
Exit / closing the web page

Javascript, client script

Entry / creation or reuse of Ajax object
Exit / readyState == 4

Ajax

State condition of server and client

Entry / load web page
Entry / ajax.readyState == 1
Exit / php script finished

PHP, server script

Readystate 0:
Request not initialised

readyState 1:
server connection

established

readyState 2:
request received

readyState 3:
processing request

readyState 4:
request finished

and response is readyEntry / load from server (php finished)
Exit / HTML code printed

HTML, client

wait for
trigger

Run
<javascript />

code

[return
ajax]

dummy

Figure 5.3.: UML state chart to illustrate the cooperation of the scripting languages on client
and server side. Including also the state condition of the AJAX.

2. To retrieve an excerpt of the map and display it on some page [Google 2011a].
Application: the spatial distribution of the samples origin is visually presented as pins in
a map.

The first functionality has to be done by JavaScript web request (Ajax) while for the second the
Google Maps API is offered. This API is an interface based on JavaScript to embed a map to a
web page with the benefit of many interactivities as well as the possibilities to display own map
layers (called ’overlays’) like pins (called ’markers’), background maps and many more visual
and functional features.

5.2.7. Google Visualization
This Google service is a collection of loadable JavaScripts with the purpose to visualise higher
amounts of values and its statistical evaluation. If the input content can be arranged as a two
dimensional table, a sublaying script will transform it into a specific chart. Therefore many dif-
ferent chart types are possible: simple tables, line charts, column charts, even a small version of
the Google map can be requested. They all have in common that a very developed interactivity
is already included and that the basic is always the input table. Because the complete creation
process is predefined by the loaded script only certain amount of own adjustments can be taken.
But it is enough for the most cases [Google 2011c].

5.3. System application flow
In this section the sequential development of the application and the communication among its
components should be outlined. As figure 5.4 shows, the application flow can be subdivided
into six modules.

19 CHAPTER 5. DESIGN

HTML (Client) Javascript (Client) PHP (Server) PostgreSQL

onload()

pg_query()

resulttupel: 'feed_name(_de)'

ajaxOne: send POST request

pg_query()

resulttupel: one parameter

string: imploded resulttupel

button onClick: js2_getResult()

ajaxTwo: send POST request

pg_query()

resulttupel: distinct locations

jsD_createFromWhereQuery()

SF onChange: js1_getNextOptions()

pg_query()

resulttupel: 'quantity' or avg('quantity') per date

pg_query()

resulttupel: aggregates of 'quantity' per nutrient

string: imploded values by nutrient

html code: 'sidebar' & 'map_canvas'

html code: 'chart_div'

html code: 'aggtable_space'

html code: set event handler parameter, set options of first selectfield

Google

http: send script request to www.google.com/jsap

javascript: "visualization", packages:["table"]

javascript: "visualization", packages:[corechart]

http: send geocoding request to maps.google.ch

simple_xml: 'latitude', 'longitude'

activDiv onClick: js5_highlightStatGroups

html code: 'map_canvas' & 'aggTable'

additional EventListener{OR}

infowindows, table sorting...

{REPEAT WHILE
NEXT SELECT FIELD 'SF'}

{REPEAT PER LOCATION}

html code: set options of SF

pg_update()

commit

http: send script request to maps.google.ch & www.google.com

javascript: Google Maps API & Google Visulalization API

jsD_createFromWhereQuery()

xml: all quantities per location

INIT

M1

M2

M3

M4

M5

M5+

pg_query()

resulttupel: 'nutrient'->'quantity'

ajaxThree: send POST request

string: imploded date-value pairs

http: send script request to www.google.com/jsap

ajaxFour: send POST request

Figure 5.4.: UML sequence diagram of the complete Swiss Feed Database including all major
components

5.3. SYSTEM APPLICATION FLOW 20

5.3.1. Module INIT
The initiation of the application is done by loading the HTML start page. Before the page gets
delivered to the client, the PHP server script runs a first database query to set the options of the
first select field, which is the parameter feed name. Then the page gets loaded by the clients
browser together with all the Jscripts embedded in the HTML header. This includes also the
Google Maps and the Google Visualization API from the Google server. All this happens in the
normal PHP-HTML loading sequence.

5.3.2. Module M1
This module concerns the filling of the next select field with the proper options. It is based
on JavaScript and gets reiteratively triggered every time the event handler ’onChange’ of the
previous field is activated. In order to get the new options, PHP has to send a new SQL query
including the previously chosen options as filter to the database to return the corresponding
values. This is where Ajax (Asynchronous JavaScript and XML) pitches in the first time and
requests for an additional PHP server script to run.

5.3.3. Module M2
The preparation and coordination of the application’s output result is covered in this module.
Again, it’s based on JavaScript and gets triggered by the event handler ’onClick’ of the show
result button. It includes additional loading of Google Visualization scripts and, again, the
generation of the input dependent SQL query, in order to retrieve all needed database tuples. But
since the application’s final output is covering six different operations (chapter 4) and therefore
requires a combination of tuple sets, different SQL queries (different in SELECT and ORDER
BY) need to be run this time. So, this module splits the one result operation into subparts by
creating parallel Ajax requests, one per different SQL query.

5.3.4. Module M3
This module starts with PHP and includes also web requests to the Google server. It deals with
the output ’sample enlistment’ and ’Google maps’ because these two parts are using one and
the same tuple set (enlistment of all samples along with its nutrient values and its geographical
position). To get this information, the requested PHP script queries the database, sends for every
sample location with unknown latitude and longitude a geocoding request to the Google Maps
GIS and then sends all information as a XML back to JavaScript and the waiting AjaxTwo. In
JavaScript, the XML will be transformed into a Google Visualization table and a Google Maps
map with a marker per sample.

5.3.5. Module M4
This module deals with the output ’diagram over time’. It has almost the same sequence as
module M3 except that only a simple PHP script with one SQL query to the database is involved.
But similar to the previous module, the tuple set of the requested distinct temporal values will
then be sent to JavaScript and the waiting AjaxThree (this time as a concatenated string), where
they will be transformed into a Google Visualization line chart. This module will be executed
in parallel to the last module.

21 CHAPTER 5. DESIGN

5.3.6. Module M5
This module has the same sequence as the module M4 and it is also executed in parallel to the
previous two modules. This time it deals with the output ’table of aggregates’ and needs a tuple
set of several aggregation function per nutrient. These set will be sent to JavaScript and the
waiting AjaxFour, again, as a concatenated string, where JavaScript will then transform it into
a HTML table by using dynamic HTML.

5.3.7. Module M5+
This is not an own module, but an additional interactive JavaScript operation, applied on the
HTML table of module M5. To every nutrient in the list there is assigned an event handler
’onClick’. The underlying function will then highlight the outliers (the sample which are lying
outside of the 2sigma range) of the selected nutrient by setting the markers of the map to a
specific colour. To do this, the HTML table with the average and standard deviation, the Google
map with the markers and the Google sample table with the sample values have to be used
together.

5.4. Database design

5.4.1. Objects and relations
The organisation of the database is developed to deal with the measurements of all nutrients/nu-
tritive values inside of every sample in separate, so that later the quantity of the measurements
can be queried, sorted, filtered and aggregated easily (fig. 5.5). This has to be done with less
redundancy as possible.

Ca
Cu
Fe

Sample

6 55 004 n 001 s 004

Nutient Measurement
ID Name ID quantity nutrient sample ID Name
nͲ001 1 23.456 nͲ001 sͲ001 sͲ001 XXX1
nͲ002 2 455 nͲ002 sͲ001 sͲ002 XXX2
nͲ003 3 0.112 nͲ003 sͲ001 sͲ003 XXX3

4 287 nͲ002 sͲ002 sͲ004 XXX4
5 0.423 nͲ003 sͲ003
6 55 004. n 001 s 004Ͳ Ͳ
7 332 nͲ002 sͲ004

Figure 5.5.: Illustration of the composition of samples.

The presented solution will include the creation of a main table ’fact_table’, where only the
quantities of the measurements shall be stored (along with a duplication of the sample identifier
for faster queries). The specific information of the corresponding nutrient and the sample, as
well as all additional information, observed in the data input analysis (like sample treatment,
geographical origin, temporal reference and more), will then be stored in separate dimension
tables connected to the fact_table by foreign keys. These keys are only used to establish the con-
nection between the tables and will be artificially assigned by the database without deducting
them from a specific input value. In order to guarantee the assignment of an unique expression
onto every entry, a sequences of auto incrementing numbers for every table should be used.

5.4. DATABASE DESIGN 22

d_feed

PK feed_key INTEGER

 name_de VARCHAR(100)
 name_fr VARCHAR(100)
 scientific_name_lat VARCHAR(100)
 feed_group_de VARCHAR(100)
 feed_group_fr VARCHAR(100)
 source_de VARCHAR(100)
 variety_de VARCHAR(100)
 part_of_feed_de VARCHAR(100)
 part_of_feed_removed_de VARCHAR(100)
 part_of_feed_included_de VARCHAR(100)
 special_treatments_de VARCHAR(255)
 further_info_de VARCHAR(255)
 ref_terms_de VARCHAR(255)

d_nutrient

PK nutrient_key INTEGER

 name_en VARCHAR(100)
 name_de VARCHAR(100)
 name_fr VARCHAR(100)
 abbrevation_en VARCHAR(20)
 abbrevation_de VARCHAR(20)
 abbrevation_fr VARCHAR(20)
 group_en VARCHAR(100)
 group_en VARCHAR(100)
 group_fr VARCHAR(100)
 subgroup_en VARCHAR(100)
 subgroup_de VARCHAR(100)
 subgroup_fr VARCHAR(100)
 description_en VARCHAR(100)
 description_de VARCHAR(100)
 description_fr VARCHAR(100)
 unit_measure VARCHAR(20)

d_origin

PK origin_key INTEGER

 company_name VARCHAR(100)
 company_adress VARCHAR(100)
 company_postal_code SMALLINT
 company_city VARCHAR(100)
 city_altitude VARCHAR(100)
 animal_density NUMERIC(10;2)
 canton_de VARCHAR(50)
 region_number SMALLINT
 region_name VARCHAR(100)
 country_de VARCHAR(100)
 agency_email VARCHAR(100)
 agency_website VARCHAR(100)
 latitude NUMERIC(10;6)
 longitude NUMERIC(10;6)

d_quality_parameters

PK quality_key INTEGER

 drying_condition_de VARCHAR(200)
 drying_condition_fr VARCHAR(200)
 weather_condition_de VARCHAR(200)
 purity_de VARCHAR(200)
 status_de VARCHAR(200)
 microtoxins_presence_de VARCHAR(200)
 bacteria_presence_de VARCHAR(200)
 maturation_de VARCHAR(200)
 quality_de VARCHAR(200)

d_sample

PK sample_key INTEGER

 lims_number VARCHAR(20)
 unit_group_de VARCHAR(100)
 particle_size_de VARCHAR(100)
 preparation_de VARCHAR(200)
 production_method_de VARCHAR(200)
 conservation_method_de VARCHAR(200)
 laboratory_name VARCHAR(100)

d_time

PK time_key INTEGER

 t_day DATETIME
 decade SMALLINT
 month_de VARCHAR(15)
 season_de VARCHAR(50)
 t_year SMALLINT
 moment INTEGER

dd_places

PK places_pk INTEGER

 plz SMALLINT
 city_short VARCHAR(50)
 city_long VARCHAR(50)
 canton_abbreviation VARCHAR(2)
 canton_de VARCHAR(50)
 region_number SMALLINT
 region_name VARCHAR(50)

365 Tupel

1016 Tupel

3956 Tupel

75 Tupel

37 Tupel

2 Tupel

fact_table

PK measure_pkey INTEGER

 lims_number VARCHAR(20)
 quantity DOUBLE
FK2 id_time_fkey INTEGER
FK3 id_nutrient_fkey INTEGER
FK7 id_origin_fkey INTEGER
FK1 id_sample_fkey INTEGER
FK6 id_feed_fkey INTEGER
FK5 id_animal_fkey INTEGER
FK4 id_quality_fkey INTEGER

d_animal_specie

PK as_key INTEGER

 animal_name_de VARCHAR(100)
 animal_variety_de VARCHAR(100)
 animal_specie_de VARCHAR(100)

1 Tupel

54489 Tupel

3505 Tupel

dummy

Figure 5.6.: Relational concept of the Swiss Feed. Bold: used attributes so far (the others con-
tain only NULL). Also indicated on top of ever table is the distribution of the test
data into the tables.

The idea of this design is that the fact_table grows linear when loading new data, while the
dimension tables grow only logarithmic because it stores distinct values. Figure 5.6 shows the
complete relational concept.

• It can be seen that the fragmentation of the dimension tables is done topically and not
with the purpose to erase all redundancy. This is why the model is only in the first normal
form.

• It also can be seen, that the database design includes way more tables and attributes as
located in the data input analysis. The reason is that the database design has been adapted
to fit for an overall application, which is exceeding the bounds of this thesis.

• Finally, it should be mentioned that the online application should actually be available in
at least German and French, but the received data input along with further instructions is
not sufficient. So the basic concept has been designed for the mostly German expressions,
whilst parallel language attributes have been planed only if corresponding inputs have
been noticed (for simplification).

23 CHAPTER 5. DESIGN

d_origin (close up)

PK origin_key INTEGER

 company_name VARCHAR(100)
 company_adress VARCHAR(100)
 company_postal_code SMALLINT
 company_city VARCHAR(100)
 city_altitude VARCHAR(100)
 animal_density NUMERIC(10;2)
 canton_de VARCHAR(50)
 region_number SMALLINT
 region_name VARCHAR(100)
 country_de VARCHAR(100)
 agency_email VARCHAR(100)
 agency_website VARCHAR(100)
 latitude NUMERIC(10;6)
 longitude NUMERIC(10;6)

d_time (close up)

PK time_key INTEGER

 t_day DATETIME
 decade SMALLINT
 month_de VARCHAR(15)
 season_de VARCHAR(50)
 t_year SMALLINT
 moment INTEGER

dd_places (close up)

PK places_pk INTEGER

 plz SMALLINT
 city_short VARCHAR(50)
 city_long VARCHAR(50)
 canton_abbreviation VARCHAR(2)
 canton_de VARCHAR(50)
 region_number SMALLINT
 region_name VARCHAR(50)

dummy

Figure 5.7.: A close up of the two tables d_origin and d_time with a illustration of the designed
attribute hierarchy

5.4.2. Triggers and Views
Two of the dimension tables have been designed with some additional functionalities. Therefore
they shall be discussed more detailed.

Case ’d_orgin’

All information concerning the geographical origin of a sample is stored in a separate dimension
table with name d_origin. But, since the data input only delivers some attributes (in most cases
the postal code, an altitude level and a region code) a hierarchy can be established to derive
additional attributes out of others with help of a static lookup table1 (fig. 5.7). The best solution
to solve this would be to include the trigger functionality of the used database system. Such
a trigger would execute a predefined UPDATE SQL query as soon as a specified attribute gets
changed. In this sense, if only a postal code gets inserted into the database, the corresponding
city, canton and region could be looked up to complete the entry.

Example: Trigger function if ’postal code inserted or updated’
1 UPDATE d_origin
2 SET (CASE WHEN company_city IS NULL
3 THEN company_city = dd_places.city_name_long END),
4 (CASE WHEN canton_de IS NULL
5 THEN canton_de = dd_places.canton_de END),
6 (CASE WHEN region_number IS NULL
7 THEN region_number = dd_places.region_number END),
8 (CASE WHEN region_name IS NULL
9 THEN region_name = dd_places.region_name END),

10 country_de = ’Schweiz’
11 FROM dd_places
12 WHERE dd_places.plz = d_origin.company_postal_code;

A second triggered UPDATE function shall be established in this table in order to correlate the
always indicated region number with the corresponding label.

1An additional table that includes a complete list of postal codes together with additional static values

5.4. DATABASE DESIGN 24

Example: Trigger function if ’region code inserted or updated’
1 UPDATE d_origin
2 SET (CASE WHEN region_name IS NULL
3 THEN region_name = regions.region_name END),
4 country_de = ’Schweiz’
5 FROM (SELECT DISTINCT region_number, region_name
6 FROM dd_places) AS regions
7 WHERE regions.region_number = d_origin.region_number;

Case ’d_time’

A similar hierarchy should be used in the dimension table d_time (fig. 5.7): if the attribute
’t_day’, which expects a complete date, gets filled, the other attributes ’decade’ (# of ten-day-
intervals since the beginning of the year), ’month_de’ (month as string), ’season_de’ (season as
string2) and year can be derived from it by using again a trigger.

Example: Trigger function if ’day inserted or updated’
1 UPDATE d_time
2 SET decade = 3*(EXTRACT(month from t_day)-1)+
3 ((CAST(EXTRACT(day from t_day) AS smallint)/10)+1)
4 t_month =
5 (CASE
6 WHEN EXTRACT(month from "day")=’01’ THEN ’Januar’
7 WHEN EXTRACT(month from "day")=’02’ THEN ’Februar’
8 (...)
9 ELSE NULL

10 END),
11 season_de=
12 (CASE
13 WHEN t_day < to_date(
14 EXTRACT(year from t_day)||’-06-21’, ’YYYY-MM-DD’)
15 AND t_day >= to_date(
16 EXTRACT(year from t_day)||’-03-20’, ’YYYY-MM-DD’)
17 THEN ’Frühling’
18 WHEN t_day < to_date(
19 EXTRACT(year from t_day)||’-09-23’, ’YYYY-MM-DD’)
20 AND t_day >= to_date(
21 EXTRACT(year from t_day)||’-06-21’, ’YYYY-MM-DD’)
22 THEN ’Sommer’
23 WHEN t_day < to_date(
24 EXTRACT(year from t_day)||’-12-21’, ’YYYY-MM-DD’)
25 AND t_day >= to_date(
26 EXTRACT(year from t_day)||’-09-23’, ’YYYY-MM-DD’)
27 THEN ’Herbst’
28 WHEN t_day < to_date(
29 EXTRACT(year from t_day)||’-03-20’, ’YYYY-MM-DD’)
30 OR t_day >= to_date(
31 EXTRACT(year from t_day)||’-12-21’, ’YYYY-MM-DD’)
32 THEN ’Winter’
33 ELSE NULL
34 END),
35 t_year= CAST((EXTRACT(year from t_day),smallint);

2Because the static meteorological seasons are not so well know, the common but year-dependent astrological
season will be chose. But for easier computation the dates will be generalised.

25 CHAPTER 5. DESIGN

An additional speciality of the table d_time is that all ever appearing timestamps in the mea-
surement process are stored together in this one table relation. To separate them from each other
by timestamp type, the attribute ’moment’ is included to indicate this by code (tab. 5.1). This
code is then used as filter option to create a database View for every timestamp type.

Example: Query to create Harvest day View
1 CREATE VIEW d_harvesttime AS
2 SELECT d_time.time_key, d_time.t_day, d_time.decade,
3 d_time.month_de, d_time.season_de, d_time.t_year
4 FROM d_time
5 WHERE d_time.moment = 1;

CODE VIEW ANNOTATION

1 Harvest time - used in data input -
2 Sample time - not use so far -
3 Arrival time - not use so far -
4 Analyse time - not use so far -

Table 5.1.: Summary of the view triggering attributes in the database table d_time.

6. Implementation

6.1. Introduction
In this chapter, processes and code excerpts to selected topics will be presented with comments
and explanations. The topics are aligned chronologically in there execution. When it comes
to the application and its final presentation of results, which is done in three parallel modules,
the module M2 and M3 (sample enlistment and Google Maps) will be preferred as examples
because they are covering all main topics.

6.2. Database

6.2.1. Extraction, Transportation, Loading (ETL) of data
In chapter 3.2.2 the composition of the input data was analysed and according to the detected
parameters and subject areas, the database tables and its relations where designed. Now it
should be discussed how the data was processed from the spreadsheet delivery into the database
relations. Therefore two problematic observations have to be considered:

1. Different internal organisation
The spreadsheet aligns all measurement values from the same sample next to each other
in one row, whilst the database is designed to store each measurement as own fact_table
entry (remember fig. 5.5).

• This will be solved by loading the complete spreadsheet in his original state into an
intermediate database table. Using SQL, the information will then be spread into its
final fact or dimension table.

2. Inconsistency
One major point during the analysis was that the spreadsheets are very inconsistent: ev-
ery new data delivery has own column names and also the composition of the columns
can differ; especially the feed description has no real namespace; several mistakes were
detected so far.

• This leads to the conclusion: every spreadsheet needs to be treated in separate.

Step 1: Preparing the spreadsheet for data extraction The first thing to do is the
inspection of the spreadsheet. If possible, the major inconstancies should now be detected with
the spreadsheet’s filter operations and corrected with its formula possibilities, drag and drop or
search and replace. In the best case all processable information is separated to its own column.

Important: Cells containing a "0" but meaning a NULL needs to be emptied. Otherwise
additional tuples with value 0 will be inserted into the database.

27 CHAPTER 6. IMPLEMENTATION

Example: Divide the column with material description into treatable subparts
In this case, several excel formulas were used to extract the maximum of processable parts out
of the very mixed column ’Sample Reference’ (fig. 6.1). The ventilation facts were derived
from the column ’Art’ (= material code) in the same way. The gained result is then available
according to the previously developed description structure (fig. 3.5).

Sample�Reference feed�group�(de) feed�group�(fr) feed�name�(fr) feed�name�(de) Art ventilation

Dürrfutter�belüftet Dürrfutter 1 belüftet
FoinͲRegain�ventilé Foin�/�Regain Heu�/�Emd 1 belüftet
Dürrfutter�belüftet Dürrfutter 1 belüftet
Foin�ventilé Foin Heu 1 belüftet
Regain�ventilé Regain Emd 1 belüftet
Foin�de�Sol Foin Heu 2 unbelüftet
Foin�Séchoir�balles�Rondes Foin Heu 2 unbelüftet
Ensilage�d`herbe��1�ére�Coupe Grassilage �Ensilage d'herbe 3
Ensilage�d`herbe��2�et�3�éme�Coupe 3
Dürrfutter�belüftet Dürrfutter 1 belüftet
Dürrfutter�belüftet Dürrfutter 1 belüftet
Dürrfutter�belüftet Dürrfutter 1 belüftet
Foin�balles�rondes Foin Heu 2 unbelüftet
Grassilage Grassilage 3
Dürrfutter�belüftet Dürrfutter 1 belüftet

Figure 6.1.: Example of a spreadsheet preprocessing to extract workable information concern-
ing the sample’s content.

Extraction: Excel formula to extract French feed name
1

2 Formula structure: If([condition];[do if true];[do if false])
3 =IF(ISERROR(AND(SEARCH("foin";[field]);SEARCH("regain";[field]));FALSE);
4 "Foin / Regain";
5 IF(ISERROR(SEARCH("foin";[field]);FALSE);
6 "Foin";
7 IF(ISERROR(SEARCH("regain";[field]);FALSE);
8 "Regain";
9 "")

10)
11)

Step 2: Import spreadsheet as a text file into dummy-table To import the spread-
sheet into the PostgreSQL database an additional step by using an intermediate file format is
required. The applied solution is the tab-delimited text file, which can be directly chosen as
output format in excel 1. It stores the spreadsheet by dividing every former table row by new-
line (\n) whilst its cells are separated by tab (\t). Subsequently, the text file could be imported
directly into a database table by the PostgreSQL operation ’COPY FROM’. In order to do this,
the required input file needs to be placed on the same server as the database [PgSQL 2010,
"SQL COPY"]. In the context of the theses, the database system installed on the server of the
Institute of Informatics at the University of Zurich was used with only delimited access rights.
Therefore an alternative by writing an interface program in Java, which executes an INSERT
query by row, was established.

1Another solution would have been the CSV (comma-separated values), but this format seem not to include
special characters.

6.2. DATABASE 28

In this alternative, the text file was used as an input file. After creating a table with all needed
columns and data types, one row (equal to one row in the spreadsheet) after each other was
read in, formulated into an INSERT query and was then sent by a client-server-connection
to the database. The fact that every former cell value is delimited by a tab was used during
the formulation activity to apply the proper format: a double tab was replaced by the string
’,’NULL’,’ and the single tab by ’,’. After adding some static values in the beginning and at the
end, valid INSERT query was ready to send.

Input: Dürrfutter\tbelüftet\tHeu / Emd\t(4)\t0\t\t> 1000
m\t0\t3\t4\t\t257.52

Output: INSERT INTO dummytable VALUES (’Dürrfutter’,
’belüftet’,’Heu / Emd’,’(4)’,’0’,NULL,’> 1000 m’,’0’,
’3’,’4’,NULL,’257.52’);

Important annotation: This solution will generate errors when French expressions con-
taining the apostrophe (Unicode: U+2027) are involved, e.g. "L’Europe". The best solution
is to replace every apostrophe in the input data by the single right quotation mark (Unicode:
U+2019) 2. By doing this, not only the current error will be prevented, but also the ones in the
application, when working with JavaScript or PHP.

Step 3: Import new data into dimension tables Now that all information is included
in the database, the spreadsheet structure can easily be decomposed to add the data to its cor-
responding final tables. The first relocation will deal with the data to be cataloged inside the
"dimension tables". This includes also the headers of the nutrient columns (stored in table
d_nutrient). But, for later discussed reasons, it will exclude the sample identifier or any other
of the future d_sample attributes (for instance laboratory name).
Since the dimension tables are all storing distinct tuples, new values cannot simply be appended.
The insert query has to check first if the current tuple combination is already stored.

Example: PostgreSQL INSERT query for d_origin with check functionality
1 INSERT INTO d_origin (company_postal_code, city_altitude_level,
2 city_altitude, region_number)
3 SELECT newData.*
4 FROM (SELECT DISTINCT
5 /* All delivered data columns for d_origin: */
6 plz AS postal_code,
7 hoehenstufe AS altitude_level,
8 altitude AS altitude,
9 region AS region_number,

10 FROM excel_table) AS newData
11 WHERE NOT EXISTS (SELECT 1
12 FROM d_origin
13 WHERE /* --1-- Delivered columns: */
14 d_origin.company_postal_code = newData.postal_code
15 AND d_origin.altitude_level = newData.altitude_level

2The right single quotation mark is the typographically correct alternative to apostrophe. It is even advised to use
instead in German, French and English [e.g. http://en.wikipedia.org/wiki/Apostrophe#Unicode].

29 CHAPTER 6. IMPLEMENTATION

16 AND d_origin.city_altitude = newData.altitude
17 AND d_origin.region_number = newData.region_number
18 /* --2-- Not delivered columns: */
19 AND d_origin.company_name IS NULL
20 AND d_origin.company_address IS NULL
21 AND d_origin.animal_density IS NULL
22 AND d_origin.agency_email IS NULL
23 AND d_origin.agency_website IS NULL
24);

The example shows that the columns, which are not covered in the delivery, need to be referred
as well, for the simple reason that they necessarily need to be NULL to find the only correct
corresponding match.

COMP. NAME COMP. ADDRESS COMP. POSTAL CODE CITY ALTITUDE

Company A Somewhere Street 101 8000 < 600
NULL NULL 8000 < 600

Table 6.1.: Illustration of the importance of NULL values for tuple specification. Bold are the
attributes, which are covered in the new data delivery.

One could say that always the complete tuple needs to be checked. But there are three
exceptions:

1. The columns, which are dependent on a hierarchy. They should not be checked, since
their content changes after this loading process. But because they are dependent on a
master column it is enough to only check the master’s content.

2. All columns in the table d_nutrient besides the attribute ’abbreviation’. This table has the
special purpose of being a glossary, by storing also information about the nutrients real
name or its measure unit. That’s information, which were delivered separately and is not
included, but even so valid in the official deliveries. But again, it is sufficient to check the
abbreviation entry only.

3. All attributes in a parallel languages to the applied language. The goal is that the database
contains in the end only attribute with according translations. The data delivery will
not come with such a requested resolution. If a data entry includes no translations, the
identical tuple but with translation should of cause not be despised when checking for an
existing entry.

Step 4: Import new data into fact table and dimension table d_sample Finally,
the import can be completed by loading the last missing pieces: the information concerning
the quantities of the measured nutrients. And as mentioned earlier, the goal is to store the
measurements of all nutrients equally in the fact_table, together with foreign keys referring to
all the surrounding (and now up-to-date) dimension tables. But there is one dimension table
left: d_sample.
The reason for not updating this particular table until now was the following: the analysis of
the input data showed that only 50% of all delivered samples posses a sample identifier (LIMS

6.2. DATABASE 30

number). In the case that no such identifier is provided, the primary key of the d_sample ta-
ble (sample_key) should be used instead and stored in d_sample.lims_number as well as in
fact_table.lims_number. The only way of covering this without losing the interconnection be-
tween sample and measurement, is to load every sample in separate and divide its components
into the d_sample and the fact_table:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Example: PostgreSQL queries for INSERT in table d_sample and fact_table The
procedural loading according to the declaration above was as well implemented in a Java pro-
gram. This program expects as input a list of the abbreviations of all nutrients appearing in the
dummy table. It’s assumed that the names of the nutrient attributes in the dummy tables are
identical to the abbreviation. In this case the two variables of query 4, [dummyNutrientCol-
Name] and [abbreviation], can be set by the same input. The Java program will execute the first
query once and repeats the other three queries [sampleAmount]-times.

Query 1
1 [sampleAmount] = SELECT COUNT(excel_key) FROM excel_tbl;

Query 2
1

2 Annotation: ’..._seq’ is the sequence of the auto-incrementing key number of a table
3 [sampleKey] = SELECT nextval(’d_sample_sample_key_seq’)
4 AS next_sample_key;

Query 3
1 INSERT INTO d_sample(sample_key, lims_number,
2 unit_group_de, particle_size_de, preparation_de,
3 production_method_de, conservation_method_de, further_info_de)
4 SELECT
5 [sampleKey],
6 (CASE
7 WHEN excel_tbl.lims_number IS NULL
8 THEN [sampleKey]

9 ELSE excel_tbl.lims_number
10 END) AS lims_number,
11 NULL, NULL, NULL, NULL, NULL, NULL
12 FROM excel_tbl
13 WHERE excel_key = [ascending number];

31 CHAPTER 6. IMPLEMENTATION

Query 4
1 INSERT into fact_table (lims_number, quantity, id_time_fkey,
2 id_nutrient_fkey, id_quality_fkey, id_animal_fkey,
3 id_feed_fkey, id_origin_fkey, id_sample_fkey)
4 SELECT lims_number, [dummyNutrientColName], time_key, nutrient_key,
5 quality_key, as_key, feed_key, origin_key, [sampleKey]

6 FROM excel_tbl, d_time, d_nutrient, d_quality_parameters,
7 d_animal_specie, d_feed, d_origin, d_sample
8 WHERE
9 excel_tbl.[dummyNutrientColName] IS NOT NULL

10

11 Join to d_sample: is covered by the sequential number
12 AND d_sample.sample_key = [sampleKey]

13

14 Join to d_nutrient: check the abbreviation only, but in proper language
15 AND d_nutrient.abbreviation_de=’[abbreviation]’
16

17 For joint to all other dimension table:
18 Check every attribute that is not a slave field in a hierarchy
19 AND...
20

21 Argumentation if the field is not available in dummy table (was not delivered)
22 [[d_table field] IS NULL ||
23 Argumentation if the field is available in both tables and certainly no null value will appear
24 [excel_tbl field] = [d_table field]||
25 Argumentation if the field is available in both tables but null values can appear
26 (CASE
27 WHEN [excel_tbl field] IS NULL
28 THEN [d_table field] IS NULL
29 ELSE [excel_tbl field] = [d_table field]
30 END))]*

6.3. Application

6.3.1. Generating dynamic SQL
Examples follow the module: INIT, M1
Topic appears also in module: M2

In the application, SQL queries are applied to the database either to get the options of the next
select field or to finally get the requested results. Both kinds of queries have in common that
their WHERE- and FROM-part needs to be filled dynamically using the previously selected
options.

Example: SQL query for the next select field (’canton[]’)
1

2 The database attribute of the next select field’s parameter:
3 SELECT canton_de
4

5 All involved tables (fact_table is always involved because it is joining all dimension tables):
6 FROM fact_table, d_feed, d_nutrient, d_origin
7

8 The join conditions between every used dimension table and the fact_table:
9 WHERE id_feed_fkey = feed_key

6.3. APPLICATION 32

10 AND id_nutrient_fkey = nutrient_key
11 AND id_origin_fkey = origin_key
12

13 Filter options of selection: case one or more options are selected - one of it requests to display
14 all empty feed names. It could also be only ’IS NULL’ or only ’feed_name_de IN (...)’.
15 AND (feed_name_de IN (’Heu’,’Emd’) OR feed_name_de IS NULL)
16

17 Filter options of selection: case all options are selected then no filter condition should be created.
18 This is solved by an artificial first option ’ALL’: if(first selected value == ’ALL’){ - do nothing - };
19 /* no filter condition on d_nutrient.name_de... */
20

21 Order by select attribute:
22 ORDER BY canton_de;

sets new content

uses for SQL

hallo

Figure 6.2.: Schematical example of the referances between the <select> fields

Figure 6.2 illustrates the example a little: to update its next select field, the current field need
the information about the selected options, the corresponding database table, its join to the
fact_table and the parameters attribute name of itself and all previous select fields. In addition
it also needs the database table, its joint to the fact_table and the parameters attribute name of
the next field.
The thin dashed lines are referring to the condition that a user can always go back and restart
its selection in a previous field. In such a situation the following select fields need to be set
to initiation state (no options) and therefore the current field needs to know, which other select
fields, it is supposed to change.

Initiation with PHP 5

In order to generate dynamic SQL queries or delete the following options, every HTML element,
which is triggering a corresponding Jscript (= all select fields, the last one executes the script by
the ’show result’ button), needs to own the previously mentioned information. The information
itself can be distinguished into the ’variable’ information, which changes in runtime (like the
options and its selection) and the ’static’ ones that will stay the same at least inside of the user’s
session (select field names and all database relating specifications). To submit all this in a
manageable and ordered way, three thoughts led to a solution:

33 CHAPTER 6. IMPLEMENTATION

1. By using DOM-scripting, a <select> element and its selected options can be accessed in
JavaScript runtime if the name or the id of the HTML element is known.

2. The distribution of all needed information can be done at the initiation of the application,
since the required content of every element can be formulated in ’static’ values only, if
the first thought is properly applied.

3. The information can be injected, ordered and distributed by PHP before loading it on the
client’s side, especially with the new object functionality of PHP 5.

Step 1: Manage the information input Every <select> unit will be filled with the in-
formation concerning its own database origin only. Therefore a PHP class called ’SelectField’
has been created (fig. 6.3), one object per unit is instantiated and the requested information is
assigned by setter-methods.

+'constructor'()
+'setters'()
+doInitialQuery()
+printField()
+printLastField()
+printQueryButton()

-fieldName
-sql_columnName
-sql_tableName
-sql_joinToFactTable
-nextSF
-prevSF

PHP::SelectField

Figure 6.3.: The outline of the PHP class ’SelectField’

Example: 1-Inject the requested input information in PHP5
1 <?php
2 require("class-selectfield.php");
3

4 $feed = new selectField("feed[]a");
5 $feed->setOriginTable("d_feed");
6 $feed->setOriginColumn("d_feed.name_de");
7 $feed->setJoinToFactTable("id_feed_fkey = feed_key");
8 $drying = new selectField("drying[]");
9 $drying->setOriginTable("d_quality_parameters");

10 $drying->setOriginColumn("drying_condition_de");
11 $drying->setJoinToFactTable("id_quality_fkey = quality_key");?>

As next, the dependency between the fields is set with the operation setNextField():
(Operation setNextField())

1 <?php
2 setNextSF($field){
3 this->nextSF = $field;
4 $field->prevSF = $this;
5 }?>

aOne can process the HTML <select multiple/> element as an array with its multiple selected values if the name
contain the array brackets "[]" [http://www.php-faq.de/q-formular-select-multiple.html].

6.3. APPLICATION 34

Example: 2-Link select fields in PHP5
1 <?php
2 $feed->setNextSF($drying);?>

Step 2: Create HTML elements The method printField() of the class SelectField
is producing the final HTML code of a <select> element. But before that, it is distributing
links and the corresponding database info as discussed above (fig. 6.2). In doing so, the linked
SelectField objects are used to iterate all previous and all following select fields by using the
$this->next/prevSF connection.
Since the server scripted SelectField object are no longer accessible after loading the page on
the client, all required information need to be hand over to the HTML code where most of them
are assigned to a corresponding JavaScript function. As a medium between server and client
script, a string, if needed with the concatenated values, is used.

Example: Assign the new managed information to HTML and JavaScript
1 <?php
2 echo ’<select name="’.$this->fieldname.’" id="’.this->sql_columnName.’"
3 onChange="function(’.$this->nextField->fieldname.’,’.$concatPrevFields.’,
4 ’.$concatNeededTables.’,’.$concatNeededJoins.’,
5 ’.$concatFollowFields.’)">’;?>

Annotation: To collect all needed database tables and join conditions to the fact table, an
intermediate step was taken by inserting every new entry during the iteration into an associative
array3:

Example: Insert two values into a associative PHP array
1 <?php
2 $array_tables[$visit->sql_tableName] = $visit->sql_joinToFactTable; ?>

Later, the array was iterated itself to concatenate all the entries to a string:
Example: Iterating the associative PHP array

1 <?php
2 foreach($array_tables as $key => $value){
3 $concatNeededTables.= "-sep-".$key;
4 $concatNeededJoins.="-sep-".$value;} ?>

With this step, tables and joins that are used multiple times (e.g. parameter ’canton_de’ and
’altitude’ are both stored in the table d_origin) are only mentioned once in the string.

Special: ’first’ and ’last’ select field The specialty of the first select field is that its
options are filled at the beginning. Therefore a first SQL query needs to be established and run
before the page gets loaded by the client. This is covered in the method doInitialQuery()
of the class SelectField. This operation should be called right after all setters have been used.
The last select field has the advantage that no following fields need to be filled and reset. In
addition, the JavaScript function is not supposed to start on the event handler onChange in
the <select> element, but onClick to a button. That’s way there are the separate operations
printLastField() and printQueryButton(), used to print a <select> element only
with name and id, and a button, which takes over the event handler with the limited Jscript
function.

3An array where each ID key is associated with a value [Refsnes Data 2011, "PHP Array"].

35 CHAPTER 6. IMPLEMENTATION

Step 3: Setting HTML element at proper place The positioning of the <select> ele-
ments generated by the PHP SelectField objects is done by placing the print operation printField(),
printLastField() and printQueryButton() at this point in the HTML code where
the return element should lie.

Example: Interaction of HTML and PHP code
1 <html><div class="selection">
2 <form name="testForm">
3 <div>
4 <h3>Feed</h3>

5 <?php $feed->printField(); ?>
6 </div>
7 <div>
8 <h3>Drying</h3>

9 <?php $drying->printLastField(); ?>

10 <?php $drying->printQueryButton();?>
11 </div>
12 </form></div></html>

By applying these three presented steps, it is possible to create a interface from the HTML
to the underlying database, which is easily adaptable in matter of the selection’s parameter
choice. Only the required information and relationships have to be set once and then the server
is producing an HTML document with the following specifications:

• Multiple <select> elements and one button are included. The first <select> element has
additionally several <option> already displayed.

• All elements are addressable by specific name.

• These names are distributed to the fellow elements that are in need to address this field.

• Event handlers and Jscript function (with corresponding parameters) are initiated.

SQL generation with JavaScript

When an event handler is triggered and a SQL query has to be assembled, the corresponding
Jscript function is processing its input parameters or uses them to collect additional values by
addressing the fields with DOM-Scripting.

SELECT
The needed column name is stored in the id attribute of the next <select> element. The name of
this element was handed over as the first input parameter (see previous page).

Example: Using param1 to get attribute from <select> field
1 var colName = document.forms["testForm"].elements[param1].id

FROM
The needed tables were handed over in form of a concatenated string as the third input parame-
ter.

Example: Prepare and use information in param3
1 var array_sql_table = param3.split("-sep-");
2 /* then iterate the array with for loop and add every entry
3 to the string "FROM fact_table" divided by a comma.*/

6.3. APPLICATION 36

WHERE
The needed joins were handed over in form of a concatenated string as the fourth input param-
eter.

Example: Prepare and use information in param4
1 //same as in FROM part...

The needed filter options have to be read from the corresponding <select> elements. Their
names were handed over in form of a concatenated string as the second input parameter.

Example: Prepare information in param2
1 var array_inputField = param2.split("-sep-");

With this name, the corresponding options can be addressed by DOM-Scripting using the fol-
lowing expressions. The complete algorithm to generate the SQL WHERE IN part is arranged
in the fig. 6.4 as a Nassi Shneiderman diagram.

Get amount of options in <select>:

1 document.forms[formname].elements[selectname].length;

Address one <option> element:

1 document.forms[formname].elements[selectname].option[index];

Get the value of an <option>:

1 document.forms[formname].elements[selectname].option[index].value;

Get the option’s select status (return value: true or false):

1 document.forms[formname].elements[selectname].option[index].selected;

6.3.2. Asynchronous client-server communication
Examples follow the module: M2-M3
Topic appears also in module: M1, M2-M4, M2-M5

In the previous chapter, the topic of generating SQL queries during JavaScript runtime was
discussed. The next step would be to reactivate the server and let him run the new query on
the database. As mentioned in section 5.2.5, the Ajax object can be used to establish such a
connection from the client (JavaScript) back to the server, to call a server script (PHP) and to
exchange information (in JavaScript runtime).

37 CHAPTER 6. IMPLEMENTATION

First option „All“ selected?

If option.selected == true

If (option.value = „No Details“)

Add value to in_param;

Create variable in_params [to store the selected option.values in form „’A’,’B’,’C’,…“]

Set flag is_Null = true;

If in_params not empty

whereIn += „ (AND „ + select.id + „IN („ + in_params + „)“;

If flag is_Null is true

whereIn += „ OR „ + select.id + „ IS NULL)“; whereIn += „)“;

 If flag is_Null is true

whereIn += „ AND „ + select.id
+ „ IS NULL“;

Create variable whereIn [to add all filter conditions of all select fields]

For every <option> element

For every <select> element

dummy

False

False

False

False

False

FalseTrue

True

True

True

True

Figure 6.4.: Modeling of the ’generate SQL WHERE IN part’ algorithm

Step 1: The allocation of an Ajax object All modern browsers (IE7+, Firefox, Chrome,
Opera, Safari) include Ajax, which can be allocated as a new XMLHttpRequerst object. Yet, IE
5 and 6 support the same functionality but named as ActivObject [Refsnes Data 2011, "AJAX"].
To cover all possibilities depending on the client’s browser, the following Jscript function is used
to establish a new Ajax:

Example: ’Create Ajax’ function
1 function jsB_getHTTPObject(){
2 if (window.ActiveXObject) return new ActiveXObject("Microsoft.XMLHTTP");
3 else if (window.XMLHttpRequest) return new XMLHttpRequest();
4 else {
5 alert("Your browser does not support AJAX.");
6 return null;
7 }
8 }

Example: ’Create Ajax’ call
1 var g_ajaxTwo = jsB_getHTTPObject();

Step 2: Send request A request will be sent by HTTP communication using a URL.
Depending on what information is packed in the URL, there are two different connection types
[Refsnes Data 2011, "AJAX"]:

GET: To establish a connection, the server script path and all required variables are concate-
nated to the URL and send at once. This type is cheaper and faster.

POST: To establish a connection, only the server script path is included in the URL. The addi-
tional variables are sent as a concatenated string in separate after the connection stands.
This type is more secure and has a limitless variables space.

In the Swiss Feed Database online application, only POST connections are used to guaranty
that even the longest query can be communicated completely to the server script.

6.3. APPLICATION 38

Example: Create asynchronous connection on client side view
1

2 Open connection with parameters ’connection type’, ’server script path’, ’asynchronicity’:
3 g_ajaxTwo.open("POST", "ajax-pg-result-google.php", true);
4 Set the client’s request header (for type, using default value):
5 g_ajaxTwo.setRequestHeader("Content-Type",
6 "application/x-www-form-urlencoded");
7 g_ajaxTwo.setRequestHeader("Content-length", sql_from_where.length+6)a;
8 g_ajaxTwo.setRequestHeader("Connection", "close");
9 Send the variables in form varName=Value:

10 g_ajaxTwo.send("query="+sql_from_where);
11 Formulate a callback function, which catches the return values in the
12 asynchronous connection (for the involved Ajax readyStates see fig 5.3 in section 5.2.5):
13 g_ajaxTwo.onreadystatechange = function() {
14 /* so something with result */
15 }
16 Instead of some code, also a Jscript function can be assigned and even parameters can by hand over.
17 g_ajaxTwo.onreadystatechange = function() { js3_setMapList(/*param*/);}

With this code, a proper Client-Server connection has been generated and variables have been
handed over.

Step 3: Run a Ajax triggered PHP server script The PHP file, called in the ajax.open()
function, is a stand-alone script that gets activated by Ajax, runs through completely, returns a
result and then terminates. This specific Ajax-called script is dependent on the input of the
previously sent variable, which it can address with help the defined varName. The result of the
server script can then be simply committed back to Javascript by "printing" it out, because the
print command echo passes a value to the next lower surroundings:

• Case "PHP fragments in HTML code": HTML catches echo output

• Case "PHP script in Ajax surroundings": JavaScript catches echo output

Example: Create asynchronous connection on server side view
1 <?php
2 if(isset($_POST[’query’])){
3 Read in the value part of varName=value:
4 $sql_from_where = $_POST[’query’];
5 Do something with it:
6 /* add some SELECT, GROUP BY, ORDER BY to the $sql_from_where,
7 run query(ies) and organise the result tuple for output */
8 Set the server’s request header for back transmission (only necessary in case of $resultXML):
9 header("Content-type: text/xml");

10 Returning the result back to JavaScript and the waiting Ajax:
11 echo [$resultText || $resultXML];
12 ?>}

Step 4: Receive results on client side Whilst PHP was running its script, Ajax was
waiting but constantly checking the progress. Anytime its readyState changed (for Ajax state
conditions see fig. 5.3), the callback function js3_setMapList() was called, but only if
the PHP script is terminated and the readyState changes to 4: request finished and response is
ready, the code gets executed.

aThe ’+6’ is used, because the variable name "query=" will later be added to the string

39 CHAPTER 6. IMPLEMENTATION

Example: Create asynchronous connection on client side view (contd.)
1 function js3_setMapList(){
2 check if final state was reached:
3 if(g_ajaxTwo.readyState == 4){
4 Load the result:
5 - As a string
6 var resultText = g_ajaxTwo.responseText;
7 - As a simple XML object
8 var resultXML = g_ajaxTwo.responseXML.documentElement;
9 /* do something with it */

10 }
11 }

Since we are communicating over HTTP, all information is transmitted as a string. This was
the case when sending a request and variables by URL. This is also the case when the server
returns its results to the client. This means that the server needs to arrange its results to a string
before sending it back to the client. This are the possibilities used in the Swiss Feed Database
to pass information between PHP and JavaScript:

A simple concatenated string
Used in module M1: 1dimensional result tuple (one column only).

Example
1 var string = "option-sep-option-sep-option";
2 var array = string.split("-sep-");

A nested concatenated string
Used in module M4 & M5: 2dimensional result tuple (multiple columns * multiple rows).

Example
1 var string = "nutrient-s-avg(quantity)-s-stddev(quantity)-sep-
2 nutrient-s-avg(quantity)-s-stddev(quantity)";
3 var array1 = string.split("-sep-");
4 var array2 = array1[i].split("-s-");

Use of the Expendable Markup Language (XML)
Used in module M3: 3dimensional result tuple (two queries with 2dimensional result tuples are
nested with each other in a relationship of 1:N.

Example
1 Var string = "<xml>
2 <sample id=lims_number plz=company_postal_code city=company_city
3 canton=canton_de lat=latitude long=longitude>
4 <value abbreviation=abbreviation_de quantity=quantity/>
5 <value abbreviation=abbreviation_de quantity=quantity/>
6 <value abbreviation=abbreviation_de quantity=quantity/>
7 </sample>
8 <sample id=lims_number plz=company_postal_code city=company_city
9 canton=canton_de lat=latitude long=longitude>

10 <value abbreviation=abbreviation_de quantity=quantity/>
11 <value abbreviation=abbreviation_de quantity=quantity/>
12 </sample>
13 </xml>"

6.3. APPLICATION 40

Ajax supports the possibility to process XML documents. Therefore the echoed result needs to
be read in with ajax.responseXML.documentElement, which compiles the previous
string into a XML object. This object can then be addressed with DOM-Scripting functionali-
ties.

XML DOM-scrip.: Create array of specific XML tag
1 var resultArray = resultXML.getElementsByTagName("sample");

XML DOM-scrip.: Address attribute of secific XML tag
1 var postalCode = resultArray[i].getAttribute("plz");

6.3.3. Geocode locations with Google Maps service in PHP
Examples follow the module: M2
Topic appears also in module: -

This section discusses how, where and why the geocode service of Google Maps was included
into the application. Geocoding describes the process to assign an absolute geographical refer-
ences, typically latitude and longitude, to a location, which was available only in a descriptive
way (e.g. city name). To do this, a database with cross references between the descriptions and
the geographical references is needed. The Google Maps geocode service is now offering to use
the Google Maps GIS database with its worldwide high resolution for this purpose.
The reason for using this service at all, is that an absolute geographical reference is needed to
mark a specific location on a map. At the current state of data input, the most detailed geo-
graphical information is the postal code assigned to almost every sample. This information can
easily be geocoded to mark the corresponding city by coordinates. A better input would be the
address of a farm/laboratory or the latitude and longitude of the agricultural fields, but at this
point, the postal code is the highest resolution and the code is aligned to deal with it.

The geocoding operation takes place in the PHP script ajax-pg-result-google.php,
which was triggered by ajaxTwo to run. The reason why applying it on the server and not
including it into JavaScript, was:

1. To generate as less communication costs on the client side as possible.

2. To store the geocode result back into the database, so that every sample has to be geocoded
only once.

The Google Maps geocode service is handled as a web request, which means that its core
is another Ajax request (see section 5.2.5). The descriptive geographical information will be
transmitted according to the GET connection type, where all variables are suspended to the
URL.

Example: Establishing a geocode request
1 <?php
2 Specify the server according to the country for better hits (first priority: Switzerland):
3 define("MAPS_HOST", "maps.google.ch");
4 Create URL with script path, declaration of return type (xml) and declaration if active GPS is used (sensor).
5 $base_url = "http://" . MAPS_HOST . "/maps/api/geocode/xml?sensor=false";
6 Generate a geocode input without empty space: "8051+Zürich,+Zürich,+Switzerland"
7 $address = $plz + "+" + $city + ",+" + $canton + ",+Switzerland";

41 CHAPTER 6. IMPLEMENTATION

8 Add varName and variable to URL:
9 $request_url = $base_url . "&address=" . urlencode($address);

10 Send synchronous request (send and receive in one):
11 $xml = simplexml_load_file($request_url) or die("url not loading");?>

The response gets delivered as XML because it contains a lot of specifications. Next to a process
status, there are the actual result values. But these results are covering not only the latitude and
longitude; there are information about alternative writing, neighbourhood, altitude and even
political associations. In addition, there can be more the one hit onto the geocode request 4,
so everything gets wrapped in a deeply nested XML document [Google 2011b, #XML: with
example of result XML]. In PHP every XML tag can be addressed by following its internal path
from the documents root, one just has to know where it lies.

Example: Address XML elements in PHP
1 <?php
2 if ($xml->status == "OK") {
3 $lat = $xml->result->geometry->location->lat;
4 $long = $xml->result->geometry->location->long;}?>

This so far presented functionality was applied in the application to geocode the location of
every involved sample, if not yet available in the database. Therefore many requests were sent
whilst iterating all samples. However, therein lays a dilemma: first, the requests of the Google
Maps geocode service are delimited to an upper bound of 2’500 per 24 hours [Google 2011b,
#Limits]. This can be solved by storing back the result values in the database so that less and
less request will be sent. Secondly, when sending more than one request, they need to have a
temporal gap of unknown and variable size between each other or the geocoding will return the
status "query over limit". For this case a sample’s request will be resent until it is successfully
geocoded or officially not geocodable (status: "zero result"). In addition, a break will be made
between two requests, which will be enlarged every time a geocoding failed. Fig 6.5 shows the
complete geocode algorithm.

6.3.4. Embed a map of Google Maps with information from the
database

Examples follow the module: M3
Topic appears also in module: -

Google Maps seems to be the most used geographic information system in the world and its
primary functionality is the mapping. In this case Google provides an interactive map, which
any web page developer can embed into his code easily.

Step 1: Embed Google Maps mapping functionality The mapping functionality of
Google Maps bases completely on JavaScript. Therefore the precondition is to load the Google
Maps API (V3), which is a set of all required Jscripts, from the Google server to the client.
This will be done by a script import command in the HTML header, just like the Swiss Feed
Database Jscripts are loaded. In addition a <div> element needs to be prepared, where the map
later will set.

4In this case the first hit gets used

6.3. APPLICATION 42

Create flag $geocode_pending = true and create $delay = 0 (time in micro seconds);

Create and run query to get distinct samples with information about its location (postal code, city…)

Assemble address and add it to the request URL

Send geocode request to recieve response $xml

 $xml->status =
„OK“ „QUERY_OVER_LIMIT“

Increment $delay += 100000 (0.1 seconds)

Set $geocode_pending = false;
Set $delay = 0;

Create $dom (XML document, which stores the information for transmission back to JavaScript);

Set $geocode_pending = false;

Add error statement to $dom->child;
(no geocoding was possible)

Add latitude and longitude to $dom->child;

Prepare and execute SQL query to update the
row with new lat and long;

Create and run query to get all measurements (nutrient name + quantity) with corresponding sample identification

Get $dom->child node of corresponding sample

Create new $dom->child->child and store the measurement information

Create $dom->child and add all information about sample and ist location to it;

While $geocode_pending == true

For every result tuple row (= every sample)

For every measurement

dummy

Figure 6.5.: Modeling of the ’Geocode’ algorithm.

Example: Required HTML code for mapping
1 <html>
2 <header>
3 <script type="text/javascript"
4 src="http://maps.google.ch/maps/api/js?sensor=false"></script>
5 </header>
6 <body>
7 <div id="map_canvas"></div>
8 </body>
9 </html>

The only way of visually initiate a map is by JavaScript. In this application the map should
only be displayed when showing the results, that’s way the required code is embed to the
js3_setMapList() function. If a map should appear right in the beginning, the corre-
sponding Jscript can be called by adding the event handler onLoad to the <body> element.

Example: Minimal Jscript to display a map
1 Create a map in the prepared <div> element:
2 g_map = new google.maps.Map(document.getElementById("map_canvas"),{
3 Optional: set display options e.g. background map type
4 mapTypeId: google.maps.MapTypeId.TERRAIN});
5 Define the map excerpt object with the coordinates of the SW-, and NE-corner:
6 g_bounds = new google.maps.LatLngBounds(/*param1: LatLng SW,
7 param 2: LatLng NE*/);
8 Set the map to the selected excerpt:
9 g_map.fitBounds(g_bounds);

43 CHAPTER 6. IMPLEMENTATION

Step 2: Add markers (pins) from the database Constitutive on the background map, it
is possible to include all sorts of shapes by using the basic GIS data types (see table 2.1). Every
additional shape will then be assigned to the map as a layer, which gives them the name over-
lay. The simplest overlay is the so called marker (this is the typical Google Maps pin pointer),
another is the infowindow (the popup speech bubble).

The goal for the application is to set a marker for every sample with an infowindow containing
all information about the address and the measured nutrients. For a better display, only one
infowindow should be visible at a time and its visibility should be triggered by hovering over
the marker. This constraint can be implemented the following way:

• Only one empty infowindow object will be allocated.

• One marker per sample (data comes from the responseXML) will be allocated.

• The content about address and nutrient will be prepared as HTML output and stored in
the corresponding marker: var html = "LIMS-Nr. " + name + "
"...

• By the event listener this.marker.mouseover, the one infowindow will set visible with the
content and the position of the corresponding marker.

Example: Jscript to set markers according to goal
1 Create one empty infowindow:
2 g_infowindow = new google.maps.InfoWindow({
3 //content: /*nothing*/,
4 //position: /*nothing*/
5 });
6 for(/*every sample in the responseXML*/){
7 Create new position with the coordinates from the responseXML:
8 var latlng = new google.maps.LatLng(latitude, longitude);
9 Allocate new marker and set its options (including position and content):

10 var marker = new google.maps.Marker({
11 map: g_map,
12 position: latlng,
13 icon: "images/red-dot.png",
14 shadow: "images/msmarker.shadow.png",
15 content: html,
16 title: "LIMS-Nr. "+name
17 });
18

19 Create event listeners for every marker to open and close the infowindow:
20 google.maps.event.addListener(g_markerArray[i], ’mouseover’,
21 function() {
22 g_infowindow.setContent(this.content);
23 g_infowindow.setPosition(this.position);
24 g_infowindow.open(g_map,this);
25 });
26 google.maps.event.addListener(g_markerArray[i], ’mouseout’,
27 function() {
28 g_infowindow.close(g_map,this);
29 });
30 }

The complete algorithm will be visualised in the next chapter in combination with the set up of
the sample enlistment (figure 6.6).

6.3. APPLICATION 44

Annotation I: It occurs many times that several samples originate from the same location. To
not place the marker all at the exact same spot, a random shifting in the latitude and longitude is
used. The following code adds or subtracts max. 100 m in latitude and max. 50 m in longitude
to the original coordinates.

...add-on to example...
1 var latitude = parseFloat(resultArray[i].getAttribute("lat")) +
2 parseFloat((Math.random()5 - Math.random())/1000);
3 var longitude = parseFloat(resultArray[i].getAttribute("lng")) + -
4 parseFloat((Math.random()- Math.random())/1000);

Annotation II: The map excerpt, defined by the object bounds, can either be set from the
beginning (as presented above), or generated dynamically depending on the overlays in the map
so that e.g. all markers will be visible at fist side with maximal possible zoom. This second way
will be done by adding every marker’s coordinates to the bounds and let the object do the rest.

...add-on to example...
1 var g_bounds = new google.maps.LatLngBounds();
2 var latlng = new google.maps.LatLng(latitude, longitude);
3 g_bounds.extend(latlng);

Annotation III: One constraint of the application was that new results can be requested in
the same session. For this case old markers need to be deleted before adding new ones. This is
solved with the help of a global array to which every marker gets assign in his creation process.
With this array the current markers can be addressed at any time and if requested erased from
the map.

...add-on to example...
1 for (i in g_markerArray) {
2 Erase marker from the map:
3 g_markerArray[i].setMap(null);
4 }
5 Delete all old markers:
6 g_markerArray.length = 0;

6.3.5. Using Google Visualization
Examples follow the module: M2 (load), M3 (draw table chart)
Topic appears also in module: M4 (draw line chart)

Another service of Google, used in the application, is the collection of Jscripts for supported
data visualisation that every web developer can load and use on his page. The embedding of the
service corresponds to the one of Google Maps: include the API when loading the application
and prepare a <div> element for the later output.

Example: Required HTML code for visualisation
1 <html>
2 <header>
3 <script type="text/javascript"
4 src="https://www.google.com/jsapi"></script>

45 CHAPTER 6. IMPLEMENTATION

5 </header>
6 <body>
7 div id="sidebar"></div>
8 </body>
9 </html>

This loaded API covers the basic overall functionalities including further loading operations,
since every chart type possesses it own script package still laying on the server. This chart
dependent, additional loading process will now take place in JavaScript runtime using an asyn-
chronous HTTP request (which is again based on an Ajax object) and needs to be catched by a
callback function (see Ajax 5.2.5).

Example: Load visualization package for interactive table
1 google.load("visualization", "1",{
2 packages:["table"],
3 callback: function() {js2_sendMapListAjax(sql_from_where);}
4 });

A package will not be loaded twice in one session, even when the same load request gets placed
a second time. In this case it jumps directly to the callback function [Google 2011c]["Enhanced
Library Loading"]. This is an important fact for the "many result request in one session" con-
straint.

If the loading was successful and the corresponding callback function has been called, the cre-
ation of a chart can be done in two steps.

Step 1: Create and fill a dataTable with all required data The dataTable is the base
element of all chart types. All input data required for the chart will be inserted into it. The
columns specify the topic (table chart: columns; line chart: series) and the rows get filled by
the entries.

Example: How to handle a dataTable
1 Create a new dataTable object:
2 g_sampleData = new google.visualization.DataTable();
3 Add columns (type, name) with automatically ascending index values:
4 g_sampleData.addColumn(’string’, ’LIMS-Nr.’);
5 g_sampleData.addColumn(’string’, ’Canton’);
6 g_sampleData.addColumn(’string’, ’PLZ’);
7 for(/*every sample in responseXML*/){
8 Add a row and fill its first, second and third cell:
9 g_sampleData.addRows(1);

10 g_sampleData.setValue(i,0,resultArray[i].getAttribute("name"));
11 g_sampleData.setValue(i,1,resultArray[i].getAttribute("canton"));
12 g_sampleData.setValue(i,2,resultArray[i].getAttribute("plz"));
13 Assign an additional variable to the entire row, for later identification of row:
14 g_sampleData.setRowProperty(j, "lims",
15 resultArray[i].getAttribute("name"));
16 }

In the application, the filling of the dataTable is combined with the creation of Google Maps
markers since both are iterating the responseXML with the "nutrient per sample"-results the
same way. The complete structural design of this operation is illustrated in fig. 6.6.

6.3. APPLICATION 46

If not running the first time (in this session)
Get responseXML and transform it into the resultArray, where every XML sample is one array entry

Delete all markers in g_map and d_markerArray

Delete all rows and nutrient columns in g_sampleData

Create g_map, g_bounds, g_infowindow and g_markerArray

Create g_sampleMap and fill the static columns (Lims-Nr., PLZ, Canton)

Add new column with nutrient name to g_sampleData

Add new row to g_sampleData and fil the cells at index 0, 1 & 2 with name (LIMS-Nr.), plz and canton

Assign name as row property (row identifier)

Create var html = "LIMS-Nr. " + masked name + "
" + plz + " " + city + " (" + canton + ")“

Get resultArray[i] and transform it into the nutrientArray, where every child XML nutrient is one array entry

Append to html as listed expression: „[Nutrientname]: [Quantity]“

Create var colCheckNumber = index of first nutrient column (3)

Create var colCheckFlag = true

(Var colName = name of column at index colCheckNumber in g_sampleData)

If colName equals the current nutrient

Add quantity to current cell

Set colCheckFlag = false and colCheckNumber += 1
Set colCheckNumber += 1

If absolute coordinates are available

Get coordinates and add a random shift

Set marker on map and add it to the g_markerArray

Extend the bounds by adding the coordinates

Create event listener on the current marker for open and close the infowindow

Create marker with content: html, position: coordinates, title (id): name

hallo

For every sample in resultArray

For every nutrient in nutrientArray

While colCheckNumber < number of g_sampleDate columns and colCheckFlag is true

True

True

True False

False

False

For every nutrient in g_nutrientArray (=all selected options in <select name=“nutrient[]“>)

Figure 6.6.: Modeling of the combined ’transform samples into Google Maps marker’ (dark
gray) and ’fill the visualisation dataTable’ (light gray) algorithm

Annotation: The samples in the responseXML only include valid measurements as assigned
children. Empty fields, used in a table, are spared (fig. 6.7). That’s why two catches were
developed, when transforming the responseXML into an output table:

1. Missing input values: since the nutrient columns in the dataTable cannot be generated
with help of the responseXML, all selected nutrients in the select field nutrient[] were
stored in a global array at the beginning of the ’show result’ processing (js2_result_-
coordinator.js). By consulting this array, every requested nutrient gets its column.

2. Empty cells needed: to fill the quantities from the responseXML to the proper dataTable
column, sometimes a column needs to be skipped. A corresponding algorithm had to be
included in the overall operation (see the While- and For-loop dealing with the param-
eters colCheckNumber and colCheckFlag in fig. 6.6). This algorithm presumes that all
involved nutrients will always be sorted alphabetically inside of ever sample.

47 CHAPTER 6. IMPLEMENTATION

Figure 6.7.: Illustration to the task to transform an XML input, with minimalistic storing prin-
ciples into a table with static columns

Step 2: Draw the chart When the dataTable has been filled properly, the requested chart
will be drawn by the corresponding chart scripts. Own definitions about the appearance can be
committed as options into the drawing process.

Example: Finishing the chart
1

2 Create new chat object depending on the selected char type and assign it to the prepared <div> element:
3 var sidebarTable = new google.visualization.Table(
4 document.getElementById(’sidebar’));
5 sidebarTable.draw(g_sampleData, {
6 Set own parameters (here only one of many possibilities was selected):
7 showRowNumber: true
8 });

The result in the examples case is an interactive table, which can be sorted by any column in
ascending or descending order and where every entry can be selected with colour highlighting.

6.3.6. Interactive result display with JavaScript event listeners
Examples follow the module: M5+
Topic appears also in module: M3, M4, M5

In the previous two chapters the focus was on creating illustrations by using Google services,
whereupon a lot of interactivity for the user was offered inside of the delivered result units:

Google Map: *Hovering over the marker will open its associated infowindow.
*Scale- and scrollable map excerpt.

Visualization Table: *Selecting a row will be indicated by changing its colour.
*The rows can be sorted according to a selected column.

As presented several times so far, the supply of these interactivities is always based on JavaScript.
It was also discussed how such interactivity can be applied to the HTML web page code by us-
ing DOM scripting. Now, should be shown that it is also possible to include the result units
of the external services with all their sub elements (marker, table rows) into superior web page
scripts.

6.3. APPLICATION 48

In the following example, the establishing of the most complex interaction in this application
by combining a HTML element with the map via the visualisation table will be discussed:

Average
2σ

2σ

95,4% of all
samples

Upper bound

Lower bound

hallo

Outlier

Outlier

Figure 6.8.: Illustration of the statistical definition of a outlier

The statistical outliers of all samples in relation to a nutrient should be reflected as highlighted
Google Maps marker as soon as the corresponding nutrient in the table "Statistical information
of nutrients" gets clicked (fig. 6.9 & 6.8).

Figure 6.9.: Screenshot of the Swiss Feed Database 2.0 surface with activated interactivity
’show outlier for nutrient’

From a statistical point of view, the computation includes:

• The average value of the selected nutrient

• The standard deviation of a population in 2sigma range of the selected nutrient

• The distinct samples with the quantity of the selected nutrient.

49 CHAPTER 6. IMPLEMENTATION

The first two inputs are available in the aggregation table ("Statistical information of nutrients",
build as HTML table) were also the click event is supposed to start. But the values of the third
requirement are only addressable in the sample table (build as Google Visualisation table).

From a technical point of view, the goal is to link the row selection of the HTML table with
corresponding nutrient column of the Google Visualization table. When arriving, all cells of the
requested column will be traversed and the outlier samples detected. These samples are then
to be forwarded to the Google map where the corresponding markers need to be found. Then
finally, the markers will be set to a different colour.

Step 1: Prepare HTML table The base to this interactivity lies in the HTML code. To be
able to trigger Javascript inside a table, every nutrient cell includes a <div> element, where the
event handler and the Jscript function is implemented.

Example: Required HTML base for the interactivity
1 <table>
2 <tr><th>Nutrients:</th><th>Average:</th><th>StdDev:</th></tr>
3 <tr><td><div onClick="function([params1])">Nutrient 1</div></td>
4 <td>Average 1</td><td>StdDev 1</td></tr>
5 <tr><td><div onClick="function([params2])">Nutrient 2</div></td>
6 <td>Average 2</td><td>StdDev 2</td></tr>
7 </table>

The parameters inside the Jscript function will be set during the generation of the table itself,
and therefore contains information depending on the nutrient.

1. Parameter: column number

2. Parameter: upper bound of this nutrients 2sigma range

3. Parameter: lower bound of this nutrients 2sigma range

The first parameter is storing the required link to the sample list. It is supposed to be the index
number of the corresponding nutrient in the Google Visualization table.

Annotation: To assign the right column number, an algorithm has to be written, which al-
lows the HTML table to impersonate the indices of the Google Visualization columns. There-
fore the shifting between these two tables has to be respected. Additionally, the global d_nutrientArray
(= the array which stores all selected nutrients from the <select> field nutrient[] as presented
in the annotation of chapter 6.3.5) is iterated to coordinate the right number exchange, even if
a selected nutrient does appear in the sample table, but not in the HTML table (happens if a
nutrient contains no measurements).

Step 2: Prepare JavaScript elements Another trace of breadcrumbs has been laid on
the JavaScript level to be able to link the samples from the visualisation table with the markers
in the map: Every marker carries the sample identifier (LIMS-Number) as unique key, stored in
the parameter "title".

6.3. APPLICATION 50

Recall: initiation of marker
1 var marker = new google.maps.Marker({
2 map: g_map,
3 position: latlng,
4 icon: "images/red-dot.png",
5 shadow: "images/msmarker.shadow.png",
6 content: html,
7 title: "LIMS-Nr. "+name

8 });

In addition, the same identifier was also assigned to every row in the sample table when the
table was filled:

Recall: Assigning row identifier in dataTable
1 g_sampleData.setRowProperty(j,"lims",

2 resultArray[i].getAttribute("LIMS-Nr. "+name));

Step 3: Connect and query By having all necessary connections, the actual function is
the quite simple. The samples in the Visualization table can be addressed and iterated directly
by their row and column index number. When finding an outlier sample, the global marker
array, which stores all current maps marker, get traversed until a one element gets found with
the same sample key as the table row. The last step is then to set the marker to a new colour.
Since there are no colour options for markers in Google Maps, this needs to be done by loading
another coloured marker symbol.

Example: JavaScript function to highlight the statistical outliers
1 function js5_highlightStatGroups(col, highSigmaValue, lowSigmaValue){
2 var rows = g_sampleData.getNumberOfRows();
3 var g_markerArraylength = g_markerArray.length;
4

5 Traverse the sample table:
6 for(var j = 0; j < rows; j++){
7 Get the row key:
8 var wanted = g_sampleData.getRowProperty(j, "lims");
9 Get the cell content (quantity):

10 var cell = g_sampleData.getValue(j,col);
11

12 Iterate the global marker array to find the corresponding marker:
13 var marker = null;
14 for(var k = 0; k < g_markerArraylength; k++){
15 if(g_markerArray[k] .title == wanted){
16 marker = g_markerArray[k];
17 }
18 }
19 Sort the quantity according to outlier detection and assign new marker symbol:
20 if(cell != null){
21 if(cell < lowSigmaValue){
22 marker.setIcon("images/dark-dot.png");
23 marker.setShadow("images/shadow.png");
24 }else if(cell > highSigmaValue){
25 marker.setIcon("images/light-dot.png");
26 marker.setShadow("images/shadow.png");

51 CHAPTER 6. IMPLEMENTATION

27 }else if((cell >= lowSigmaValue)
28 && (cell <= highSigmaValue)){
29 marker.setIcon("images/red-dot.png");
30 marker.setShadow("images/shadow.png");
31 }else{
32 marker.setIcon("images/grey.png");
33 marker.setShadow("images/shadow.png");
34 }
35 }else{
36 marker.setIcon("images/grey.png");
37 marker.setShadow("images/shadow.png");
38 }
39 }
40 }

7. Testing

7.1. Surveillance of implementation
The implementation of the application has been monitored constantly during the creation pro-
cess. Because of the rather developed interaction of the system components on the separated
architectural locations (according to chapter 5.2), the testing was done from small to big scale.
All testing levels had in common that they used an identical test database on the pg.ifi.uzh.ch
server. This database was created according to the design in section 5.4 and filled with 54’489
measurements with corresponding dimension table parameters from a first data delivery ’Roh-
daten_Dürrfutter_2005-2009_mit PLZ’ handed over as excel spreadsheet.

7.1.1. Single functionality
When it comes to the development of the server (PHP) and client (JavaScript) scripts, the trace-
able execution required always a browser as environment and a HTML file as a medium. Any
new functionality was first implemented and executed in a stand-alone environment according
to its purpose. In this sense the pure PHP features, like ’connect and query the database’ or
’transform some query result into a XML’, could be tested in separate before including them
into the online application where their execution is triggered indirectly by JavaScript. This has
the advantage that the results or errors, which would later be catched by JavaScript, can be in-
spected at once by printing them on some intermediate HTML page. Also the JavaScript feature
are tested in separate by using an own HTML output file. But next to the possibility to display
result values on the screen, this browser script brings also along the alert functionality, where
popups with variable content can be set and called at anytime during the algorithm’s runtime.
These alert messages can be perfectly used to follow the processes and check its internal values.

In the case of creating the database or simply verifying database queries or table contents, the
PostgreSQL client interface pgAdmin III, Version 1.12.03 was used to address the database
server and execute SQL queries. Larger, repetitive SQL transactions, like the loading of the
data were simplified by embed the involved queries into a Java program, from where they were
send to the server by using the Java-Database interface JDBC.

7.1.2. Module
On the module level, the focus was on the proper interconnection of the components, especially
by the use of the Asynchronous JavaScript and XML (AJAX), and the right visual appearance
in the online application. Therefore, the output medium was the final HTML web page itself,
but for testing reasons in different browsers. It this state of testing, the web developer has no
longer direct access to the server results, since they will not be visually displayed until they got
processed by JavaScript. So, the JavaScript alert functionality has an even bigger scope than
before, by catching and displaying the server’s responses. In addition, it has to be taken care

53 CHAPTER 7. TESTING

of that the server script responses are also covering reasonable error messages in failure cases,
which can be alerted by JavaScript as soon as they are loaded on the client.

7.1.3. System
In the end, the complete application system was brought to trial any time a new feature or
module was included, to check whether all components were functioning in parallel or in inter-
connection as thought. This test was not only applied on different browsers, but also a second
test version, online available on a second HTTP server could be used in this case.

7.1.4. Testing environment

HTTP Server

Firefox 4.0

Internet Explorer
9.0.8112.16421

Apache 2.2.17 with
OpenSSL 0.9.80
on the localhost

Apache/2.2.16 at
www.feed-alp.admin.ch

Win32 Win32

Win32

PostgreSQL 8.4.8
on pg.ifi.uzh.ch

(database s0472098)

PostgreSQL 8.4.8
on pg.ifi.uzh.ch

(database lims_map)

BrowserDatabase server

Linux Debian

 Single functionality testing
 Module testing
 System testing

 System testing

 System testing

 Single functionality testing
 Module testing
 System testing

Identical DB

Figure 7.1.: The technical environment during the implementation and testing phase of the
Swiss Feed Database 2.0.

7.2. Application practice
Next to the tests to guarantee a correct implementation, a field test, where the final end user
is checking the application for practical approach is needed. This test has not yet taken place.
Only short demonstrations and brief feedbacks have been exchanged between developer and
user. So, this test will have to be catched up later, after this theses are concluded, maybe with
the effect that some of the implemented functionalities will be rewritten.

8. Maintenance and outlook
This last technical chapter is about the future handling of the now developed Swiss Feed
Database Version 2.0. It includes, next to the pure support of the new existing implementa-
tion, also annotation to future developments in or for the application.

8.1. Updates
The maintenance of the current implementation centres mainly on the adjustment of its compo-
nents to future developments and updates. This starts with the ’internal’ components (HTML,
PHP, JavaScript), where especially the JavaScripts scripts and the included Ajax have to be held
up-to-date, since they are running on some clients, where they are dependent on the surround-
ing browser technology. But also the more ’static’ components like the PHP server script or the
basic HTML web page should be adapted to the newest possibilities for a modern exposition.
Furthermore, a special focus has to be brought on the ’external’ components (Google Maps
’mapping’ & ’geocoding’, Google Visualization). Google will constantly enhance its products
together with the public interfaces, like the APIs that are used in this application. Therefore it
is important to always keep on track with this updates and to adapt them to the present imple-
mentation.

8.2. Future data input
An additional point will be to elaborate a proper data exchange for future data imports. It starts
with a verification of the database design and requests the development of a more restricted
sample description schema including a predefined parallel namespace in at least German and
French. After this, the data loading process could be implemented into an additional web access,
where the involved laboratories can load their data directly.

8.3. Future features and adaptations
Finally, the present application can and should be expanded to new functionalities or different
initial states. Some suggestions basing on the current implementation will be listed here:

• The compilation of the parameter’s <select> fields in the input form of the web page can
be set up at own preferences. The implementation of this part was specifically engineered
for being easily adoptable. Any parameter, which is stored in the database as own attribute
can be used as source for a new field. Therefore, only the PHP instructions in the HTML
start page needs to be changed to the new amount and the new properties of the <select>
fields, all constitutive operations like ’creating proper SQL queries’ will be handled by
the system. Further information including the instructions are collected in section 6.3.1.

55 CHAPTER 8. MAINTENANCE AND OUTLOOK

• The actual application is held in a mixture of English web surface and German database
content. One further development would be to establish a multi-language functionality,
not only in the data content (as requested in the previous section 8.2) but also in the web
page and in its access to the corresponding database attributes.

• The map has not yet fully tabbed its potential. Especially one functionality, supported
by Google Maps could be of interest for an agricultural online application: it is possible
to embed one or several custom maps as background to the Google map. In this sense,
an own map with agricultural information, originating from the GEOSTAT project of the
federal office of statistics [Geostat 1994], could be used instead of a normal earth surface
background.

9. Summary

9.1. Database system with geographical information

In this presented theses, the construction of the application system (database plus online appli-
cation as user interface) was the main topic. By doing so, the actual specialty of implementing
a database based on geographical information was implied together with the surrounding tasks.
Now, in a brief summary, the different stations in including geographical information will be
revisited more explicit.

The first step was to design a database that includes into the stored information also a geo-
graphical dimension. Derived from the expected data input, the new database of the Swiss Feed
Database project was equipped with the dimension table d_origin, which memorises all distinct
locations of the sample’s origin by saving its address and altitude level information (chapter
5.4).
In order to display this locations later on a map, the so far descriptive information were ex-
panded by the attributes latitude and longitude, which are specifying the exact position of every
location. This, mostly unknown, coordinates will be collected later on by the embedded Google
Maps ’geocode’ service, where descriptive address information can be transformed into corre-
sponding coordinates by web request (chapter 6.3.3).

In a next step, the user input of the online application was developed, with the purpose that the
database and its measurements can be filtered, according to an interactive selection, before they
will be applied on predefined output algorithms (chapter 5.1). Therefore several HTML <select
multiple> elements were filled with options originating from selected attributes of the database.
In addition, all select fields are linked, so that the options of one field are always dependent on
the selection of the previous one (fig. 9.1). The geographical information is represented by two
select fields with the content of the attributes d_origin.canton_de and d_origin.city_altitude,
with a linked property so that if a specific canton is chosen, only valid altitude levels will be
displayed in the next select field.

Figure 9.1.: Final presentation of the selection part in the Swiss Feed Database 2.0.

57 CHAPTER 9. SUMMARY

One major point was the implementation of dynamical SQL queries, since the FROM and
WHERE parts needs to be generated according to the chosen options. This requires a distri-
bution of information across several select fields (chapter 6.3.1). The applied solution is using
the server script on one hand to distribute the information before loading the page and a browser
script algorithm on the other hand to generate the SQL queries in runtime. Thereby, the server
script is constructed in a way, so that the combination of parameters for the input selection can
be changed according to own preferences.
Another point was the construction of an interactive web page architecture with only one HTML
file in the centre. In order to gather information from the database even after the page is loaded
on the client, the Asynchronous JavaScript and XML object (Ajax) had to be used to establish
the required connections (chapter 5.2.5).

The main step was then to prepare the output of the online application. Therefore, a set of six
basic operations were carved out of the ongoing scientific research and used to elaborate parallel
algorithms for the final output (chapter 4).
As presented in table 9.1, the output of operation 5 specifically covers the geographical infor-
mation by illustrating the spatial distribution of involved samples on a customised map. In order
to gain this result, Google Maps with its map providing service had to be embedded into the
application. The empty map structure is then to be filled with the required sample information,
among them latitude and longitude, from the database (chapter 6.3.4).

In a final step, additional element-connecting features on the loaded page were developed to
allow the user an interactive reading of results (chapter 6.3.6). It is in this interactivity, where
the geographical information demonstrate its central role in the Swiss Feed Database. Every
selection of the surrounding output units is visually linked to the map, whenever a connection
to a single sample can be established:

• Operation 6: When a sample in the list gets selected, the corresponding location will be
indicated on the map by showing the associated infowindow.

• Operation 4: When a measurement in the scatter chart gets selected, the corresponding
sample will be indicated on the map, again, by showing the associated infowindow.

• Operation 2: The distribution of the samples into the sigma-dependent subsets will be
visualised by colouring the locations on the map in a corresponding way as soon as a
nutrient in the aggregation table is selected.

Concluding this summary, it can be said that the geographical information are playing a crucial
part in many aspects of the presented implementation. Although the embedding of a Google map
for an appropriate illustration of locations was the desired intention in the development process,
several preliminary arrangements in the database and the application had to be covered first. In
doing so, many interesting opportunities opened, regarding for instance the ’geocode’ service
or the highly linkable interactivity in JavaScript. There is still some margin left to expand the
Swiss Feed Database Version 2.0. but the basic installation and functionality is hereby set.

9.1. DATABASE SYSTEM WITH GEOGRAPHICAL INFORMATION 58

OPERATION OUTPUT UNIT

1: Computation of the aggregate values count, minimum,
maximum, average, standard deviation (of a population) of the
involved measurements.

Implemented as a HTML <table>, which gets created
and filled by a PHP script. The data origins directly from the
database.

2: Computation of the aggregate value average in sigma-
dependent subsets.

Implemented as a HTML <table>, which get filled by
JavaScript, when clicking on the corresponding nutrient 1. As
data, the sample list in the web page is used.

3: Computation of the aggregate value average for every
distinct temporal value (= development of mean value over
time).

Implemented as a Google Visualisation line chart, cre-
ated by JavaScript after PHP returns the corresponding mean
values.

4: Enlistment of all involved measurements with temporal
information (= distribution of values over time).

Implemented as a Google Visualisation scatter chart (equals
line chart without connection lines), created by JavaScript
after PHP returns the corresponding measurement values.

5: Enlistment of all involved measurements with information
about their origin (= distribution of values in space).

Implemented as a Google Maps map, created by JavaScript
(in combination with the sample list) after PHP returns the
corresponding sample and measurement values.

6: Enlistment of all involved measurements with their parame-
ter quantities (= access to original data).

Implemented as a Google Visualization table, created by
JavaScript (in combination with the map) after PHP returns
the corresponding sample and measurement values.

Table 9.1.: Composition of the application output.

A. Code appendix

A.1. Start pages

Listing A.1: feeddb-start.php
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3 <html xmlns="http://www.w3.org/1999/xhtml">

<head>
5 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<meta http-equiv="cache-control" content="no-cache">
7 <meta http-equiv="pragma" content="no-cache">

<link rel="stylesheet" href="styles-feeddb.css" type="text/css">
9

<script type="text/javascript" src="http://maps.google.ch/maps/api/js?
sensor=true"></script>

11 <script type="text/javascript" src="https://www.google.com/jsapi"></script
>

13 <script type="text/javascript" src="jsA_global-variables.js"></script>
<script type="text/javascript" src="jsB_ajax-object.js"></script>

15 <script type="text/javascript" src="jsC_loader.js"></script>
<script type="text/javascript" src="jsD_sql-from-where.js"></script>

17 <script type="text/javascript" src="js1_update_selectfield.js"></script>
<script type="text/javascript" src="js2_result_coordinator.js"></script>

19 <script type="text/javascript" src="js3_result_list-map.js"></script>
<script type="text/javascript" src="js4_result_diagram.js"></script>

21 <script type="text/javascript" src="js5_result_aggregate.js"></script>
<title>Swiss Feed Database 2.0.</title>

23 </head>

25 <body>

27 <!-- Block with settings of included selection parameters -->
<?php

29 require("class-selectfield.php");
require("pg-dbinfo.php");

31 $conn=pg_connect(’host=’.$host.’ port=’.$port.’ dbname=’.$database.’ user
=’.$username.’ password=’.$password.’ sslmode=require’);

if (!$conn) {
33 die();

}
35

//--1-- instanciate select Fields:
37 $feed = new selectField("feed[]");

$feed->setOriginTable("d_feed");
39 $feed->setOriginColumn("d_feed.name_de");

$feed->setJoinToFactTable("id_feed_fkey = feed_key");
41 $feed->doInitialQuery($conn);

A.1. START PAGES 60

43 $drying = new selectField("drying[]");
$drying->setOriginTable("d_quality_parameters");

45 $drying->setOriginColumn("drying_condition_de");
$drying->setJoinToFactTable("id_quality_fkey = quality_key");

47

$nutrient = new selectField("nutrient[]");
49 $nutrient->setOriginTable("d_nutrient");

$nutrient->setOriginColumn("abbreviation_de");
51 $nutrient->setJoinToFactTable("id_nutrient_fkey = nutrient_key");

53 $canton = new selectField("canton[]");
$canton->setOriginTable("d_origin");

55 $canton->setOriginColumn("canton_de");
$canton->setJoinToFactTable("id_origin_fkey = origin_key");

57

$altitude = new selectField("altitude[]");
59 $altitude->setOriginTable("d_origin");

$altitude->setOriginColumn("city_altitude");
61 $altitude->setJoinToFactTable("id_origin_fkey = origin_key");

63 $time_year = new selectField("timeYear[]");
$time_year->setOriginTable("d_harvesttime");

65 $time_year->setOriginColumn("t_year");
$time_year->setJoinToFactTable("id_time_fkey = time_key");

67

$time_season = new selectField("timeSeason[]");
69 $time_season->setOriginTable("d_harvesttime");

$time_season->setOriginColumn("season_de");
71 $time_season->setJoinToFactTable("id_time_fkey = time_key");

73 //--2-- set sql and dependency parameter:
$feed->setNextSF($drying);

75 $drying->setNextSF($nutrient);
$nutrient->setNextSF($canton);

77 $canton->setNextSF($altitude);
$altitude->setNextSF($time_year);

79 $time_year->setNextSF($time_season);

81 pg_close($conn);
?>

83

<!-- HTML structure of the application page -->
85 <div class="page">

<div class="title">
87 <h1>

89 Historical analyses on Dürrfutter.

91 </h1>

</div>
93

<!-- ***** SELECTION ***** -->
95 <div class="selection">

<form name="testForm">
97 <div>

<h3>Feed</h3>

61 CHAPTER A. CODE APPENDIX

99 <?php $feed->printField(); ?>
</div>

101 <div>
<h3>Drying</h3>

103 <?php $drying->printField(); ?>
</div>

105 <div>
<h3>Nutrient</h3>

107 <?php $nutrient->printField(); ?>
</div>

109 <div class="SFseparator">
..
..
..
..
..
..
..
..
..
..
..
..

111 </div>
<div>

113 <h3>Canton</h3>

<?php $canton->printField(); ?>

115 </div>
<div>

117 <h3>Altitude</h3>

<?php $altitude->printField(); ?>

119 </div>
<div class="SFseparator">

121 ..
..
..
..
..
..
..
..
..
..
..
..
</div>

123 <div>
<h3>Harvest Year</h3>

125 <?php $time_year->printField(); ?>
</div>

127 <div>
<h3>Harvest Season</h3>

129 <?php $time_season->printLastField(); ?>
</div>

131 <div>
<h3>Diagram Type</h3>

133 <input type="radio" name="charttype" value="line" checked> Line (mean
values)

<input type="radio" name="charttype" value="scatter"> Scatter (pures

values)

135 <?php $time_season->printQueryButton(); ?>

</div>
137 </form>

</div>
139

<!-- ***** RESULT ***** -->
141 <div id="output">

<div class="result" id="result_list">
143 <div class="background" id="sidebar"></div>

<div class="overlay" id="loader_sidebar">
145

</div>
147 </div>

<div class="result" id="result_map">
149 <div class="background" id="map_canvas"></div>

<div class="overlay" id="loader_map">
151

</div>
153 </div>

A.1. START PAGES 62

<div class="result" id="result_diagram">
155 <div class="background" id="chart_div"></div>

<div class="overlay" id="loader_chart">
157

</div>
159 </div>

<div class="result" id="result_aggregate">
161 <div class="background" id="aggtable_space"></div>

<div class="overlay" id="loader_agg">
163

</div>
165 </div>

<div id="result_overall">
167

<h3>(1) Please select the parameter in the select fields from

left to right.

(2) Choose the diagram display possibilities:

169
Line: display of the mean values of all involved samples per

timestamp connected by a line.
171 Scatter: display of all involved samples according to there

timestamp.

173
(3) And then press the button "Show Results"...</h3>
</div>

175 </div>
</div>

177

<div class="impressum">
179 Swiss Feed Database Version 2.0, Facharbeit K. Kruse, August 2011

</div>
181

</body>
183 </html>

Listing A.2: styles-feeddb.css
1

/*Annotation: the size of every <div> element is set in relation to its
superior element by %. The highest element is the browser window (<html>
element) and therefore the page will adaped to the brower’s size */

3

body, html{
5 width: 99%;

height: 99%;
7 margin: 0px;

padding: 0px;
9 font-family: Verdana, Arial, Helvetica, sans-serif;

font-size: 11px;
11 text-align: left;
}

13

h1{
15 text-align: center;
}

17

h3{
19 font-weight: bold;

63 CHAPTER A. CODE APPENDIX

font-size: 100%;
21 color: #DC3C28;

margin-top: 2px;;
23 margin-bottom: -10px;

text-align: center;
25 }

27 .overlay{
position: absolute;

29 height: 0%;
width: 0%;

31 top: 45%;
margin-top: -25px;

33 left: 45%;
display: none;

35 opacity: 1;
}

37

.background{
39 position: relative;

height:100%;
41 width: 100%;

display: block;
43 overflow: auto;
}

45

.activdiv{
47 cursor: pointer;

background-color: #fff;
49 }

51 .page{
position: relative;

53 width: 100%;
height: 99%;

55 margin: 0px auto;
}

57

.title{
59 height: 80px; /* Dependent on the logo size */
}

61

.selection{
63 height: 23%;

width: 100%;
65 background-color: #FFFFFF;

border-bottom: 1px solid #000;
67 align: center;

overflow: auto;
69 }

71 .selection div{
float: left;

73 margin-left: 10px;

75 }

A.1. START PAGES 64

77 .selection select{
min-width: 100px;

79 margin-left: 2px;
margin-right: 2px;

81 margin-bottom: 2px;
}

83

.SFseparator{
85 height: 100%;

overflow: hidden;
87

}
89

#output{
91 width: 100%;

height: 65%;
93 overflow: auto;

opacity: 1;
95 }

97

#result_overall{
99 position: absolute;

width: 100%;
101 height: 100%;

text-align: center;
103 display: block;

opacity: 1;
105 }

107 /* the following subfield are forced into a two-dimensional distribution by
using the float attribute (erases the linebreak after the <div>) in a

relative position.*/

109 #result_list{
width: 30%;

111 height: 95%;
margin-top: 10px;

113 margin-right: 1%;
margin-bottom: 10px;

115 float: left;
position: relative;

117 }

119 #result_map{
width: 30%;

121 height: 95%;
margin-top: 10px;

123 margin-right: 1%;
margin-bottom: 10px;

125 float: left;
position: relative;

127 }

129 #result_diagram{
width: 37%;

131 height: 45%;

65 CHAPTER A. CODE APPENDIX

margin-top: 10px;
133 margin-right: 1%;

margin-bottom: 10px;
135 float: right;

position: relative;
137 }

139 #result_aggregate{
width: 37%;

141 height: 46%;
margin-top: 10px;

143 margin-right: 1%;
margin-bottom: 10px;

145 float: right;
position: relative;

147 }

149 .impressum{
position: absolute;

151 width: 100%;
clear: left; /* clears the ’float: left’ from above */

153 bottom: 0;
border-top: 1px solid #000;

155 padding: 5px;
}

Listing A.3: class-selectfield.php
<!-- Definition of Class Select Field -->

2 <?php
class selectField{

4 public $name=0;
public $sql_columnName;

6 public $sql_tableName;
public $sql_joinToFactTable;

8

public $result=0;
10 public $numrows=0;

12 public $nextSF=null;
public $prevSF=null;

14

16 public function selectField($fieldName){
$this->name=$fieldName;

18 }

20 public function setOriginColumn($columnName){
$this->sql_columnName = $columnName;

22 }

24 public function setOriginTable($tableName){
$this->sql_tableName = $tableName;

26 }

28 public function setJoinToFactTable($joinExpression){
$this->sql_joinToFactTable = $joinExpression;

A.1. START PAGES 66

30 }

32 public function setNextSF($nextSelectField){
$this->nextSF = $nextSelectField;

34 $this->nextSF->prevSF = $this;
}

36

public function doInitialQuery($connName){
38 $query = "SELECT DISTINCT ".$this->sql_columnName." FROM fact_table, ".

$this->sql_tableName." WHERE ".$this->sql_joinToFactTable." ORDER BY
".$this->sql_columnName;

$this->result = pg_query($connName, $query);
40 if(!$this->result){

die();
42 }

$this->numrows = pg_numrows($this->result);
44 }

46 public function printField(){
$next = $this->nextSF;

48 $sf_all_prevName = null;
$sf_all_nextName = null;

50

$array_tables;
52 $sql_all_tableName = null;

$sql_all_joinToFactTable = null;
54

$sql_select = "SELECT DISTINCT ".$next->sql_columnName;
56 $sql_orderBy = " ORDER BY ".$next->sql_columnName;

58 $visit = $next;

60 while($visit != null){
$sf_all_prevName .= "-sep-".$visit->name;

62 $array_tables[$visit->sql_tableName] = $visit->sql_joinToFactTable;

64 $visit = $visit->prevSF;
}

66

foreach($array_tables as $key => $value){
68 $sql_all_tableName.= "-sep-".$key;

$sql_all_joinToFactTable.="-sep-".$value;
70 }

72 $sf_all_prevName = substr($sf_all_prevName,5);
$sql_all_tableName = substr($sql_all_tableName,5);

74 $sql_all_joinToFactTable = substr($sql_all_joinToFactTable,5);

76 $visit = $next->nextSF;

78 while($visit != null){
$sf_all_nextName .= "-sep-".$visit->name;

80 $visit = $visit->nextSF;
}

82 $sf_all_nextName = substr($sf_all_nextName,5);

84 echo "<select name=’$this->name’ id=’$this->sql_columnName’ multiple=’

67 CHAPTER A. CODE APPENDIX

multiple’ size=10 onChange=’js1_getNewOptions(\"$sf_all_prevName\",
\"$sf_all_nextName\", \"$next->name\", \"$sql_all_tableName\",\"
$sql_all_joinToFactTable\", \"$sql_select\",\"$sql_orderBy\")’>

<option value=\"all\">ALL.....</option>
";
86 for($ri = 0; $ri < $this->numrows; $ri++) {

$row = pg_fetch_array($this->result, $ri);
88 if($row[0] != ""){

echo "<option value=\"",$row[0],"\">",$row[0],"</option>
";
90 }else{

echo "<option value=\"empty\">No Details</option>
";
92 }

}
94 echo "</select>";

}
96

public function printLastField(){
98 echo "<select name=’$this->name’ id=’$this->sql_columnName’ multiple=’

multiple’ size=10>

<option value=\"all\">ALL.....</option>
";

100 for($ri = 0; $ri < $this->numrows; $ri++) {
$row = pg_fetch_array($this->result, $ri);

102 echo "<option value=\"",$row[0],"\">",$row[0],"</option>
";
}

104 echo "</select>";
}

106

public function printQueryButton(){
108 $sf_all_prevName = $this->name;

110 $array_tables;
$sql_all_tableName = null;

112 $sql_all_joinToFactTable = null;

114 $visit = $this;

116 while($visit != null){
$sf_all_prevName .= "-sep-".$visit->name;

118 $array_tables[$visit->sql_tableName] = $visit->sql_joinToFactTable;

120 $visit = $visit->prevSF;
}

122

foreach($array_tables as $key => $value){
124 $sql_all_tableName.= "-sep-".$key;

$sql_all_joinToFactTable.="-sep-".$value;
126 }

$sql_all_tableName = substr($sql_all_tableName,5);
128 $sql_all_joinToFactTable = substr($sql_all_joinToFactTable,5);

130 echo "<input type=’button’ name=’showResults’ value=’Show Results’
onClick=’js2_getResult(\"$sf_all_prevName\", \"$sql_all_tableName
\",\"$sql_all_joinToFactTable\")’>";

}
132 }

?>

A.2. GENERAL JAVASCRIPTS 68

Listing A.4: pg-dbinfo.php
1 <?php
$host="pg.ifi.uzh.ch";

3 $port="5432";
$username=[-insert username-];

5 $password=[-insert password-];
$database=[-insert database name-];

7 ?>

A.2. General JavaScripts

Listing A.5: jsA_global-variables.js
1 // **** ajax-objects ****
var g_ajaxOne = null;

3 var g_ajaxTwo = null;
var g_ajaxThree = null;

5 var g_ajaxFour = null;

7 // **** google table ****
var g_sampleData = null;

9 var g_staticColCount = null;

11 // **** google maps ****
var g_map = null;;

13 var g_markerArray = null;
var g_bounds;

15 var g_infowindow;

17 // **** google diagram ****
var g_chartData = null;

19 var g_chart = null;

21 // **** HTML table (for cell highlightning) ****
var g_cellOne = null;

23 var g_cellTwo = null;
var g_cellThree = null;

25

// **** google table and HTML table ****
27 var g_nutrientArray = 0;

Listing A.6: jsB_ajax-object.js
1 /* AJAX: get the HTTP Object */

3 function jsB_getHTTPObject(){
if (window.ActiveXObject) return new ActiveXObject("Microsoft.XMLHTTP");

5 else if (window.XMLHttpRequest) return new XMLHttpRequest();
else {

7 alert("Your browser does not support AJAX.");
return null;

9 }
}

69 CHAPTER A. CODE APPENDIX

Listing A.7: jsC_loader.js
function jsC_loadLoader(loader, element){

2 var background = document.getElementById(element);
background.style.opacity = 0.7;

4 var loader = document.getElementById(loader);
loader.style.display= "block";

6 }

8 function jsC_unloadLoader(loader, element){
var background = document.getElementById(element);

10 background.style.opacity = 1;
var loader = document.getElementById(loader);

12 loader.style.display= "none";
}

Listing A.8: jsD_sql-from-where.js
1 function jsD_createFromWhereQuery(inputSelectFields, sql_all_tableName,

sql_all_joinToFactTable){

3 var array_inputField = inputSelectFields.split("-sep-");
var array_sql_table = sql_all_tableName.split("-sep-");

5 var array_sql_join = sql_all_joinToFactTable.split("-sep-");

7 var table_count = array_sql_table.length;
var field_count = array_inputField.length;

9

var sql_from = " FROM fact_table, " + array_sql_table[0];
11 var sql_where = " WHERE " + array_sql_join[0];

var sql_whereIn = new String();
13

for(var i= 1; i < table_count; i++){
15 sql_from += "," + array_sql_table[i];

sql_where += " AND " + array_sql_join[i];
17 }

19 for(var j= 1; j < field_count; j++){

21 var temp = document.forms["testForm"].elements[array_inputField[j]].
length;

var in_params = new String();
23 var is_null = false;

25 if(document.forms["testForm"].elements[array_inputField[j]].options[0].
selected==false){

for(var i= 1; i < temp; i++){
27 if(document.forms["testForm"].elements[array_inputField[j]].options[i].

selected==true){
if(document.forms["testForm"].elements[array_inputField[j]].options[i

].value == "empty"){
29 is_null = true;

}else{
31 in_params = in_params + "’,’"+document.forms["testForm"].elements[

array_inputField[j]].options[i].value;
}

33 }
}

A.3. MODULAR JAVASCRIPTS 70

35 if(in_params != 0){
in_params = in_params+"’";

37 in_params = in_params.substring(2);

39 sql_whereIn += " AND (" + document.forms["testForm"].elements[
array_inputField[j]].id + " IN (" + in_params + ")";

if(is_null == true){
41 sql_whereIn += " OR " + document.forms["testForm"].elements[

array_inputField[j]].id + " IS NULL)";
}else{

43 sql_whereIn += ")";
}

45 }else{
if(is_null == true){

47 sql_whereIn += " AND " + document.forms["testForm"].elements[
array_inputField[j]].id + " IS NULL";

}
49 }

}
51 }

var sql_from_where = sql_from + sql_where + sql_whereIn;
53 return sql_from_where;
}

A.3. Modular JavaScripts

Listing A.9: js1_update_selectfield.js
/* AJAX: send asynchronous query request to php */

2

function js1_getNewOptions(inputSelectFields, emptySelectFields,
outputSelectField, sql_all_tableName, sql_all_joinToFactTable,
sql_select, sql_orderBy){

4 var sql_from_where = jsD_createFromWhereQuery(inputSelectFields,
sql_all_tableName, sql_all_joinToFactTable);

var sql_query = sql_select + sql_from_where + sql_orderBy;
6 var query = "query=" + sql_query;

8 g_ajaxOne = jsB_getHTTPObject();
if (g_ajaxOne != null) {

10 g_ajaxOne.open("POST", "ajax-pg-options.php", true);
g_ajaxOne.setRequestHeader("Content-Type", "application/x-www-form-

urlencoded");
12 g_ajaxOne.setRequestHeader("Content-length", query.length);

g_ajaxOne.setRequestHeader("Connection", "close");
14 g_ajaxOne.send(query);

16 g_ajaxOne.onreadystatechange = function() { js1_setOptions(
outputSelectField, emptySelectFields);}

}
18 }

20

22

71 CHAPTER A. CODE APPENDIX

/* AJAX callback: get result and change to new options */
24

function js1_setOptions(outputSelectField, emptySelectFields){
26 /*readyState 4 = successfull finished transmission of return value. */

if(g_ajaxOne.readyState == 4){
28 var temp = g_ajaxOne.responseText;

var array = 0;
30 temp = temp.substring(4);

if(temp != ""){
32 array = temp.split("-sep-");

}
34

/* --1-- delete options of SelectField */
36 var s_count = document.forms["testForm"].elements[outputSelectField].

length;
document.forms["testForm"].elements[outputSelectField].options[0].

selected = false;
38 for(var j = s_count-1; j >= 1; j--){

document.forms["testForm"].elements[outputSelectField].options[j] = null
;

40 }

42 /* --2-- fill new options in SelectField */
var a_count = array.length;

44 if(a_count>0){
for(var k = 0; k < a_count; k++){

46 if(array[k]!=""){
document.forms["testForm"].elements[outputSelectField].options[k+1] =

new Option(array[k],array[k]);
48 }else{

document.forms["testForm"].elements[outputSelectField].options[k+1] =
new Option("No Details", "empty");

50 }
}

52 }

54 /* --3-- empty all following SelectFields */
var tempTwo = emptySelectFields;

56 var arrayTwo = tempTwo.split("-sep-");
var a2_count = arrayTwo.length;

58

for(var l = 0; l < a2_count; l++){
60 var s2_count = document.forms["testForm"].elements[arrayTwo[l]].length;

document.forms["testForm"].elements[arrayTwo[l]].options[0].selected =
false;

62 for(var j = s2_count-1; j >= 1; j--){
document.forms["testForm"].elements[arrayTwo[l]].options[j] = null;

64 }
}

66 }
}

A.3. MODULAR JAVASCRIPTS 72

Listing A.10: js2_result_coordinator.js
1 /* AJAX: send all asynchronous requests, required for the application

output: */

3 function js2_getResult(inputSelectFields, sql_all_tableName,
sql_all_joinToFactTable){

/* initiate "is loading" status: */
5 var resultdisplay = document.getElementById("output");

resultdisplay.style.opacity= 1;
7 var dummydisplay = document.getElementById("result_overall");

dummydisplay.style.display = "none";
9

jsC_loadLoader("loader_map", "map_canvas");
11 jsC_loadLoader("loader_sidebar", "sidebar");

jsC_loadLoader("loader_chart", "chart_div");
13 jsC_loadLoader("loader_agg", "aggtable_space");

15 /* get dynamic sql (by checking the select fields): */
var sql_from_where = jsD_createFromWhereQuery(inputSelectFields,

sql_all_tableName, sql_all_joinToFactTable);
17

/* store all selected nutrients in an array for later use in the tables (
if="ALL" selected) */

19 g_nutrientArray = new Array();
var n = 0;

21 var selectFieldLength = document.forms["testForm"].elements["nutrient[]"].
length;

23 if(document.forms["testForm"].elements["nutrient[]"].options[0].selected==
true){

for(var i = 1; i < selectFieldLength; i++){
25 g_nutrientArray[n] = document.forms["testForm"].elements["nutrient[]"].

options[i].value;
++n;

27 }
}else{

29 for(var i = 1; i < selectFieldLength; i++){
if(document.forms["testForm"].elements["nutrient[]"].options[i].selected

==true){
31 g_nutrientArray[n] = document.forms["testForm"].elements["nutrient[]"].

options[i].value;
++n;

33 }
}

35 }

37 /* Module M3: GOOGLE MAPS & GOOGLE TABLE (external asynchronous function
call): */

google.load("visualization", "1", {packages:["table"], callback: function
() {js2_sendMapListAjax(sql_from_where);}});

39

/* Module M4: GOOGLE DIAGRAM (external asynchronous function call): */
41 var chartType = "line";

if(document.forms["testForm"].elements[’charttype’][1].checked == true){
43 chartType = "scatter";

}
45 google.load("visualization", "1", {packages:["corechart"], callback:

73 CHAPTER A. CODE APPENDIX

function() {js2_sendChartAjax(sql_from_where, chartType);}});

47 /* Module M5: HTML-TABLE (internal asynchronous function call): */
g_ajaxFour = jsB_getHTTPObject();

49 if (g_ajaxFour != null){
g_ajaxFour.open("POST", "ajax-pg-result-aggregate.php", true);

51 g_ajaxFour.setRequestHeader("Content-Type", "application/x-www-form-
urlencoded");

g_ajaxFour.setRequestHeader("Content-length", sql_from_where.length+6);
53 g_ajaxFour.setRequestHeader("Connection", "close");

g_ajaxFour.send("query="+sql_from_where);
55 g_ajaxFour.onreadystatechange = function() { js5_setAggregate();}

}
57 }

59 /* Module M3: callback with internal asynchronous function call: */

61 function js2_sendMapListAjax(sql_from_where){
g_ajaxTwo = jsB_getHTTPObject();

63 if (g_ajaxTwo != null) {
// for working with POST & XML-Response:

65 // (1) here: g_ajaxTwo.setRequestHeader("Content-Type", "application/x-
www-form-urlencoded")

// (2) php: header("Content-type: text/xml");
67

g_ajaxTwo.open("POST", "ajax-pg-result-google.php", true);
69 g_ajaxTwo.setRequestHeader("Content-Type", "application/x-www-form-

urlencoded");
g_ajaxTwo.setRequestHeader("Content-length", sql_from_where.length+6);

71 g_ajaxTwo.setRequestHeader("Connection", "close");
g_ajaxTwo.send("query="+sql_from_where);

73 g_ajaxTwo.onreadystatechange = function() { js3_setMapList();}
}

75 }

77 /* Module M4: callback with internal asynchronous function call: */

79 function js2_sendChartAjax(sql_from_where, chartType){
g_ajaxThree = jsB_getHTTPObject();

81 if(g_ajaxThree != null){
if(chartType == "scatter"){

83 g_ajaxThree.open("POST", "ajax-pg-result-scatterdiagram.php", true);
}else{

85 g_ajaxThree.open("POST", "ajax-pg-result-linediagram.php", true);
}

87 g_ajaxThree.setRequestHeader("Content-Type", "application/x-www-form-
urlencoded");

g_ajaxThree.setRequestHeader("Content-length", sql_from_where.length+6);
89 g_ajaxThree.setRequestHeader("Connection", "close");

g_ajaxThree.send("query="+sql_from_where);
91 g_ajaxThree.onreadystatechange = function() { js4_setChart(chartType);}

}
93 }

A.3. MODULAR JAVASCRIPTS 74

Listing A.11: js3_result_list-map.js
1 /* Module M3 : callback to set the markers and the legend */

3 function js3_setMapList(){
/* readyState 4 = successfully finished transmission of return value. */

5 if(g_ajaxTwo.readyState == 4){
var resultXML = g_ajaxTwo.responseXML.documentElement;

7 var resultArray = resultXML.getElementsByTagName("marker");
var xml_length = resultXML.getElementsByTagName("marker").length;

9

/* delete old markers */
11 if (g_markerArray != null) {

for (i in g_markerArray) {
13 g_markerArray[i].setMap(null);

}
15 g_markerArray.length = 0;

}
17

/* delet old sidebar */
19 if (g_sampleData != null){

var prevRows = g_sampleData.getNumberOfRows();
21 if(prevRows != 0){

g_sampleData.removeRows(0,prevRows);
23 }

var prevColumns = g_sampleData.getNumberOfColumns();
25 if(prevColumns > g_staticColCount){

g_sampleData.removeColumns(g_staticColCount,prevColumns-1);
27 }

}
29

/* fill with new information: */
31 /* --1-- create "static" objects (map, bounds of map, infowindow & google

.datatable) */
g_bounds = new google.maps.LatLngBounds();

33

if(g_map == null){
35 g_map = new google.maps.Map(document.getElementById("map_canvas"), {

mapTypeId: google.maps.MapTypeId.TERRAIN});
g_markerArray = new Array();

37

g_infowindow = new google.maps.InfoWindow({
39 //size: new google.maps.Size(50,50),

position: latlng
41 });

43 g_sampleData = new google.visualization.DataTable();
g_sampleData.addColumn(’string’, ’LIMS-Nr.’);

45 g_sampleData.addColumn(’string’, ’Canton’);
g_sampleData.addColumn(’string’, ’PLZ’);

47

/* number of static columns (here: 3) for later use stored in global
variabel "g_staticColCount"! */

49 g_staticColCount = g_sampleData.getNumberOfColumns();

51 }
/* --1.2-- fill add all needed nutrient columns to the datatable: */

53 var tableColCount = g_staticColCount;

75 CHAPTER A. CODE APPENDIX

for(var n = 0; n < g_nutrientArray.length; n++){
55 g_sampleData.addColumn(’number’, g_nutrientArray[n]);

++tableColCount;
57 }

59 /* --2-- transform the samples into g_map markers and datatable row
entries; */

for(var j= 0; j < xml_length; j++){
61 /* --2.1-- create basic data for every marker/entry: */

var name = resultArray[j].getAttribute("name");
63 var middle = name.length/2;

var maskedName = name.substr(middle);
65 var x = new String();

for(var l= 0; l < middle; l++){
67 x += "X";

}
69 maskedName = x + maskedName;

71 g_sampleData.addRows(1);
g_sampleData.setRowProperty(j, "lims", name);

73 g_sampleData.setValue(j,0,maskedName);
g_sampleData.setValue(j,1,resultArray[j].getAttribute("canton"));

75 g_sampleData.setValue(j,2,resultArray[j].getAttribute("plz"));

77

/* --2.2.-- create content of marker and fill the datatable row at the
same time (iterate the nutrient quantities): */

79 var html = "LIMS-Nr. " + maskedName + "
" + resultArray[j].
getAttribute("plz") + " " + resultArray[j].getAttribute("city") + "
(" + resultArray[j].getAttribute("canton") + ")

<table frame
=\"void\">";

81 var nutrientArray = resultArray[j].getElementsByTagName("nutrient");
var nutrient_length = resultArray[j].getElementsByTagName("nutrient").

length;
83

var colCheckNumber = g_staticColCount;
85 for(var k= 0; k < nutrient_length; k++){

var quantity = parseFloat(nutrientArray[k].getAttribute("quantity"))
87 html += "<tr><td align=\"left\">Value ’"+ nutrientArray[k].getAttribute

("abbreviation") + "’:</td><td align=\"right\">"+ quantity + "</td
></tr>";

89 var colCheckFlag = true;
while((colCheckNumber < tableColCount) && colCheckFlag){

91 if(g_sampleData.getColumnLabel(colCheckNumber) == nutrientArray[k].
getAttribute("abbreviation")){

93 g_sampleData.setValue(j,colCheckNumber,quantity);
colCheckFlag = false;

95 ++colCheckNumber;
}else{

97 ++colCheckNumber;
}

99 }
}

101 html += "</table>";

A.3. MODULAR JAVASCRIPTS 76

103 /* --2.3.-- create marker with proper position (slightly shifted for
better display) and add name and content: */

if(resultArray[j].getAttribute("lat") != "error"){
105 var latitude = parseFloat(resultArray[j].getAttribute("lat")) +

parseFloat((Math.random()- Math.random())/1000);
var longitude = parseFloat(resultArray[j].getAttribute("lng")) + -

parseFloat((Math.random()- Math.random())/1000);
107

var latlng = new google.maps.LatLng(latitude, longitude);
109

111 var marker = new google.maps.Marker({
map: g_map,

113 position: latlng,
icon: "images/red-dot.png",

115 shadow: "images/msmarker.shadow.png",
content: html,

117 title: "LIMS-Nr. "+name
});

119 /* --2.4-- add position of marker to the bound and the marker to the
array -> see delet old marker */

g_bounds.extend(latlng);
121 g_markerArray[j] = marker;

123 /* --2.5-- create Listener to evey marker (infowindow-popup) */
google.maps.event.addListener(g_markerArray[j], ’mouseover’, function()

{
125 g_infowindow.setContent(this.content);

g_infowindow.open(g_map,this);
127 });

google.maps.event.addListener(g_markerArray[j], ’mouseout’, function()
{

129 g_infowindow.close(g_map,this);
});

131 }
}

133

jsC_unloadLoader("loader_map", "map_canvas");
135 jsC_unloadLoader("loader_sidebar", "sidebar");

137 /* --3-- print sidebar (sample enlistment) and create and popup-event-
listener */

sidebarTable = new google.visualization.Table(document.getElementById(’
sidebar’));

139 sidebarTable.draw(g_sampleData, {showRowNumber: true});

141 google.visualization.events.addListener(sidebarTable, ’select’,
function() {

143

var selection = sidebarTable.getSelection();
145 for (var i = 0; i < selection.length; i++) {

var item = selection[i];
147 }

var wanted = "LIMS-Nr. "+g_sampleData.getRowProperty(item.row, "
lims");

149 var g_markerArraylength = g_markerArray.length;

77 CHAPTER A. CODE APPENDIX

151 var marker = null;
for(var j = 0; j < g_markerArraylength; j++){

153 if(g_markerArray[j].title == wanted){
marker = g_markerArray[j];

155 }
}

157 google.maps.event.trigger(marker, ’mouseover’);
});

159

g_map.fitBounds(g_bounds);
161 }

}

Listing A.12: js4_result_diagram.js
/* Module M4: callback to create the line or the scatter chart. */

2

function js4_setChart(chartType){
4 /* readyState 4 = successfully finished transmission of return value. */

if(g_ajaxThree.readyState == 4){
6 var resultstring = g_ajaxThree.responseText;

if(resultstring != null){
8 resultstring = resultstring.substring(5);

}
10 var array = resultstring.split("-sep-");

var length = array.length;
12

/* either create new DataTable or empty the previous one: */
14 if(g_chartData == null){

g_chartData = new google.visualization.DataTable();
16 g_chartData.addColumn(’date’, ’Age’);

}else{
18 var prevRows = g_chartData.getNumberOfRows();

if(prevRows != 0){
20 g_chartData.removeRows(0,prevRows);

}
22 var prevColumns = g_chartData.getNumberOfColumns();

if(prevColumns > 1){
24 g_chartData.removeColumns(1,prevColumns-1);

}
26 }

28 /* traverse array with resultstupels and insert columns and rows: */
var nutrient = null;

30 var nullCount = 0;
var minDate = "3000-12-31";

32 var maxDate = "1000-12-31";

34 for(var i = 0; i < length; i++){
var secondArray = array[i].split("-s-");

36 if(secondArray[0] != nutrient){
g_chartData.addColumn(’number’, secondArray[0]);

38 nutrient = secondArray[0];
++nullCount;

40 }
if(secondArray[1] < minDate){

A.3. MODULAR JAVASCRIPTS 78

42 minDate = secondArray[1];
}

44 if(secondArray[1] > maxDate){
maxDate = secondArray[1];

46 }
var tempDate = new Date(secondArray[1].substring(0,4),(parseInt(

secondArray[1].substring(5,7),10)-1),secondArray[1].substring(8,10));
48

g_chartData.addRows(1);
50 g_chartData.setValue(i,0,tempDate);

g_chartData.setValue(i,nullCount,parseFloat(secondArray[2]));
52 if(chartType == "scatter"){

g_chartData.setRowProperty(i, "lims", secondArray[3]);
54 }

}
56

/* calculate the margins for the chart-hAxis (maxValue + 1 day, minValue
- 1 day) */

58 var hAxisMin = new Date(minDate.substring(0,4),(parseInt(minDate.
substring(5,7),10)-1),(parseInt(minDate.substring(8,10),10)-1));

var hAxisMax = new Date(maxDate.substring(0,4),(parseInt(maxDate.
substring(5,7),10)+1),(parseInt(maxDate.substring(8,10),10)+1));

60

jsC_unloadLoader("loader_chart", "chart_div");
62

if(chartType == "scatter"){
64 /* ---- draw scatter chart with event "click on scatter pont - open maps

marker infowindow" */
var g_chart = new google.visualization.ScatterChart(document.

getElementById(’chart_div’));
66 g_chart.draw(g_chartData, {chartArea: {width: "70%", height:"75%", left

:40},
title: ’Temporal Value Distribution [click on the dots to connect to

the map]’,
68 hAxis: {title: ’Timeline’, minValue: hAxisMin, maxValue: hAxisMax},

vAxis: {title: ’Quantity’},
70 //lineWidth: 0, /* scatter chart = line chart without line */

pointSize: 4
72 });

74 google.visualization.events.addListener(g_chart, ’select’,
function() {

76

var selection = g_chart.getSelection();
78 for (var i = 0; i < selection.length; i++) {

var item = selection[i];
80 }

var wanted = "LIMS-Nr. "+ g_chartData.getRowProperty(item.row, "lims")
;

82 var markerArraylength = g_markerArray.length;
var marker = null;

84 for(var j = 0; j < markerArraylength; j++){
if(g_markerArray[j].title == wanted){

86 marker = g_markerArray[j];
}

88 }
google.maps.event.trigger(marker, ’mouseover’);

79 CHAPTER A. CODE APPENDIX

90 });
}else{

92 /* ---- draw line chart without any additional events */
var g_chart = new google.visualization.ScatterChart(document.

getElementById(’chart_div’));
94 g_chart.draw(g_chartData, {chartArea: {width: "70%", height:"75%", left

:40},
title: ’Temporal Mean Value Distribution’,

96 hAxis: {title: ’Timeline’},
vAxis: {title: ’Quantity’},

98 curveType: ’none’,
lineWidth: 2,

100 pointSize: 1
});

102 }
}

104 }

Listing A.13: js5_result_aggregate.js
/* Module M5: callback to create the aggregation table */

2

function js5_setAggregate(){
4 /* readyState 4 = successfully finished transmission of return value.*/

if(g_ajaxFour.readyState == 4){
6 var temp = g_ajaxFour.responseText;

var array = 0;
8 var html = new String();

10 /* --1-- delete existing Aggregate Table */
var aggTableSpace = document.getElementById(’aggtable_space’);

12 while(aggTableSpace.firstChild){
aggTableSpace.removeChild(aggTableSpace.firstChild);

14 }

16 /* --2-- create new html output */
temp = temp.substring(5);

18 if(temp != ""){
array = temp.split("-sep-");

20

html+="<h2>Statistical information of nutrients</h2>
";
22 html+="<table border=\"2\" frame=\"void\" rules=\"all\">";

html+="<tr>";
24 html+="<th>Nutrient</th>";

html+="<th>Minimum</th>";
26 html+="<th>Maximum</th>";

html+="<th>Average</th>";
28 html+="<th> 2σ*</th>";

html+="<th>Count</th>";
30 html+="<th></th>";

html+="<th>avg(μ> +2σ)</th>";
32 html+="<th>avg(μ±2σ)</th>";

html+="<th>avg(μ< -2σ)</th>";
34 html+="</tr>";

36 var secondArray;
var nutrientNumber = 0

A.3. MODULAR JAVASCRIPTS 80

38 for(var i = 0; i < array.length; i++){
secondArray = array[i].split("-s-");

40

/*by use of global nutientNumber the html table (row) and the google
visualization table (col) are linkable */

42 while((secondArray[0] != g_nutrientArray[nutrientNumber]) && (
nutrientNumber < g_nutrientArray.length)){

nutrientNumber++;
44 }

46 html+="<tr>\n";
html+=" <th><div class=\"activdiv\" onclick=\"js5_highlightStatGroups

("+ (nutrientNumber+g_staticColCount) +","+(parseFloat(secondArray
[3])+parseFloat(secondArray[4])) + "," + (parseFloat(secondArray[3])
-parseFloat(secondArray[4])) + ")\" onmouseover=\"this.style.
backgroundColor=’#E0E6F8’;\" onmouseout=\"this.style.backgroundColor
=’#fff’;\">"+ secondArray[0]+"</div></th><td align=’right’>"

48 + secondArray[1]+"</td><td align=’right’>"
+ secondArray[2]+"</td><td align=’right’>"

50 + secondArray[3]+"</td><td align=’right’>"
+ secondArray[4]+"</td><td align=’right’>"

52 + secondArray[5]+"</td>";
html+="<td></td><td align=’right’ id=\""+nutrientNumber+"-under2Sigma

\"></td><td align=’right’ id=\""+nutrientNumber+"-2sigmaRange\"></td
><td align=’right’ id=\""+nutrientNumber+"-over2Sigma\"></td>";

54 html+="</tr>";

56 }
html+="</table>";

58 html+="
<p>* Standard deviation of a population</p>";

60 /* --3-- create new Aggregate Table */
jsC_unloadLoader("loader_agg", "aggtable_space");

62

var aggTable = document.createElement(’div’);
64 aggTable.innerHTML = html;

aggTableSpace.appendChild(aggTable);
66 }

}
68 }

70 /* Module M5+: additional feature triggered by click on nutrient */

72 function js5_highlightStatGroups(col, highSigmaValue, lowSigmaValue){
jsC_loadLoader("loader_agg", "aggtable_space");

74

var rows = g_sampleData.getNumberOfRows();
76 var g_markerArraylength = g_markerArray.length;

78 var sumUnderLowSigma = 0;
var sumOverHighSigma = 0;

80 var sumSigmaInterval = 0;
var countUnderLowSigma = 0;

82 var countOverHighSigma = 0;
var countSigmaInterval = 0;

84

for(var j = 0; j < rows; j++){

81 CHAPTER A. CODE APPENDIX

86 var wanted = "LIMS-Nr. " + g_sampleData.getRowProperty(j, "lims");
var cell = g_sampleData.getValue(j,col);

88

var marker = null;
90 for(var k = 0; k < g_markerArraylength; k++){

if(g_markerArray[k].title == wanted){
92 marker = g_markerArray[k];

}
94 }

if(cell != null){
96 if(cell < lowSigmaValue){

marker.setIcon("images/dark-high-dot.png");
98 marker.setShadow("images/msmarker.shadow.png");

sumUnderLowSigma += cell;
100 ++countUnderLowSigma;

}else if(cell > highSigmaValue){
102 marker.setIcon("images/light-high-dot.png");

marker.setShadow("images/msmarker.shadow.png");
104 sumOverHighSigma += cell;

++countOverHighSigma;
106 }else if((cell >= lowSigmaValue) && (cell <= highSigmaValue)){

marker.setIcon("images/red-dot.png");
108 marker.setShadow("images/msmarker.shadow.png");

sumSigmaInterval += cell;
110 ++countSigmaInterval;

}else{
112 marker.setIcon("images/grey.png");

}
114 }else{

marker.setIcon("images/grey.png");
116 }

}
118 var avgUnderLowSigma = sumUnderLowSigma/countUnderLowSigma;

var avgOverHighSigma = sumOverHighSigma/countOverHighSigma;
120 var avgSigmaInterval = sumSigmaInterval/countSigmaInterval;

122 /* delet old highlightning */
if(g_cellOne != null){

124 g_cellOne.style.backgroundColor= ’transparent’;
g_cellTwo.style.backgroundColor= ’transparent’;

126 g_cellThree.style.backgroundColor= ’transparent’;
}

128

/* set value */
130 g_cellOne = document.getElementById((col - g_staticColCount)+"-under2Sigma

");
g_cellOne.innerHTML = Math.round(avgUnderLowSigma * 1000)/1000;

132

g_cellTwo = document.getElementById((col - g_staticColCount)+"-2sigmaRange
");

134 g_cellTwo.innerHTML = Math.round(avgSigmaInterval * 1000)/1000;

136 g_cellThree = document.getElementById((col - g_staticColCount)+"-
over2Sigma");

g_cellThree.innerHTML = Math.round(avgOverHighSigma * 1000)/1000;
138

/* set current highlightning */

A.4. AJAX TRIGGERED PHP SCRIPTS 82

140 g_cellOne.style.backgroundColor= ’#819FF7’;
g_cellTwo.style.backgroundColor= ’#DC3C28’;

142 g_cellThree.style.backgroundColor= ’#F3E2A9’;

144 jsC_unloadLoader("loader_agg", "aggtable_space");
}

A.4. Ajax triggered PHP scripts

Listing A.14: ajax-pg-options.php
1 <?php

if (isset($_POST[’query’])){
3 require("pg-dbinfo.php");

5 $c = stripslashes($_POST[’query’]);

7 $conn=pg_connect(’host=’.$host.’ port=’.$port.’ dbname=’.$database.’ user
=’.$username.’ password=’.$password.’ sslmode=require’);

if (!$conn) {
9 echo "Error: no connection to database";

die();
11 }

$result = pg_query($conn, $c);
13 if(!$result){

echo "Error: query wasn’t successful (no result)";
15 }else{

$numrows = pg_numrows($result);
17 $array = pg_fetch_all_columns($result, 0);

$string = implode("-sep-", $array);
19

echo $string;
21 }

pg_close($conn);
23 }else{

echo "Error: AJAX didn’t transmit (POST-transport failed)";
25 }
?>

Listing A.15: ajax-pg-result-google.php
<?php

2 if(isset($_POST[’query’])){
$query_one = "SELECT DISTINCT lims_number, company_postal_code,

company_city, canton_de, latitude, longitude ".stripslashes($_POST[’
query’])." ORDER BY canton_de, company_postal_code, lims_number";

4 $query_two = "SELECT DISTINCT lims_number, abbreviation_de, quantity ".
stripslashes($_POST[’query’])." ORDER BY lims_number";

6 require("pg-dbinfo.php");

8 define("MAPS_HOST", "maps.google.ch");

10 define("MAPS_STATUS_OK", "OK");
define("MAPS_STATUS_ZERO", "ZERO_RESULTS");

83 CHAPTER A. CODE APPENDIX

12 define("MAPS_STATUS_OVER_QUERY_LIMIT", "OVER_QUERY_LIMIT");
define("MAPS_STATUS_REQUEST_DENIED", "REQUEST_DENIED");

14 define("MAPS_STATUS_INVALID_REQUEST", "INVALID_REQUEST");

16 function parseToXML($htmlStr){
$xmlStr=str_replace(’<’,’<’,$htmlStr);

18 $xmlStr=str_replace(’>’,’>’,$xmlStr);
$xmlStr=str_replace(’"’,’"’,$xmlStr);

20 $xmlStr=str_replace("’",’'’,$xmlStr);
$xmlStr=str_replace("&",’&’,$xmlStr);

22 return $xmlStr;
}

24

/* Start XML file, create parent node */
26 $dom = new DOMDocument("1.0");

$node = $dom->createElement("markers");
28 $parnode = $dom->appendChild($node);

30 /* Connection to PostgreSQL-DB */
$conn=pg_connect(’host=’.$host.’ port=’.$port.’ dbname=’.$database.’ user

=’.$username.’ password=’.$password.’ sslmode=require’);
32 if (!$conn) {

echo "Error: no connection to database";
34 die();

}
36

$result = pg_query($conn, $query_one);
38 $numrows = pg_numrows($result);

40 if (!$result) {
echo "Error: query wasn’t successful (no result)";

42 die();
}

44

46 /* Initialize URL and delay in geocode speed */
/* Example of possible URL-Request: http://maps.google.com/maps/api/

geocode/json?address=1600+Amphitheatre+Parkway,+Mountain+View,+CA&
sensor=true_or_false; */

48 $delay = 0;
$base_url = "http://" .MAPS_HOST. "/maps/api/geocode/xml?sensor=false";

50

header("Content-type: text/xml");
52

/* Iterate through the rows, geocoding each address and update values in
Database */

54 for($ri = 0; $ri < $numrows; $ri++) {
$row = pg_fetch_array($result, $ri);

56

$latitude = $row[’latitude’];
58 $longitude = $row[’longitude’];

60 /* add to xml: node for marker with attributes */
$node = $dom->createElement(’marker’);

62 $newnode = $parnode->appendChild($node);
$newnode->setAttribute("name",$row[’lims_number’]);

64 $newnode->setAttribute("plz", $row[’company_postal_code’]);

A.4. AJAX TRIGGERED PHP SCRIPTS 84

$newnode->setAttribute("city", $row[’company_city’]);
66 $newnode->setAttribute("canton", $row[’canton_de’]);

$newnode->setIdAttribute("name", true);
68

if(($latitude != null) && ($longitude != null)){
70 $newnode->setAttribute("lat", $latitude);

$newnode->setAttribute("lng", $longitude);
72

}else{
74

$geocode_pending = true;
76

while ($geocode_pending) {
78 $plz = $row["company_postal_code"];

$city = $row["company_city"];
80 $canton = $row["canton_de"];

$address = $plz + "+" + $city + ",+" + $canton + ",+Switzerland";
82

$request_url = $base_url . "&address=" . urlencode($address);
84 $xml = simplexml_load_file($request_url) or die("url not loading");

86 $status = $xml->status;

88 if (strcmp($status, MAPS_STATUS_OK) == 0) {
/* Successful geocode */

90 $geocode_pending = false;
$delay = 0;

92 $coordinates = $xml->result->geometry->location;

94 /* result format: Longitude, Latitude, (Altitude) */
$lat = $coordinates->lat;

96 $lng = $coordinates->lng;

98 $newnode->setAttribute("lat", $lat);
$newnode->setAttribute("lng", $lng);

100

/* $lat & $lng can be stored as float(10,6) aka numeric(10,6) with no
conversion: */

102 $update = "UPDATE d_origin SET latitude= ".$lat.", longitude= ".$lng
." WHERE company_postal_code= ".$address;

$update_result = pg_query($conn, $update);
104

if (!$update_result) {
106 /*...ceep on running, update it next time. */

}
108

} else if (strcmp($status, MAPS_STATUS_OVER_QUERY_LIMIT) == 0) {
110 /* sent geocodes too fast, set delay plus 0.1 seconds */

$delay += 100000;
112 } else {

/* failure to geocode */
114 $geocode_pending = false;

$newnode->setAttribute("lat", "error");
116 $newnode->setAttribute("error", $status);

}
118 usleep($delay);

}

85 CHAPTER A. CODE APPENDIX

120 }
}

122

$result2 = pg_query($conn, $query_two);
124 $numrows2 = pg_numrows($result2);

126 if (!$result2) {
echo "Error: query wasn’t successful (no result)";

128 die();
}else{

130 for($rj = 0; $rj < $numrows2; $rj++){
$row = pg_fetch_array($result2, $rj);

132 $nodeToAdd = $dom->getElementById($row[’lims_number’]);
if($nodeToAdd != null){

134 $node_two = $dom->createElement(’nutrient’);
$nutrient = $nodeToAdd->appendChild($node_two);

136 $nutrient->setAttribute("abbreviation", $row[’abbreviation_de’]);
$nutrient->setAttribute("quantity", number_format(floatval($row[’

quantity’]),3));
138 }

}
140 }

pg_close($conn);
142

echo $dom->saveXML();
144 }else{

echo "Error, AJAX didn’t transmit (POST-transport failed)";
146 }

?>

Listing A.16: ajax-pg-result-linediagram.php
<?php

2 require("pg-dbinfo.php");
if (isset($_POST[’query’])){

4 $c = stripslashes($_POST[’query’]);

6 /* checks if db-relation d_time and d_nutrient are in the query, else
insert them: */

if(strpos($c,"d_time") === false){
8 $c = str_replace("FROM", "FROM d_time", $c);

$c = str_replace("WHERE", "WHERE id_time_fkey = time_key", $c);
10 }

if(strpos($c,"d_nutrient") === false){
12 $c = str_replace("FROM", "FROM d_nutrient", $c);

$c = str_replace("WHERE", "WHERE id_nutrient_fkey = nutrient_key", $c);
14 }

16 $c = "SELECT abbreviation_de, (CASE WHEN t_day IS NULL THEN to_date(
t_year||’-01-01’, ’YYYY-MM-DD’) ELSE t_day END) AS day, t_year, avg(
quantity)".$c." GROUP BY abbreviation_de, t_day, t_year ORDER BY
abbreviation_de, day";

18 $conn=pg_connect(’host=’.$host.’ port=’.$port.’ dbname=’.$database.’ user
=’.$username.’ password=’.$password.’ sslmode=require’);

if (!$conn) {
20 echo "Error: no connection to database";

A.4. AJAX TRIGGERED PHP SCRIPTS 86

die();
22 }

24 $result = pg_query($conn, $c);
if(!$result){

26 echo "Error: query wasn’t successful (no result)";
}else{

28 $numrows = pg_numrows($result);

30 $string = null;
for($i = 0; $i < $numrows; $i++){

32 $row = pg_fetch_array($result, $i);
$string .= ’-sep-’.$row[0];

34 if($row[1] != null){
$string .= ’-s-’.$row[1];

36 }else{
$string .= ’-s-’.$row[2].’-01-01’;

38 }
$string .= ’-s-’.$row[3];

40 }
echo $string;

42 }

44 pg_close($conn);
}else{

46 echo "Error, AJAX didn’t transmit (POST-transport failed)";
}

48 ?>

Listing A.17: ajax-pg-result-scatterdiagram.php
<?php

2 require("pg-dbinfo.php");
if (isset($_POST[’query’])){

4 $c = stripslashes($_POST[’query’]);

6 // checks if db-relation d_time and d_nutrient are in the query (needed),
else insert them:

if(strpos($c,"d_time") === false){
8 $c = str_replace("FROM", "FROM d_time", $c);

$c = str_replace("WHERE", "WHERE id_time_fkey = time_key", $c);
10 }

if(strpos($c,"d_nutrient") === false){
12 $c = str_replace("FROM", "FROM d_nutrient", $c);

$c = str_replace("WHERE", "WHERE id_nutrient_fkey = nutrient_key", $c);
14 }

16 $c = "SELECT abbreviation_de, (CASE WHEN t_day IS NULL THEN to_date(
t_year||’-01-01’, ’YYYY-MM-DD’) ELSE t_day END) AS day, t_year,
quantity, lims_number".$c." ORDER BY abbreviation_de, day";

18 $conn=pg_connect(’host=’.$host.’ port=’.$port.’ dbname=’.$database.’ user
=’.$username.’ password=’.$password.’ sslmode=require’);

if (!$conn) {
20 echo "Error: no connection to database";

die();
22 }

87 CHAPTER A. CODE APPENDIX

24 $result = pg_query($conn, $c);
if(!$result){

26 echo "Error: query wasn’t successful (no result)";
}else{

28 $numrows = pg_numrows($result);

30 $string = null;
for($i = 0; $i < $numrows; $i++){

32 $row = pg_fetch_array($result, $i);
$string .= ’-sep-’.$row[0];

34 if($row[1] != null){
$string .= ’-s-’.$row[1];

36 }else{
$string .= ’-s-’.$row[2].’-01-01’;

38 }
$string .= ’-s-’.$row[3];

40 $string .= ’-s-’.$row[4];
}

42

echo $string;
44 }

46 pg_close($conn);
}else{

48 echo "Error, AJAX didn’t transmit (POST-transport failed)";
}

50 ?>

Bibliography 88

Bibliography
[Achour et al. 2011] Achour, M. et al. (2011) PHP Manual. URL:

http://www.php.net/manual/de/index.php [Last access:
2011-08-13].

[Agridea 2011] Agridea (2011) AGRIDEA, die Schweizerische Vereinigung für die
Entwicklung der Landwirtschaft und des ländlichen Raums. URL:
http://www.agridea.ch/ [Last access: 2011-08-29].

[Agroscope 2009] Agroscope Liebefeld-Posieux (2009) Schweizerische
Futtermitteldatenbank. URL: http://www.agroscope.admin.
ch/futtermitteldatenbank/index.html?lang=de [Last
access: 2011-08-13].

[Agroscope 2011] Agroscope (2011) Agroscope : Schweizer Forschung für
Landwirtschaft, Ernährung und Umwelt. URL: http:
//www.agroscope.admin.ch/org/index.html?lang=de
[Last access: 2011-08-29].

[Boessinger 2010] Boessinger, M. / Buchmann, M. / Python, P. (2010)
Dürrfutterproduktion : von den Besten kann noch gelernt werden. In:
Kreuzer, M. et al (Ed.) ETH-Schriftenreihe zur Tierernährung Vol. 33,
p. 141-143.

[Fox 2008] Fox, P. (2008) Creating a Store Locator with PHP, MySQL & Google
Maps. URL: http://code.google.com/intl/en/apis/
maps/articles/phpsqlsearch.html [Last access:
2011-08-13].
Still in Google Maps V2, but good tutorial for the first settings in the
architecture as well as the proper embedding of the map, sidebar,
marker and event listeners

[Fox/Stucker 2007] Fox, P. / Stucker, L. (2007) Using PHP/MySQL with Google Maps.
URL: http://code.google.com/intl/en/apis/maps/
articles/phpsqlajax.html [Last access: 2011-08-13].
Still in Google Maps V2, but good tutorial for the use of XML in PHP
and JavaScript

[Fox/Manshreck 2007] Fox, P. / Manshrek, T. (2007) Geocoding addresses with PHP/MySQL.
URL: http://code.google.com/intl/en/apis/maps/
articles/phpsqlgeocode.html [Last access: 2011-08-16].

http://www.php.net/manual/de/index.php
http://www.agridea.ch/
http://www.agroscope.admin.ch/futtermitteldatenbank/index.html?lang=de
http://www.agroscope.admin.ch/futtermitteldatenbank/index.html?lang=de
http://www.agroscope.admin.ch/org/index.html?lang=de
http://www.agroscope.admin.ch/org/index.html?lang=de
http://code.google.com/intl/en/apis/maps/articles/phpsqlsearch.html
http://code.google.com/intl/en/apis/maps/articles/phpsqlsearch.html
http://code.google.com/intl/en/apis/maps/articles/phpsqlajax.html
http://code.google.com/intl/en/apis/maps/articles/phpsqlajax.html
http://code.google.com/intl/en/apis/maps/articles/phpsqlgeocode.html
http://code.google.com/intl/en/apis/maps/articles/phpsqlgeocode.html

89 Bibliography

The PHP script part was used as guideline, even if the database
system was not the corresponding one

[Geostat 1994] Bundesamt für Statistik (1994) GEOSTAT : die Servicestelle des
Bundes für raumbezogene Daten.

[Google 2011a] Google (2011) Google Maps JavaScript API V3. URL:
http://code.google.com/intl/en/apis/maps/
documentation/javascript/ [Last access: 2011-08-13].
Collection of tutorial, examples and API library

[Google 2011b] Google (2011) The Google geocoding API. URL:
http://code.google.com/intl/en/apis/maps/
documentation/geocoding/ [Last access: 2011-08-13].
Short introduction into the geocoding service with Google Maps V3

[Google 2011c] Google (2011) Google chart tools. URL:
http://code.google.com/intl/en/apis/chart/
interactive/docs/index.html [Last access: 2011-08-22].
Collection of tutorial, examples and API library

[Kemper 2006] Kemper, A. / Eickler, A. (2006) Datenbanksysteme : eine Einführung.
6. Auflage.

[PgSQL 2010] The PostgreSQL Global Development Group (2010) PostgreSQL
9.0.4 Documentation. URL: http://www.postgresql.org/
docs/9.0/interactive/index.html [2011-08-13].

[Longley et al. 2011] Longley, P.A. et al. (2011) Geographic Information Systems &
science.

[Python 2010] Python, P. / Boessinger, M. / Buchmann, M. (2010) Teneur moyenne
en minéraux majeurs des fourrages secs ventilés selon l’altitude et la
situation géographique. In : ETH-Schriftenreihe zur Tierernährung
Vol. 33, p. 159-162.

[Refsnes Data 2011] Refsnes Data (2011) W3schools : the world’s largest web
development site. URL: http://www.w3schools.com [Last
access: 2011-08-13].

[SELFHTML 2007] SELFHTML e.V. (2007) SELFHTML Dokumentation : Version 8.1.2.
URL: http://de.selfhtml.org/ [Last access: 2011-08-13].

http://code.google.com/intl/en/apis/maps/documentation/javascript/
http://code.google.com/intl/en/apis/maps/documentation/javascript/
http://code.google.com/intl/en/apis/maps/documentation/geocoding/
http://code.google.com/intl/en/apis/maps/documentation/geocoding/
http://code.google.com/intl/en/apis/chart/interactive/docs/index.html
http://code.google.com/intl/en/apis/chart/interactive/docs/index.html
http://www.postgresql.org/docs/9.0/interactive/index.html
http://www.postgresql.org/docs/9.0/interactive/index.html
http://www.w3schools.com
http://de.selfhtml.org/

	1 Preface
	2 Introduction
	2.1 Swiss Feed Database Project
	2.2 Geographical information system (GIS)

	3 Analysis
	3.1 Swiss Feed Database, Version 1.0
	3.1.1 Application
	3.1.2 Data
	3.1.3 Database

	3.2 Input from AGROSCOPE and AGRIDEA
	3.2.1 AGRIDEA Dürrfutterenquête
	3.2.2 Data input
	3.2.3 Parameters and values
	3.2.4 Queries

	4 Requirement
	5 Design
	5.1 Graphical outline in HTML
	5.2 System architecture
	5.2.1 PostgreSQL
	5.2.2 PHP 5
	5.2.3 Expendable Hypertext Markup Language (XHTML)
	5.2.4 Javascript
	5.2.5 Asynchronous JavaScript and XML (AJAX)
	5.2.6 Google Maps
	5.2.7 Google Visualization

	5.3 System application flow
	5.3.1 Module INIT
	5.3.2 Module M1
	5.3.3 Module M2
	5.3.4 Module M3
	5.3.5 Module M4
	5.3.6 Module M5
	5.3.7 Module M5+

	5.4 Database design
	5.4.1 Objects and relations
	5.4.2 Triggers and Views

	6 Implementation
	6.1 Introduction
	6.2 Database
	6.2.1 Extraction, Transportation, Loading (ETL) of data

	6.3 Application
	6.3.1 Generating dynamic SQL
	6.3.2 Asynchronous client-server communication
	6.3.3 Geocode locations with Google Maps service in PHP
	6.3.4 Embed a map of Google Maps with information from the database
	6.3.5 Using Google Visualization
	6.3.6 Interactive result display with JavaScript event listeners

	7 Testing
	7.1 Surveillance of implementation
	7.1.1 Single functionality
	7.1.2 Module
	7.1.3 System
	7.1.4 Testing environment

	7.2 Application practice

	8 Maintenance and outlook
	8.1 Updates
	8.2 Future data input
	8.3 Future features and adaptations

	9 Summary
	9.1 Database system with geographical information

	A Code appendix
	A.1 Start pages
	A.2 General JavaScripts
	A.3 Modular JavaScripts
	A.4 Ajax triggered PHP scripts

