University of Department of Informatics
Zu riChUZH University of Zirich

Department of Informatics
Binzmihlestr. 14
CH-8050 Zlrrich

Phone. +41 44 635 43 11
Fax +41 44 635 68 09
www.ifi.uzh.ch/dbtg

UZH, Dept. of Informatics, Binzmilhlestr. 14, CH-8050 Ziirich Prof. Dr. Michael Béhlen
Professor
Jasmin Ebner Phone +41 44 635 43 33

Fax +41 44 635 68 09
boehlen@ifi.uzh.ch

Zirich, 24. Februar 2016

Bachelor’s Thesis
Topic: Temporal Integrity Constraints in Databases With Ongoing Timestamps

Data that is associated with time intervals is present in many real-word applications like em-
ployment contracts or insurance policies. In all these applications, it is not always possible to
specify a specific start and end date of the contract or policy. Instead, they often have spe-
cific start dates and are ongoing afterwards. For those applications, databases with ongoing
timestamps are required to store the data. In this project, we focus on relations with a set of
non-temporal attributes and a time attribute that contains ongoing, closed-open time intervals.

Integrity constraints are a basic functionality that a database system provides. Temporal inte-
grity constraints consider the time attribute when determining whether the constraint is fulfilled.
The two integrity constraints we focus on are temporal primary key and temporal foreign key
constraints. A temporal primary key, for instance, ensures that there do not exist two tuples in
the same relation with the same non-temporal attributes and overlapping time intervals.

Ongoing timestamps, i.e., ongoing time points and ongoing time intervals, represent different
timestamps for different current times and are therefore dependent on the current time. For in-
stance, the ongoing time point ¢* represents ¢ for those current times .., at which ¢, < t,
and a time point equal to the current time at all other current times. Thus, a relation that con-
tains ongoing timestamps in its time attribute represents different relations at different current
times. Temporal integrity constraints on such relations can therefore be fulfilled for some cur-
rent times, but violated for other current times. For instance, consider the two tuples ¢, and ¢,
with time intervals ;.7 = [2014, 2016 ") and ¢,.7" = [2018, 2020) as shown in Figure 1; assume
that both tuples have equal non-temporal attributes. When inserting tuple ¢. into a relation that
already contains tuple ¢,, a temporal primary key constraint is fulfilled as long as the current
time is less than or equal to 2018. Afterwards, the constraint is violated, as the time intervals
overlap. Thus, simply the advancing of time can cause that a fulfilled primary key constraint

Universityof 2
5 Zurich™

gets violated.

V1'} No PK violation | PK violayig
2020 3 &\\\\\‘ //
2018 t“

-

2016 :% t,.1

2014 ¢

4
|] | | | | |

—T—1 T
2014 2018

|

Figure 1: Primary Key (PK) violations can occur with ongoing timestamps when time
advances.

For databases with ongoing timestamps, we require that the ongoing primary key constraints
and foreign key constraints are fulfilled at every current time: An ongoing primary key cons-
traint is fulfilled if the temporal primary key constraint, as introduced above, is fulfilled across
all current times; analogously for an ongoing foreign key constraint: it is fulfilled if the tempo-
ral foreign key constraint is fulfilled across all current times. With these definitions of ongoing
constraints, the database system needs to check only once, when the tuple is inserted, up-
dated, or deleted, whether the ongoing constraint is fulfilled; no postponed violation of these
constraints can occur when time advances. Whenever an ongoing constraint is violated, the
modification that causes the violation is rejected. For instance, when tuple t; of our example
above should be inserted in the relation that already contains ¢, the insertion is rejected. The
reason is that the time intervals of ¢, and ¢, overlap at at least one current time, for instance,
2019.

In this bachelor’s thesis, the student should integrate ongoing primary and foreign key cons-
traints into the PostgreSQL kernel, so that the database system can provide native support for
them.

Tasks:

1. Formalize ongoing primary and foreign key constraints; this allows the student to develop
an algorithm for checking whether the constraint is fulfilled when a modification statement
is processed in the database system.

2. Integrate two new keywords 'ongoing primary key' and 'ongoing temporal key’ in the
parser of PostgreSQL.

3. Integrate ongoing primary key constraints into the PostgreSQL kernel.

(a) Understand how non-temporal primary key constraints are implemented in the
PostgreSQL kernel.

(b) Propose and implement an algorithm to check an ongoing primary key constraint
without using indexes on the time attribute.

(c) Use the following resolving strategy in case of a violation: reject the modification of
the tuple.

University of 3
Zurich™

4. Integrate ongoing foreign key constraints into the PostgreSQL kernel.

e Understand how non-temporal foreign key constraints are implemented in the Post-
greSQAL kernel.

e Propose and implement an algorithm to check an ongoing foreign key constraint
that is not based on indexes for the ongoing primary key.

e Use the following resolving strategy in case of a violation: reject the modification of
the tuple.

5. Empirically evaluate the performance of your approach with a solution that realizes these
constraints with user-defined triggers. Define these user-defined triggers for the evalua-
tion.

6. Write the thesis and include the formalization of the two integrity constraints, a precise
description of your approach for integrating them into the PostgreSQL kernel, and the
evaluation results and your conclusions (approximately 50 pages).

7. Present your thesis in a DBTG meeting (25 minutes presentation)

References

[1] Clifford, James and Dyreson, Curtis and Isakowitz, Tomas and Jensen, Christian S. and
Snodgrass, Richard Thomas. On the Semantics of Now in Databases. ACM Transactions
on Database Systems, 1997.

[2] K. Kulkarni and J.-E. Michels. Temporal Features in SQL:2011. SIGMOD Record,
41(3):34-43, 2012.

[3] Wei Li and Snodgrass, R.T. and Shiyan Deng and Gattu, V.K. and Kasthurirangan, A. Ef-
ficient sequenced temporal integrity checking. In Proceedings. 17th International Confe-
rence on Data Engineering., 2001.

Supervisor: Yvonne Mille (muelle@ifi.uzh.ch)
Start date: 1st March 2016
End date: 31st August 2016

Presentation date: TBA

University of Zurich
Department of Informatics

Prof. Dr. Michael Béhlen
Professor

