
Bachelor Thesis

Managing and Querying Derived Nutrient
Parameters in the Swiss Feed Database

Hannes Tresch
Sarnen, Switzerland

Matrikel-Nr. 08-715-534

supervised by
Prof. Dr. M. Böhlen and F. Cafagna

Department of Informatics,
University of Zurich

November 30, 2011

Abstract

The aim of the thesis has been to integrate the computation of derived nutrients into the
Swiss animal feed database. Derived nutrients are parameters calculated by a formula that
involves other nutrient parameters. The computation of these parameters replaces expensive
chemical lab analyses. In order to get a meaningful temporal distribution of derived nutrients,
an efficient method that supports time-varying regressions must be found.

For that, different SQL-queries, SQL-views and PL/pg SQL functions are implemented and
presented in this document. The most efficient solution is then used for the implementation
of an extension to the actual web application, so that all the functionalities that currently
exist for non-derived nutrients are to be supported for derived nutrients as well.

I

II

Zusammenfassung

Das Ziel dieser Arbeit bestand darin, eine automatisierte Berechnung von abhängigen
Nährwerten in die schweizerische Futtermitteldatenbank zu integrieren. Diese sogenannten
’abgeleiteten’ Nährwerte (engl. derived nutrients) werden nicht durch chemische Analysen er-
mittelt, sondern sind abhängig von anderen Nährwerten und werden mittels Formeln berech-
net. Um aussagekräftige Daten über die zeitliche Veränderung von abgeleiteten Nährwerten
zu erhalten, musste eine Methode ausgearbeitet werden, die eine zeitbezogene Regressions-
berechnung unterstützt.

Dazu werden in dieser Arbeit verschiedene Ansätze präsentiert, die mit Hilfe von SQL-
queries, SQL-views und PL/pg SQL -functions umgesetzt wurden. Die effizienteste Implemen-
tierung wurde dann in die aktuelle Web Applikation integriert, sodass alle Funktionalitäten
auch für abhängige Nährstoffe unterstützt sind.

III

IV

Contents

1 Introduction to the Swiss Feed Database 1

2 Task definition and overview 3

3 Database schemas 5

3.1 Schema Version 1.0 . 5
3.2 Schema Version 2.0 . 7

4 Analyses and classification of derived nutrients 9

4.1 Classification of derived nutrients . 9
4.2 Analyses of nutrient abbreviations and formula expressions 10

5 Design of Views, Queries and Algorithms 11

5.1 Materialized views . 11
5.1.1 Introduction to views in SQL . 11
5.1.2 Views with up-to-date values . 11

5.2 Standard SQL Implementation . 13
5.2.1 Queries for time-varying regressions 13
5.2.2 Queries specified on database schema Version 2.0 16
5.2.3 Explanation for performance problems 17

5.3 Window Functions . 19
5.4 Implementation of Algorithm in Java . 20
5.5 PL/pg SQL Functions . 24

5.5.1 Introduction to PL/pg SQL Functions 24
5.5.2 Implementation approach using a 3-dimensional-Array 24
5.5.3 Implementation approach using a string array 27
5.5.4 Implementation approach using cursor variables 28
5.5.5 Performance comparison of implementation approaches 31

6 Implementation of an extension to the Swiss Feed Database 33

6.1 Introduction to Swiss Feed Database web application Version 2.0 33
6.2 Overview of tasks for the integration of derived nutrients into the web application 36
6.3 Insertion of derived nutrients into the nutrient select field [Task 1] 38

6.3.1 Creation of table containing formulas 38
6.3.2 Query . 39
6.3.3 PHP / JavaScript Implementation . 40

6.4 Update select fields depending on selected derived nutrients [Task 2] 41
6.4.1 Query . 41

V

6.4.2 PHP / JavaScript Implementation . 42
6.5 Compute time-varying regressions [Task 3] . 43

6.5.1 PL/pg SQL Function for temporal results 43
6.5.2 PHP / JavaScript Implementation of temporal results 44

6.6 Compute derived nutrient values grouped by measurement samples [Task 4] . 46
6.6.1 Query . 46
6.6.2 PL/pg SQL Function for sample results 47
6.6.3 PHP / JavaScript Implementation for sample results 48

7 Summary 49

VI

List of Figures

1.1 Web application, Version 1.0 . 2
1.2 Web application, Version 2.0 . 2

3.1 Simplified schema of the Swiss feed database, Version 1.0 5
3.2 Schema of the Swiss feed database, Version 2.0 7

6.1 Selection part of the web application . 33
6.2 Sample enlistment . 34
6.3 Map with marked measurement locations . 34
6.4 Line-diagram and Scatter-diagram . 35
6.5 Aggregation table with statistical information 35
6.6 Visualization of task 1 concerning the integration of derived nutrients 36
6.7 Visualization of task 2 concerning the integration of derived nutrients 36
6.8 Visualization of task 3 concerning the integration of derived nutrients 37
6.9 Visualization of task 4 concerning the integration of derived nutrients 37

VII

VIII

List of Tables

4.1 Sample derived nutrients with their formulas 9
4.2 Classification of nutrient abbreviations . 10
4.3 Supported and not supported formula expressions 10

5.1 First combining pass considering the timestamps of table RP as fix 13
5.2 Second combining pass considering the timestamps of table ALA as fix 14
5.3 Calculated derived nutrient values for #RP_ALA 14
5.4 Comparison of estimated execution costs . 18
5.5 Approach with window functions lag() and lead() 19
5.6 Combining process I: Timestamps of nutrient ZUCK are considered as fix . . 21
5.7 Combining process II: Timestamps of nutrient TSO are considered as fix . . . 22
5.8 Illustration of 3-dimensional-array allcomp[][][] 24
5.9 Combining process in the 3-dimensional array 25
5.10 Illustration of string array allcomp[] . 27
5.11 Combining pass with two cursors (on the result set of ZUCK, resp. TSO) . . 28
5.12 Combining pass with two cursors (on the result set of ZUCK, resp. ETOH) . 28
5.13 Combing pass with ZUCK, TSO and ETOH using cursors 30
5.14 Performance comparison of PL/pg SQL functions 31

6.1 Table t_formulas containing derived nutrients (id 10-13: fictive nutrients) . 38
6.2 Extract of table t_formula_feed and d_feed 38

IX

X

Chapter 1

Introduction to the Swiss Feed
Database

This thesis is part of the Swiss Feed Database project. The aim of the project is to produce
a public service for companies, private farmers, and research institutions to get information
about several nutrient parameters of specific feed types. This information can be used for
an optimal and quality-conscious choice of feeds for a specific animal type. The database
contains currently information for 155 nutrients and over 600 animal feed types. These data
are collected through chemical analyses on feed sample measurements that are taken from all
parts of Switzerland. All the information about the nutrients is stored in a database and can
currently be accessed by a web application.1[1]

At the moment, the University of Zurich collaborates with Agroscope (Bundesamt für
Landwirtschaft) to design and implement new database techniques in order to improve the
analysis of the feed data. In particular, an analysis of time-varying feed data for a desired
period and specific biological or geographical parameters is required. Figure 1.1 shows the
actual web application, Figure 1.2 is a new web application that is currently being developed
at University of Zurich. In the new web application based on a new database design (Ver-
sion 2.0),0 information about nutrients for specific geographical conditions and desired time
periods can be retrieved and displayed in suitable form.

1The current web application can be accessed here: http://www.feed-alp.admin.ch/start.php

1

Figure 1.1: Web application, Version 1.0

Figure 1.2: Web application, Version 2.0

2

Chapter 2

Task definition and overview

The nutrient parameters of several different animal feeds are measured by chemical analyses.
Apart from these measured data values, some nutrient parameters are computed by the help
of a formula. This formula is an algebraic expression that involves a various number of
nutrient components. The computation of such derived nutrients replaces expensive chemical
lab analyses and results in approximate values.

Because it is hard to update all the derived nutrient values manually, a method that
computes derived nutrients automatically is needed. In addition to that, the history of de-
rived nutrient values should be stored in an appropriate way, so that based on the temporal
distribution of these values, meaningful information can be extracted.

So, the aim of the thesis can be summarized as follows:

• Integrate the computation of derived nutrients into the Swiss feed database and

• implement an extension to the web application that supports time-varying regressions.

The thesis in hand is structured as follows: In a first step, the schemas that are used in
this project are presented with some sample queries to get familiar with the database. After
that, the derived nutrients are analyzed, classified and possible methods to compute them
are presented.

Initially, it has been supposed to use views as a support to retrieve the values for de-
rived nutrients. Because of performance problems, an alternative solution with a procedural
language will be proposed.

Finally, some PL/pg SQL functions are defined that compute the values of derived nutri-
ents in a temporal way. With the help of these functions, an extension to the web application
(Version 2.0) is implemented, so that all functionalities of the web application will be sup-
ported for derived nutrients.

3

4

Chapter 3

Database schemas

3.1 Schema Version 1.0

The database schema of the Swiss feed database, Version 1.0, is shown in a simplified version
in Figure 3.1. The illustration contains just the most important relations to give an overview
on the database schema.

The most of the implementation approaches that are presented in chapter 5 are specified on
the second version of the database. Nevertheless, the schema of the first version is presented
here, because it is used for the first approach described in chapter 5.1.

Figure 3.1: Simplified schema of the Swiss feed database, Version 1.0

5

In contrast to the second version, which is presented in chapter 3.2, not all the single mea-
surement values with their corresponding temporal information are stored in the database.
Instead of storing all the measurement values, just aggregated values are stored for nutrients
on specified feeds. The most important tables from the simplified schema that is illustrated
in Figure 3.1. are described below:

tbl_datainput: The table tbl_datainput in the middle of the illustration in Figure 3.1
contains the measured data values. The measurement value is stored in the attribute
DI_Value together with the attribute DI_timestamp that indicates the measurement
time. As a foreign key acts for instance the attribute ref_FeedSpecNr that references
to a specific feed.

tbl_feed: This table contains all the feeds from which measurement samples are taken from.
Each feed has a name and an ID (F_FeedSpecNr) that acts as primary key.

tbl_components: In the table called tbl_components, the nutrient names and the corre-
sponding abbreviations are stored.

tbl_feedcomponents: This relation stores aggregated measurement values of different nu-
trient components that are measured in a various number of feeds.

tbl_formulas: The formulas of dervied nutrients are stored in the variable F_Expression of
the table tbl_formulas. The primary key ID_tbl_Formulas contains the abbreviation
of a derived nutrient. This abbreviation starts always with the number sign (#) to
indicate that the nutrient is derived.

To familiarize with this database schema, two basic sql queries are defined below:

Retrieve the formulas of all derived nutrients with their related abbreviation
select dist inct ref_tbl_formulas , f_expres s ion
from tbl_datainput , tbl_components , tbl_formulas
where re f_tbl_formulas not l ike "%const%" and tbl_datainput . ref_components =

id_tbl_components and tbl_formulas . id_tbl_formulas = ref_tbl_formulas
order by c_token_d ;

Retrieve the value of the nutrient C14:0 that is measured for the feed with ID=62
select tbl_components .∗ , tbl_feedcomponents .∗
from tbl_feedcomponents , tbl_components , tb l_uni t s where (re f_unitgroups=1 or

re f_unitgroups=0) and c_token_d l ike "C14 : 0 " and r e f_un i t s=id_tbl_units and

re f_feed=62 and tbl_feedcomponents . ref_components=id_tbl_components
order by c_outputorder ;

6

3.2 Schema Version 2.0

Figure 3.2 depicts the schema of the Swiss Feed Database (Version 2.0). The table that is
called fact_table is the center of the schema. It contains all the information of a mea-
surement that is taken from a specific sample. The measure_pk is the primary key of this
table. Apart from the measurement value (quantity) and the sample identification number
(lims_number) there are some other fields that act as foreign keys refering to other relations.

Figure 3.2: Schema of the Swiss feed database, Version 2.0

Because of the special representation of the table named time, this relation has to be
mentioned in detail: As illustrated in Figure 3.2 , it can be stated four different time details
in relation to a certain measurement. These are the Harvest Date, the Sample Date, the
Arrival Date and the Analysis Date. This means, a measurement can be related to more
than just one timestamp. The table time has an attribute named moment that identifies what
kind of date the time_key is representing. So, the table fact_table can contain up to four
tuples for the same measurement value, but with a different time_key. This ensures that all
the different details according the measurement time are stored in an efficient way.

7

8

Chapter 4

Analyses and classification of
derived nutrients

4.1 Classification of derived nutrients

The values of derived nutrient parameters are computed with algebraic expressions which
involve a various number of nutrient parameters. These nutrient parameters can be

• values that are measured by chemical analyses, or

• derived nutrients that are calculated based on other derived nutrient parameters.

The latter implies that such regression can also be recursive. Table 4.1 shows some sample
formulas of derived nutrients. The abbreviations of the nutrients in Table 4.1 are those of
the first database version. The derived nutrients in row 2, 4 and 5 correspond to a formula
that is recursive, whereas the derived components are in bold. In the square brackets after
the abbreviations, the measuring unit is defined, followed by the drying reference.1

ref_tbl_formulas f_expression

#Biotin[åµg_kg FS] TS[g_kg] * Biotin[åµg_kg TS] / 1000

#BE_Maisganzpfl[MJ_kg TS] 0.0196 * OS[g_kg TS]

#OS[g_kg TS] 1000 - RA[g_kg TS]

#C20:4n-6[g_kg FS] TS[g_kg] * C20:4n-6[g_kg TS] / 1000

#MPP_NEL[kg Milch_kg TS] NEL[MJ_kg TS] / 3.14

#NEL[MJ_kg TS] 0.9752 * (0.463 + 0.24 * q) * UE[MJ_kg TS]

Table 4.1: Sample derived nutrients with their formulas

The principle of recursive formulas is illustrated by the simple formula of the nutrient
named #BE_Maisganzpfl[MJ_kg TS] that is listed in the second row of the table above.

Start formula: 0.0196 * OS[g_kg TS]
↓

Expanded formula: 0.0196 * (1000 - RA[g_kg TS])

1TS = Trockenfutter, FS = Frischfutter

9

4.2 Analyses of nutrient abbreviations and formula ex-

pressions

The computation approaches that are presented in the chapters 5.4 and 5.5 are based on
the principle of a formula evaluator. This means, that all the abbreviations that occur in
a formula are extracted from this formula. For each abbreviation is then a corresponding
measurement value assigned, such that the computation can be performed and a derived
nutrient value results.

To extract all the involved abbreviations from the formula correctly, the structure of the
abbreviations has to be analyzed to define in what way the formulas have to be written. For
that, all the nutrient abbreviations of database schema 2.0 were analyzed and grouped in an
appropriate way. In Table 4.2, these groups are listed with a corresponding example.

group description abbreviation_de name_de
Group 1 just letters [A-Z] GLY Glycin
Group 2 [0-9] and [A-Z] C3OH Milchsäure
Group 3 ’_’-symbol is involved K_VA Retinol (Vitamin A)
Group 4 ’-’ -symbol is involved CU-PF Kupfer Pet-food

Table 4.2: Classification of nutrient abbreviations

In most cases, the abbreviation names are only composed of letters and numbers. In some
cases the hyphen- or the underscore-symbol is involved (group 3, resp. group 4). Specially
if the abbreviation contains a hyphen-symobl, special consideration is required such that the
hyphen is not recognized as a minus operator. For that, it is important to put a blank
(�) before or after each minus-operator that is involved in a formula. For all the other
mathematical operators, it doesn’t depend whether there is a blank between the operator
and the abbreviation. The list below illustrates this rule and shows the kind of formulas that
are supported by the PL/pg functions that are presented later in chapter 5.5.

1. K_VA^2�+�(CU-PF�-�C10)�*�C3OH�+�GLY�/�2
2. K_VA^2+(CU-PF-C10)*C3OH+GLY/2
3. K_VA^2+(CU-PF�-C10)*C3OH+GLY/2

Table 4.3: Supported and not supported formula expressions

The second expression in this list is not valid, because the expression CU-PF-C10 is
considered one nutrient. To split up the expression correctly in those base components, there
must be an associated blank for each minus-operator. This is the case in example formula
number 1 and and also in example formula number 3. However, the second formula is not
supported by the algorithm approaches that are described in the chapters 5.5.

For all the formulas of derived nutrients, the most common mathematical operators as ’+’,
’-’, ’*’, ’/’ and ’^’ are used. All these are supported by postgreSQL whereby the computation
of derived nutrients within pg SQL should be possible without any restrictions.[5]

10

Chapter 5

Design of Views, Queries and
Algorithms

5.1 Materialized views

5.1.1 Introduction to views in SQL

In a first approach, it was supposed to use views for the computation of the derived nutrients.
According to SQL terminology, a view can be defined as a virtual table that is derived from
other tables. So, a view defines a function from a set of base stored tables to a derived table.
Every time a view is referenced, this function is called and the virtual table is filled with
tuples. A view can also be called a virtual table, because the tuples that are representing
a view are not stored on a single table in the database. In contrast to that, in base stored
tables, all the tuples of a relation are stored in the database.[3][4]

5.1.2 Views with up-to-date values

In a first phase, database schema Version 1.0 was used to create for each derived nutrient a
view that is representing the up-to-date values for each feed type. So, it resulted in total 364
view definitions of different complexity. The query to create such a view is illustrated on the
next page by the example of a basic formula.

The basic idea to get the up-to-date value of a derived nutrient is to use for the calculation
the newest available data for each involved component of a given formula. The views are
specified on the database schema version 1.0 and are composed of the following attributes:

1. The first attriubte is the ID of the feed type (f_feedspecnr).

2. The second attribute is the derived nutrient value (value) that is calculated in the view
defintion as it is explained on the next page.

3. Additionally, the date that refers to a the specific derived nutrient value is specified in
the third attribute (timestamp).

The listing on the next page shows a simple example how such a SQL view of a derived
nutrient is created.

11

As an example, the derived nutrient with the abbreviation #BE_Raufutter is used:

Create a view that computes the up-to-date value of a derived nutrient

Derived nutrient: #BE_Raufutter[MJ_kg TS]
Formula: 0.0188 * OS[g_kg TS] + 0.0078 * RP[g_kg TS]
View attributes: f_feedspecnr value timestamp
Database schema: Version 1.0

1 create view BE_RaufutterMJ_kgTS as

2 select f_feedspecnr ,
3 (0 .0188 ∗
4 (select cast (value as numeric)
5 from OSg_kgTS
6 where OSg_kgTS . f_feedspecnr=tbl_feed . f_feedspecnr and value i s not null)
7
8 + 0.0078 ∗
9

10 (select cast (value as numeric)
11 from parameters , tbl_components , tbl_datainput
12 where r e f_feedspecnr=id_feed and id_feed=f_feedspecnr and ref_components=

id_tbl_components
13 and id_param=id_tbl_components and c_token_d=’RP ’ order by tstamp desc limit

1)
14)
15
16 as value ,
17
18 (select max(time_stamp)
19 from

20 ((select tstamp as time_stamp
21 from parameters , tbl_components , tbl_datainput
22 where id_param=id_tbl_components and id_feed=f_feedspecnr and f_feedspecnr=

re f_feedspecnr and id_tbl_components=ref_components and (c_token_d=
’RP ’) and value i s not null and re f_tbl_formulas=’#constant ’)

23
24 union a l l

25
26 (select timestamp as time_stamp
27 from OSg_kgTS
28 where tb l_feed . f_feedspecnr=OSg_kgTS . f_feedspecnr)) as max_view
29) as timestamp

30
31 from tb l_feed order by f_feedspecnr ;

As already mentioned, the calculation of the formula is performed with the newest avail-
able measurement values for each nutrient component. The formula that corresponds to the
considered derived nutrient is composed of two numerical and two nutrient components. The
nutrients that are involved are RP[g_kg TS] (Rohprotein) and OS[g_kg TS] (Organische
Substanz):

• The newest available value for the second nutrient component named RP[g_kg TS]

is retrieved in the subquery defined from line 10 to 13. This is done with the help
of the LIMIT-clause. The join in the WHERE-clause (id_feed=f_feedspecnr) of the
subquery guarantees, that for each feed just the corresponding data is used for the
computation of a derived value.

• The other nutrient component that occurs in the formula is OS[g_kg TS] and can be
identified as a derived component. This means that those values are stored in a view.
The subquery from line 4 to 6 shows how the value for a specific feed is retrieved from
a defined view.

12

In the select statement of the view definition above, the computation of the derived nutrient
named #BE_Raufutter[MJ_kg TS] is done. For that, the selected values for RP and OS
are used. This means that the formula (0.0188 * OS[g_kg TS] + 0.0078 * RP[g_kg TS]) is
computed with the selected OS- resp. RP-value.

Finally, for each feed type, the ID of the feed (f_feedspecnr), the computed derived
value and an associated timestamp is filled into the virtual table. The third attribute of the
view named timestamp, represents the date of the derived nutrient value. This timestamp
is the newest one of all the nutrient components of the formula. That can be done by a
max-aggregation over all the involved components (line 18).

5.2 Standard SQL Implementation

5.2.1 Queries for time-varying regressions

The views that are presented in the previous chapter contain just the up-to-date values of a
nutrient per each feed. In a next step, the views had to be adjusted, so that the history of
a specific derived nutrient can be stored. An approach how time-varying regressions can be
computed in a appropriate way is given in this sub-chapter.

The basic idea to get information of how the values of derived nutrients change over
time is the following: For the calculation of a derived nutrient parameter at a specific time,
we take measurement values of all involved components that have the same timestamp or
are even from the same measurement sample. But in order to get a meaningful historical
representation, we need more data values than just those that come from the same sample.

A possible solution to this problem is to take for all involved components the measurement
values that are the closest to each other according to their timestamp.

The basic idea of this approach is explained by the following example: Assume that we
have a derived nutrient with the abbreviation #RP_ALA that is calculated by the formula
(RP * ALA) / 10. In this case, we create for RP and ALA a table that contains all the
measurement values of the associated nutrient. The computing process of this example can
be structured in two parts, whereas in each part the timestamps of a different component are
in focus. These two parts are presented below:

1. Table 5.1 shows the first part, where the timestamps of RP are considered as fix. For
each row in table RP, we search for a value in the other component where the timestamp
is the closest to that of the RP value.

Table 5.1: First combining pass considering the timestamps of table RP as fix

The first result value in Table 5.1 would be calculated by the expression (3.1*10)/10.
The ALA-value from the second row is taken for the calculation, because the related

13

timestamp ’2010-03-01’ is the closest to the one in the first row of RP. This combinig
and computing procedure is repeated for all RP-values.

2. In a second step, the same procedure is performed for the case where the timestamps
of component ALA are considered as fix. This is illlustrated in Table 5.2.

Table 5.2: Second combining pass considering the timestamps of table ALA as fix

The first five rows that are returned in this computing process are result values from the first
computation pass where the timestamps of RP are considered as fix. The other five values
come from the computation where the timestamps of ALA are in focus. So, it can be stated
that a derived nurtient value is resulted for each timestamp that is present in one of those
two tables. Table 5.3 shows all these result values for the fictive nutrient #RP_ALA that is
calculated by the formula (RP * ALA) / 10. This result table is sorted by id_feed and by
timestamp and contains all the timestamps. If there is a value for ALA that has the same
timestamp as one of those in the RP value, this timestamp appears in the result table twice,
although these two result values are probably the same. In the given result Table 5.3 this is
the case in row 5 and 6.

id_feed value timestamp value calculated by :
1 3.72 2003-02-01 (12 * 3.1) / 10
1 3.10 2009-03-01 (3.1 * 10) / 10
1 3.40 2010-03-01 (10 * 3.4) / 10
1 5.10 2011-09-01 (3.4 * 15) / 10
1 7.50 2011-10-01 (5.0 * 15) / 10
1 7.50 2011-10-01 (15 * 5.0) / 10
2 9.10 2000-04-03 (6.5 * 14) / 10
2 9.94 2006-04-01 (14 * 7.1) / 10
2 1.136 2007-07-04 (16 * 7.1) / 10
2 1.136 2007-07-07 (7.1 * 16) / 10

Table 5.3: Calculated derived nutrient values for #RP_ALA

How the described procedure of computing derived #RP_ALA-values can be transformed
into a SQL Query is shown in the next listing. For that, two tables named RP and ALA are
created which represent sample nutrients. The query that is applied to the real data set is
shown afterwards.

14

Compute for each feed time-varying values of a derived nutrient

Derived Nutrient: #RP_ALA
Formula: (RP * ALA) / 10
Result attributes: id_feed value timestamp

1 (
2 (select RP. id_feed , (RP. value ∗ ALA. value) / 10 as value , RP. tstamp as timestamp

3 from RP, ALA
4 where RP. id_feed=ALA. id_feed and

5 ALA. tstamp
6 IN (
7 (select ALA2. tstamp
8 from ALA as ALA2
9 where RP. id_feed=ALA2. id_feed

10 order by abs (cast (ALA2. tstamp as date) − cast (RP. tstamp as date))
11 l imit 1)
12)
13 order by RP. id_feed)
14 union

15
16 (select ALA. id_feed as f , ALA. value ∗ RP. value as v , ALA. tstamp as t
17 from RP, ALA
18 where RP. id_feed=ALA. id_feed and

19 RP. tstamp
20 IN (
21 (select RP2. tstamp
22 from RP as RP2
23 where RP2. id_feed=ALA. id_feed
24 order by abs (cast (ALA. tstamp as date) − cast (RP2 . tstamp as date))
25 l imit 1)
26)
27)
28 order by id_feed , timestamp

29) ;

The query above that retrieves time-varying values for a derived nutrient called #RP_ALA
is described below:

1. From line 2 to 15, the first computation pass is done, where the timestamps of RP are
considered as fix. This is previously visualized in the Table 5.1.

(a) It retrieves the id_feed, the calculated value, and the timestamp of the RP
measurement that is used for the computation.

(b) In the subquery of the IN-clause (line 7 to 11), the timestamp of an ALA-measurement
is retrieved that is the closest to the one of the considered RP-measurement. This
is done by subtracting the timestamp values of the components that are consid-
ered. This guarantees that the ALA measurement is used, whose timestamp is
the closest to that of the considered RP-measurement. Instead of doing the sub-
traction of timestamps, the postgres date-function age(timestamp, timestamp)
could also be used to compare timestamps. [5]

2. From line 16 to 28, the second computation pass is done, where the timestamps of ALA
are considered as fix. This is visualized in the Table 5.2 and works in the same way as
previously described by the example of RP.

15

5.2.2 Queries specified on database schema Version 2.0

In a next step, the previously described query had to be adapted to the new database schema
(Version 2.0). In the relation fact_table of the database, all the data that is taken from
measurement samples is stored with the corresponding measurement time.

In the listing on the next page, the query to get the time-varying result values is defined
on the database schema version 2.0. In the first part of the query, the timestamps of the
first component are considered fixed. In the second query part, the timestamps of the second
component are considered as fix. In order to get a final result table, all these query parts are
put together with the UNION command.

Finally, the result table contains for each timestamp that appears in one of the involved
nutrient tables a corresponding derived nutrient value.

The adapted query is illustrated by the example of the (fictive) derived nutrient with
the formula TSO * ZUCK / 1000. The query in the next listing is just shown for the first
computation part, where the timestamps of component TSO are considered as fix, but works
accordingly for the other part.

Compute temporal derived nutrient values

Derived Nutrient (fictive): #TSO_ZUCK
Formula: TSO * ZUCK / 1000
Database schema: Version 2.0
Result attributes: id_feed time_key value

1 (select

2 TSO. id_feed , TSO. time_key , TSO. measurement ∗ ZUCK. measurement /1000 as value

3 from

4 (select measurement , id_sample , id_feed , tday , id_nutr ient , time_key
5 from d_nutrient , fact_table , d_time
6 where id_time=time_key and id_nutr ient=nutrient_key and d_nutrient .

abbreviat ion_de l ike ’TSO ’ and d_time .moment=2
7)
8 as TSO,
9

10 (select measurement , id_sample , id_feed , tday , id_nutr ient , time_key
11 from d_nutrient , fact_table , d_time
12 where id_time=time_key and id_nutr ient=nutrient_key and d_nutrient .

abbreviat ion_de l ike ’ZUCK’ and d_time .moment=2
13)
14 as ZUCK
15
16 where

17 TSO. id_feed=ZUCK. id_feed
18 and ZUCK. tday
19 IN (
20 (select ZUCK2. tday
21 from

22 (select id_feed , tday
23 from fact_table , d_time
24 where id_time=time_key and id_nutr ient=ZUCK. id_Nutrient

and d_time .moment=2 and

25 ZUCK. id_feed=id_feed
26)
27 as ZUCK2
28
29 where ZUCK. id_feed=ZUCK2. id_feed
30 order by abs (ZUCK2. tday − TSO. tday)
31 l imit 1
32)
33)
34) union [. . .]

16

The illustrated part of the query, where the timestamps of the nutrient named TSO are
defined as fix, works as follows:

• In the SELECT-clause, the time_key is defined, together with the calculated result
value named as value, and the id_feed.

• In the FROM-clause, the data for all the components that are involved in the derived
nutrient are defined.

• With help of the SQL IN clause it is defined that the ZUCK measurement value with
the closest timestamp to that of the TSO value is used for the calculation.

5.2.3 Explanation for performance problems

Unfortunately, the query outlined in the previous sub-chapter is not applicable to the given
problem. The query takes several minutes to retrieve the computed result values for a derived
nutrient that corresponds to a simple formula with only two involved nutrient components.1

The problem seems to be in the following join filter in the where-clause of the query:

”and ZUCK.tday IN([subquery])” (from line 19 in the listing on the previous page).

This where-condition that contains a subquery is used to guarantee that the ZUCK measure-
ment with the smallest difference (in relation to their timestamps) to the considered TSO
measurement is chosen for the computation. In order to calculate time-varying regressions of
derived nutrients with in a standard SQL implementation, this join-filter with the subquery
within the IN-clause is necessary.

With the help of the execution plan which can be generated in PostgreSQL with the
explain command, the weak spots of a specified query can be located. This execution plan,
also called query plan, includes the information about the estimated statement execution
costs.[5]

An extract of the execution plan for the problematic query is shown below.
1 Hash Join (cost =12898.47..281414500.24 rows =323245 width =40)

2 Hash Cond: (public.fact_table.id_feed = public.fact_table.id_feed)

3 Join Filter: (SubPlan 1)

4 -> Nested Loop (cost =0.00..48404.90 rows =5169 width =20)

5 -> Nested Loop (cost =0.00..21621.98 rows =6393 width =20)

6 [...]

7 -> Index Scan using d_time_pkey on d_time (cost =0.00..4.18 rows=1 width =8)

8 [...]

9 -> Hash (cost =12833.86..12833.86 rows =5169 width =24)

10 -> Hash Join (cost =386.70..12833.86 rows =5169 width =24)

11 Hash Cond: (public.fact_table.id_time = public.d_time.time_key)

12 -> Nested Loop (cost =122.04..12461.57 rows =6393 width =24)

13 [...]

14 -> Hash (cost =200.23..200.23 rows =5155 width =8)

15 [...]

16 SubPlan 1

17 -> Limit (cost =435.17..435.17 rows=1 width =4)

18 -> Sort (cost =435.17..435.21 rows =18 width =4)

19 Sort Key: (abs((public.d_time.tday - $0)))

20 -> Nested Loop (cost =235.41..435.08 rows =18 width =4)

21 -> Bitmap Heap Scan on fact_table (cost =235.41..305.88 rows =18

width =4)

22 Recheck Cond: ((id_feed = $2) AND (id_nutrient = $1))

23 -> BitmapAnd (cost =235.41..235.41 rows =18 width =0)

24 -> Bitmap Index Scan on index_f_feed (cost

=0.00..114.71 rows =6162 width =0)

25 Index Cond: (id_feed = $2)

1Example components: ZUCK: ~ 9000 tuples; TSO: ~ 60’000 tuples

17

26 -> Bitmap Index Scan on index_f_nut (cost =0.00..120.44

rows =6393 width =0)

27 Index Cond: (id_nutrient = $1)

28 -> Index Scan using d_time_pkey on d_time (cost =0.00..7.16 rows=1

width =8)

29 Index Cond: (public.d_time.time_key = public.fact_table.

id_time)

30 Filter: (public.d_time.moment = 2)

As estimated, the main reason for the efficiency problem in the described query seems to be
in the join filter of SubPlan 1 (line 3 of the execution plan above). The SubPlan 1 references
to the part of the query where the data is filtered with the condition that the timestamp of
the temporary table ZUCK must correspond with the timestamp that is retrieved from the
subquery within the IN-clause (from line 22 in the listing on the previous page).

The total estimated execution cost (measured in disk page fetches) for this query can be
read out from line number 1. The large part of this cost is caused by the mentioned join
filter. This total estimated cost value can be compared with that of a query where we have
just the join-condition on the two involved components (TSO.id_feed=ZUCK.id_feed).

query description total estimated execution cost
(in disk page fetches)

query from 5.2.2 without join filter condition
“ZUCK.tday IN([subquery])”

~ 35’000

query from 5.2.2 with join filter condition
“ZUCK.tday IN([subquery])”

~ 280’414’500

Table 5.4: Comparison of estimated execution costs

In the second case, where the restriction condition (from line 22 to 40 in the query on the
previous page) is obmitted, the total cost amounts about 35’000 disk page fetches, which is
only a fraction part of the cost that are measured for the complete query.

Because the mentioned join filter is essential to retrieve the results of the computation as
time-varying regressions as it is proposed this approach is not applicable as a standard SQL
Implementation.

In a next step it was proposed to use window functions to find a suitable solution for the
presented problem. An approach to that is given in the next subchapter.

18

5.3 Window Functions

A window function in PostgreSQL can be defined as a function that performs a calculation
across a set of tuples. This means, that data which are related somehow to a considered row
can be retrieved from other rows. With the help of pg SQL Window Functions, the following
two main purposes can be served:

• cumulative computations: Access to another row (for example the next or the
previous row) and use those values for the calculation

• partitioning aggregations: Aggregate calculation over rows of a query result

To find a solution for the given problem of the calculation time-varying regressions, it makes
sense to focus on window functions that pursues the purpose of cumulative computations. To
perform cumulative computations, a row of a table has access to a set of rows and is able to
use values of specific columns to make calculations. This means that for each row a calculated
value can be returned. [5][6]

With the built-in window functions that are called lag() and lead(), values of the row
below or the row above can be used for a calculation in a specific row. That means in fact,
that is possible to make a calculation with parameter values that come from different rows.
The returned result value can then be inserted in an additional column as illustrated in the
example in Table 5.5.

id_feed ZUCK_value TSO_value year calc_lag calc_lead
1900 4.1 - 1995 - -
1900 - 5.2 1996 5.2 * 4.1 5.2 * 3.5
1900 3.5 - 1998 - -
1900 - 6.0 1999 6.0 * 3.5 -
1900 - 7.0 2001 - 7.0 * 2.0
1900 2.0 - 2003 - -

Table 5.5: Approach with window functions lag() and lead()

Unfortunately, I couldn’t elaborate a working solution for the given problem using window
functions. Nevertheless, the approach of using window functions for the computation of
derived nutrients is presented in the following section by an example:

Assume that we have the formula ZUCK * TSO for a fictive derived nutrient and the
Table 5.5 that contains some measurement values for the involved components. All these
measurement values are ordered by time. The idea is now to add to each row two different
result values that are calculated as follows with the help of the window functions lag()
and lead(). The result value calc_lag is computed by multiplying the ZUCK-value of the
current row with the TSO-value of the row above. The value of calc_lead is computed by
using the TSO-value from the row below.

It is quite evident, that this solution is not working for the given problem. It would work
only if there is alternately a ZUCK-measurement and a TSO-measurement. Because the table
has to be ordered by timestamp, an alternate order is not possible.

19

So, the main problem can be explained by considering the following example: In the fifth
row, the multiplication is only possible with the previous row. The result of the expression
6.0 * 3.5 is stored in calc_lag. For the same row, there is no result value in the column
calc_lead, because it doesn’t exist a ZUCK-value in the sixth row. In this case the lag()-
function returns a null value.

To solve that problem, a partition should be created that contains just ZUCK-values
and the fixed TSO-value. It is possible to create partitions over a specific nutrient as for
example ZUCK, but then the TSO-value that is fixed is excluded from this partition and the
calculation is not possible.

Other built-in window functions are proved to be not applicable for the given problem.
So, an alternative solution with the help of an algorithm has to be found. In the next chapter
an algorithm is presented, that calculates time-varying regressions in the way we want.

5.4 Implementation of Algorithm in Java

Because of the performance problems for the SQL-queries described in chapter 5.2 and the
unsuccessful approach with window functions, it was necessary to find an alternative way for
computing temporal regressions of derived nutrients. For this purpose, the SQL-approach
presented in chapter 5.2, is transformed into an algorithm.

The basic idea of the algorithm is to loop over a sorted list of nutrient measurements
and compare their timestamps to those of other component measurements. To perform this
algorithm in an efficient way, two “pointers” keep track of the actual position in the component
tables. The algorithm can basically be structured into two parts:

• Combining process: Search for each component measurement value a matching mea-
surement value from the other components that are involved in the formula. This is
done by the already explained “closest-timestamp”-principle.

• Calculation process: Calculates the derived nutrient value by replacing the nutrient
abbreviation with a related value that is chosen in the combining process.

The algorithm of this combining and computing procedure is explained in this sub-chapter. In
a first step, it is implemented as a java application. Later on, this algorithm is implemented
in a PL/pgSQL function, so that it can be used for the integration of derived nutrients into
the web application.

At the beginning of the algorithm, it is created an array for each component of the formula
that contains all the measurement values of a specific nutrient component. All these arrays
are sorted by timestamp and added to an arraylist. The basic idea of the algorithm is now
to loop through these arrays and compare the timestamps in an appropriate way.

20

By the example of the formula (ZUCK+TSO)/100, the algorithm is explained below:

Table 5.6: Combining process I: Timestamps of nutrient ZUCK are considered as fix

1. Combining process:

(a) In a first step, the timestamps of the first component are considered as fixed.
This case is illustrated in Table 5.6. So we consider a ZUCK-value and search for
that value a matching TSO-value whose timestamp is the closest to that of the
ZUCK-measurement.

(b) The search for a matching value is done with the help of a while-loop. This while-
loop is illustrated with the arrows on the right hand side of the TSO-table in Table
5.6. In our example, the difference of the timestamp that correspond to the row
where id=1 in component ZUCK and the timestamp that corresponds to the row
where id=8 is 0. This difference is stored in a variable. Then the index of the
second variable is increased by one and the difference is calculated again. There
we have a difference of 1, which is greater than 0. That’s why the index of the
second component decreases again. Finally, the located measurement value (id=8)
is used for the calculation.

(c) Then the located position in the TSO-array (id=8) is stored in a variable.

(d) If there are more components, we loop through these lists as well and search for
the value with the closest timestamp compared with that of the fixed component.

2. Calculation process:

The calculation is done in a separate function, where for each abbreviations of the
formula, the chosen values are assigned. This means that each abbreviation in the
formula is replaced by a specific measurement value. In the java application, this is
done with the help of a formula evaluator.

After the calculated result value for the first ZUCK-value is returned, the index of component
ZUCK is increased and the same combining and computing procedure is performed for the
next measurement in the first component (ZUCK).

21

In a next step the timestamps of the second component are considered as fix. This is
illustrated in the Table 5.7 by the example of the TSO-measurement with id=15.

Table 5.7: Combining process II: Timestamps of nutrient TSO are considered as fix

Finally, all the timestamps are fixed once, what means that we get for each measurement
of an involved component a corresponding derived result value.

The description that follows explains the main steps of the implementation that is done
in java:

1. As an input variable of the java application, we have a formula that corresponds to
a specific derived nutrient and a feed number. First, all the component abbreviations
must be extracted from the formula.. For that, different string-functions can be used.
The goal is to create an array containing all the abbreviations that are in the formula. In
the case of the example formula (ZUCK+TSO)/10, the abbreviations TSO and ZUCK
are stored in an array called abbr[].

2. In a second step, the java application retrieves from the database the required tuples.
For each involved nutrient abbreviation where the id_feed corresponds to the one of
the input parameter, all the tuples are retrieved.

3. Then, all the retrieved fields (timestamp, value, id_feed) are stored in a 2-dimensonal
array. This array is then added to an arraylist that stores for each involved component
in the formula a component-array with the data.

1 while (r s . next ()) {
2 int timestamp = rs . g e t In t (" timestamp") ;
3 double measurement = r s . getDouble ("measurement") ;
4 int id= r s . g e t In t (" id_feed ") ;
5 comp [i] [0] = timestamp ;
6 comp [i] [1] = measurement ;
7 comp [i] [2] = id ;
8 i++;
9 }

10 l i s t . add (comp) ;

22

4. As soon as for each component of the formula all the data is inserted, the described
combining and computing algorithm starts. At first, the timestamps of the first com-
ponent, in our example those of nutrient ZUCK, are fixed. Then, we search for all
the other components a measurement value, whose timestamp is the closest to that of
the ZUCK-measurement. In a first FOR-clause it is iterated through all the values of
the first component (ZUCK). Then the difference between the timestamp of the second
component and the first component is calculated and temporarily stored in a variable.

5. In a while-clause, the index of the second component (TSO) increases every time by one
until the value of the timestamp-difference becomes bigger than the one of the stored
variable. If that is the case, the index decreases by one and then the measurement value
with the current is used for the calculation.

The listing below illustrates an extract of a sample result output. Line 7 shows the result
attributes (timestamp: 20110318, calculated value: 40.88214, id_feed: 1900). The result
value is calculated by the expression (66.52+342.3)/100.

1 ZUCK value : 66 .5214
2 ZUCK timestamp 20090730
3
4 TSO value : 342 .3
5 TSO timestamp : 20110318
6
7 Component 1 (TSO) i s f i x ed : r e s u l t = 20110318 , 40 .88214 , 1900

23

5.5 PL/pg SQL Functions

5.5.1 Introduction to PL/pg SQL Functions

In a next step it was the task to transform the algorithm that is implemented in java in a suit-
able form to a PL/pg SQL function. PL/pgSQL is a procedural language for the PostgreSQL
database system. With the help of this language functions can be created and complex
computations can be performed. The language supports common features in programming
languages like variables, if-clauses or looping-clauses.[5]

5.5.2 Implementation approach using a 3-dimensional-Array

As mentioned in the previous chapter where an approach of a java implementation is shown,
the idea is to store all the measurement values of the involved components in memory. This
is done with the help of a 3-dimensional array named allcomp[n][i][j], that is filled with
all the measurement values that are used for the calculation of a specific derived nutrient.
The meaning of the indices in each dimension in the allcomp-array is listed below:

n: indicates the nutrient component
(n=1 corresponds to the first involved nutrient in the formula)

i: indicates the current row

j: indicates whether it is a timestamp (j=1) or a measurement value (j=2)

Table 5.8 shows the first few data values of the allcomp[][][]-array for the fictive formula
(ZUCK + TSO + ETOH) / 1000.

allcomp[1][i][j] allcomp[2][i][j] allcomp[3][i][j]
timestamp value
1992-11-25 43.6
1992-11-25 44.9
1992-12-02 14.7
1992-12-16 39.6
1992-12-16 65.1
1992-12-16 27.9
1992-12-16 27.5
1993-02-18 31.3
1993-02-18 32.7
1993-03-04 14.3

[...] [...]

timestamp value
1992-11-19 432
1992-11-19 431
1992-11-19 447
1992-11-19 440
1992-11-19 443.96
1992-11-19 451.16
1992-11-25 445.58
1992-11-25 452.69
1992-11-26 453.61
1992-11-26 459.28

[...] [...]

timestamp value
1992-11-25 1.3137
1992-11-26 0.8558
1992-12-02 0.9834
1992-12-10 0.8169
1992-12-16 1.1169
1992-12-16 1.1212
1992-12-16 0.6065
1993-02-18 1.5587
1993-03-02 2.1628
1993-03-02 0.9386

[...] [...]

Table 5.8: Illustration of 3-dimensional-array allcomp[][][]

24

Compute temporal derived nutrient values

Derived Nutrient (fictive): #ZUCK_TSO_ETOH
Formula: (ZUCK + TSO + ETOH) / 1000
Database schema: Version 2.0

The algorithm works in a similar way as it is already explained in the previous chapter by
the example of the java application. The main steps of the implemented PL/pg SQL function
can be summarized as follows:

Step 1: Expand the formula if it contains derived components (indicated by a #-sign)

Step 2: Extract from the formula all involved abbreviations and store them in an array.

Step 3: Fill a 3-dimensional allcomp[][][]-array with data from the database.

Step 4: Perform combining procedure:

Table 5.9: Combining process in the 3-dimensional array

Loop through all the measurement values of the first component and search for
all other involved components the value with the timestamp that is the closest
to the one of the first component. The index position of a chosen measurement
value is stored in jPos[n]. The variable n stands for the nutrient index number
and corresponds with those of the array abbr[], that contains all the involved
abbreviations.
An extract of the implementation of the described combining algorithm in PL/pg
SQL is given on the next page. After that, the computing procedure is explained
in step 5-7.

25

Combining procedure implemented in PL/pg SQL:

1 f o r x in 1 . . array_upper (allcomp , 2) LOOP
2 jPos [c1] := x ;
3
4 i f (al lcomp [c1] [jPos [c1]] [1] i s not null and allcomp [c1] [jPos [c1]] [1] ! = 0) then

5 f o r c2 in 1 . . (array_upper (allcomp , 1) −1) LOOP
6
7 i f c1 !=c2 then

8 a c t d i f f :=abs (al lcomp [c1] [jPos [c1]] [1] − allcomp [c2] [jPos [c2]] [1]) ;
9 d i f f := a c t d i f f ;

10
11 whi le a c t d i f f <= d i f f and jPos [c2]< array_length (allcomp , 2) and

allcomp [c2] [JPos [c2]+ 1] [1] i s not null and allcomp [c2] [JPos
[c2]+ 1] [1] != 0 LOOP

12 jPos [c2] := jPos [c2] + 1 ;
13 a c t d i f f := abs (al lcomp [c1] [jPos [c1]] [1] − allcomp [c2] [jPos [c2

]] [1]) ;
14
15 i f a c t d i f f > d i f f then

16 jPos [c2] := jPos [c2] − 1 ;
17
18 else

19 d i f f := a c t d i f f ;
20 end i f ;
21 end loop ;
22 end i f ;
23 end loop ;
24 [. . .]

Step 5: Replace all the abbreviations with the corresponding measurement values that
are resulted from the combining process.

Step 6: Compute the result of the formula (formula contains now only numerical values
because of the replacement that is performed in step 5).

Step 7: Return the computed value and the timestamp that was considered as fix.

The use of a multidimensional array for the given problem is probably not the most efficent
solution. Especially in PL/pg SQL, the initalization of bigger arrays is not really cost-efficient
in relation to the execution time of the function. [5]

Because of that, it was necessary to find other possible solutions with PL/pg SQL. These
approaches are presented in the next subchapters.

26

5.5.3 Implementation approach using a string array

The idea of the approach that is presented in this subchapter is to use an one-dimensional
array instead of a multidimensional array. For that, all the needed information of a mea-
surement have to be stored in a string-variable. As a delimiter, the ’§’-symbol is used in this
example. In a seperate function, the desired values are extracted from the string variable
and used for the computation of the result values. The procedure of the algorithm works in
a similiar way as it is described in the previous chapter.

Compute temporal derived nutrient values

Derived Nutrient (fictive): #ZUCK_TSO_ETOH
Formula: (ZUCK + TSO + ETOH) / 1000
Database schema: Version 2.0

Table 5.10: Illustration of string array allcomp[]

27

5.5.4 Implementation approach using cursor variables

Instead of storing the measurement information that is used for the calculation in memory, it
is also possible to define cursor variables to iterate through a data set. In PostgreSQL, cursors
can be defined as read-only pointers to a specified result set of a SQL-Query.[7] The use of a
cursor is similar to that of a FOR-IN-SELECT-loop, but with the following difference: With
paramterized cursors, it is possible to change the result set of a query. This can be done by
setting formal parameters in the defintion of the cursors.[5][2]

The approach using cursors is explained by the example of the following formula: (ZUCK
+ TSO + ETOH) / 1000. Independent of the number of involved parameters, two cursor
variables are defined in this implementation approach. In a first phase, the cursors are defined
on the result set of the query that retrieves the ZUCK, respectively the TSO measurements.
Then the cursors are defined on the result set of ZUCK and ETOH. These two phases are
depicted in figure 5.8 and 5.9 for the first three ZUCK-measurements.

Table 5.11: Combining pass with two cursors (on the result set of ZUCK, resp. TSO)

Table 5.12: Combining pass with two cursors (on the result set of ZUCK, resp. ETOH)

28

The main steps of using cursors are listed below. Then the algorithm is explained by using
the mentioned example formula that involves the nutrients ZUCK, TSO and ETOH.

1. Declare a cursor: Define a result set of a specific query

2. Open a cursor: Before a cursor can be used it has to be opened

3. Fetch from a cursor: Retrieve one row at a time from the result set

4. Close a cursor: Close a cursor after its use to release the context area

Compute temporal derived nutrient values with help of cursors

Derived Nutrient (fictive): #ZUCK_TSO_ETOH
Formula: (ZUCK + TSO + ETOH) / 1000
Database schema: Version 2.0

Step 1: In a first step, two cursor variables are defined as curs1 and curs2 in the DE-
CLARE statement of the PL/pg SQL function.

Step 2: In the BEGIN statement, the cursors are opened for a specified result set. Vari-
able curs1 is specified for a query that retrieves the data for the first compo-
nent (ZUCK), whereas curs2 loops on the data of the second component (TSO).
With the help of the abbreviation array abbr[], that contains all the involved
abbreviations, this procedure can be done in a dynamic way for all the involved
components.

1 f o r c1 in array_lower (abbr , 1) . . array_upper (abbr , 1) loop
2
3 f o r c2 IN array_lower (abbr , 1) . . array_upper (abbr , 1) loop
4
5 i f c1 !=c2 then

6
7 OPEN curs1 FOR (select (extract (Day from tday))+(extract (Month from

tday) ∗100)+(extract (year from tday) ∗10000) as ts ,
8 measurement
9 from d_nutrient , fact_table , d_time

10 where id_time=time_key and id_nutr ient=nutrient_key and

d_nutrient . abbreviat ion_de l ike abbr [c1] and d_time .moment=3
and id_feed=feed order by id_feed , tday , ft_key) ;

11
12 OPEN curs2 FOR (select (extract (Day from tday))+(extract (Month from

tday) ∗100)+(extract (year from tday) ∗10000) as ts ,
13 measurement
14 from d_nutrient , fact_table , d_time
15 where id_time=time_key and id_nutr ient=nutrient_key and

d_nutrient . abbreviat ion_de l ike abbr [c2] and d_time .moment=3
and id_feed=feed order by id_feed , tday , ft_key) ;

Step 3: In a next step, the data is fetched from the cursor variable into a record variable.
Now, the fetched timestamps can be compared in the same way as it is done in
the previous implementation approach: The fetch next statement is executed
in a while loop until the interval between the timestamp of the first component
and the timestamp of the other component is increasing. In case that the differ-
ence becomes bigger, the previous measurement value is fetched using the fetch
prior statement. This value is finally used for the calculation.

29

Step 4: As soon as for each fetched value from curs1 a value from curs2 is fetched, the
cursor variable curs2 is closed. Cursor curs2 is then opened again, but on a
different result set. In this case, it is opened on the result set of the query that
retrieves the data of the third component (ETOH).

Finally, all the formulas, whose abbreviations are replaced by the elaborated mea-
surement values, are computed. It results the computed value and the timestamp
of the measurement that was considered as fix.

Instead of using just two cursor variables as described above, it would be more efficient to
declare for each involved nutrient component a separate cursor. How this procedure would
work for the mentioned formula is illustrated in Table 5.13.

Table 5.13: Combing pass with ZUCK, TSO and ETOH using cursors

In a first step (I) the cursor that is declared on the result set of the ZUCK-query fetches
the first value and searches a matching TSO-Value with help of the second cursor (curs2).
Instead of fetching the next ZUCK value, a matching value from table ETOH is searched in a
second step (II). In this case, the formula could be calculated directly with help of the chosen
measurement values, before the next row of the ZUCK component is fetched.

This alternative solution seems to be more efficient, because the iteration on the times-
tamps of a specific component has to be performed just once. In the other case, where we
declared just two cursor variables, it has to be iterated multiple times depending on the
number of involved components.

An implementation where we assign to each nutrient component a corresponding cursor
variable is problematic: To guarantee that the algorithm works for all the formulas with
a various number of components, it is necessary to declare a number of cursor that is not
predefined. The idea was to create an array that stores all the declared cursor variables. But
this couldn’t be realized, because no container could be figured out that supports storing
cursor variables. That’s the reason why this version hasn’t been suitably implemented yet.

30

5.5.5 Performance comparison of implementation approaches

Table 5.14 shows a comparison of the presented PL/pg SQL functions according to their
execution time. All the PL/pg SQL functions are tested for some sample formulas. In this
performance comparison the functions are executed for the feed with id_feed=1900 and the
formulas that are listed in Table 5.14.

It must be mentioned, that the algorithm that is implemented in an analog way in java
was more efficient according to the execution time. The reason for the difference between the
function that is implemented in java and the function that is implemented in PL/pg SQL,
can be explained with the fact, that java is running outside the RDBMS2. So, the processor
resources are greater.

However, for the implementation of an extension to the web application, the use of a
PL/pg SQL function is applicable. So the focus is set on the three different implementation
versions of PL/pg SQL functions that were presented in chapter 5.5.2, 5.5.3 and 5.5.4.

sample formula approach 1:

float-[][][]

approach 2:

string-[]

approach 3:

cursors

(ZUCK + TSO)/100 4,7 sec 22,5 sec 8,6 sec
(ETOH+ZUCK+TSO+ #ADF_Gerste)/100 15,6 sec 72 sec 27 sec

Table 5.14: Performance comparison of PL/pg SQL functions

Table 5.14 shows the execution time for each approach by two different example formulas3.
The reasons for the execution time of the respective approach are stated below:

• In the second implementation, the idea was to use a 1-dimensional string-array to
store the relevant measurement data. In such a case, it can be avoided to initialize a
large 3D-array as it is used in the first approach. The string contains the id_feed, the
timestamp and the measurement value and looks like that: “§1§19980402§342.1§”.
The long execution time for this approach is referable to the cost-intensive extraction
of substrings to get the desired timestamp resp. the desired measurement value from
the string variable.

• In the third approach, the algorithm is implemented by using two cursor variables.

The advantage here is that the used measurement data has not to be stored in memory
as it is the case in approach 1 and 2. Instead of that, cursors are declared on the result
set of a specified query.
A disadvantage of this implementation approach with 2 cursor variables is the fact that
the loop over the result set has to be performed more than once for a component where
the timestamps are considered as fix. For that reason, this solution is especially not
applicable for formulas that contain a large number of nutrient components.

• So it can be said, that the approach that uses a 3-dimensional array is the most appli-
cable one for the given problem. But also with this solution, it can take several seconds
to retrieve the computed derived values. Altough, this solution was integrated into the
web application, so that all the functionalities are supported for derived nutrients. The
main tasks for this integration are described in the next chapter.

2Relational Database Management System
3Number of involved tuples in the formula: 1st formula: 8983; 2nd formula: 12928

31

32

Chapter 6

Implementation of an extension to
the Swiss Feed Database

6.1 Introduction to Swiss Feed Database web application

Version 2.0

The web application of the Swiss Feed Database Version 2.0 has been developed at University
of Zurich. With this application, information about specific nutrients can be retrieved and
is visualized in suitable form. The layout of the current webpage consists of two main parts,
which are presented in this sub-chapter.

• selection part: In this part, the user can define some restriction conditions in addition
to the specific nutrients that the result should be computed for. In the first select
field, a feed or a number of feeds can be selected for the calculation of the results.
Other restrictions are way of drying, measurement time, and geographical conditions
like ’canton’ or ’altitude’.

Figure 6.1: Selection part of the web application

33

• result part: The second part of the webpage is the result part, which appears as soon
as the user clicks on the ’show results’-button. It is divided into three columns that
contain the following information:

1. The first column is the sample enlistment that shows all the measurement values for
the selected nutrients.

Figure 6.2: Sample enlistment

2. On the map in the middle of the result part, the location from which the measurement
samples were taken are marked with pins.

Figure 6.3: Map with marked measurement locations

34

3. On the right side of the web page is a chart that displays the temporal value distribution
of the selected nutrients. The diagram can either be displayed as a line-diagram that
takes the mean values for calculation of the graph, or as a scatter-diagram, in which
each measurement value is displayed as a dot. Figure 6.4 shows for both diagram type
an example.

Figure 6.4: Line-diagram and Scatter-diagram

4. The HTML-table that is represented in Figure 6.5 gives statistical information for
each selected nutrient. These are aggregate values like the maximum-, minimum- or
average-value for each selected nutrient. The aggregate values are always computed
with all the measurement values that satisfy the specified conditions. In order to detect
outliers, the values in the last three columns of the aggregation table in Figure 6.5
are calculated. Depending on the measured data value in specific sample, the location
is marked in an other color. The blue pins on the map identifies extremely small
measurment values, wheras the yellow pins visualize the locations where extremly high
values are for a specified nutrient parameter.

Figure 6.5: Aggregation table with statistical information

35

6.2 Overview of tasks for the integration of derived nu-

trients into the web application

For the web application to run also for derived nutrients, some adjustments had to be made.
The four main implementation tasks are presented in this chapter:

1. Insertion of derived nutrients into the nutrient select field [Task 1]

In a first step, the functionality of automatically updating the select fields has to
be adjusted. Depending on the selected options in the fields feed and drying the
nutrient field has to be updated. The nutrient select field should list just options for
which data exists. If there is no data, the nutrient abbreviation should not appear.
This means for derived nutrients that for each nutrient component of the formula a
checking has to be made whether some data exist.

Figure 6.6: Visualization of task 1 concerning the integration of derived nutrients

2. Update select fields depending on the selected nutrients [Task 2]

The select field that follows the nutrient select field must be updated in the same way.
So, the options of the fields canton, altitude, year and season have to be listed
depending on the previously made selections. This means that for each component of
a derived nutrient it has to be checked if there is data available or not.

Figure 6.7: Visualization of task 2 concerning the integration of derived nutrients

36

3. Compute time-varying regressions for derived nutrients and use the

resulted values for the aggregation table and the chart diagram [Task 3]

In the result part of the web application, the derived nutrients have to be integrated
into the sample enlistment, the aggregation table and the Line-/Scatterdiagram. To
compute the data values that are used for the aggregation table and the chart diagram,
a PL/pg SQL function will be proposed that is based on the approach described in
chapter 5.5.2.

Figure 6.8: Visualization of task 3 concerning the integration of derived nutrients

4. Compute sample results for derived nutrients and use the resulted values

for the sample enlistment [Task 4]

In the sample enlistment table on the left side of the web page, only values from the
same measurement sample are used for the computation of a derived nutrient. Figure
6.9 shows the sample enlistment with integrated derived nutrient.
Furthermore, the outlier detection functionality should be supported for derived nu-
trients as well.

Figure 6.9: Visualization of task 4 concerning the integration of derived nutrients

37

6.3 Insertion of derived nutrients into the nutrient select

field [Task 1]

6.3.1 Creation of table containing formulas

Table 6.1 shows an extract of the relation t_formulas. In this table, some derived nutrients
are listed with their abbreviation and the corresponding formula. The #-symbol before the
abbreviation is used as an indicator for derived nutrients. If in a formula the abbreviation
of a component starts with the #-sign, the formula has to be expanded by replacing those
abbreviations with the related formula. For instance, the formula of the derived nutrient with
id=4 involves the nutrient #OS[g_kg TS] as a component. So, the formula of #OS[g_kg TS]
replaces that abbreviation. This replacement procedure is done until the formula contains
just non-derived components. In the case of the derived nutrient with id=4 in Table 6.1, it
results the following expanded formula: 0.0196 * 1000 - RA[g_kg TS].

Furthermore, it has to be mentioned that some of the derived nutrients are only valid for
some specific feed types. In order to compute these nutrients just for the related feed types, a
separate table called t_formula_feed is defined which contains the specified relations between
nutrients and feeds. For example the second row of table t_formula_feed implies that the
derived nutrient with id=3 is valid for the feed with the feed_key=193 which corresponds to
the feed named as Soja.

Most of the nutrients, as for instance the one with id=5 are valid for all the feed types.
Instead of defining for each feed a separate row in table t_formula_feed, the id of the nutrient
is listed just once with a corresponding id_feed that is 0. A zero-value in the column id_feed
indicates that the corresponding nutrient is valid for all the feeds.

t_formulas
id abbreviation_de formula
1 #ADF_Haferk[g_kg TS] (0.9559 * RF) + 24.461
2 #NDF_Weizengpfl[g_kg TS] (-0.0059*(RF*RF))+(4.7608*RF)-345.01
3 #ADF_Sojaschrot[g_kg TS] (1.3265 * RF) + 21.394
4 #BE_Maisganzpfl[MJ_kg TS] 0.0196 * #OS[g_kg TS]

5 #OS[g_kg TS] 1000 - RA[g_kg TS]
10 #ex_ZUCK_ADF ZUCK + ADF
11 #ex_FE_ZUCK FE + ZUCK
12 #ex_CU_CA CU + CA /10
13 #ex_MG_derived MG + #ex_CU_CA

Table 6.1: Table t_formulas containing derived nutrients (id 10-13: fictive nutrients)

t_formula_feed d_feed
id_formula id_feed

5 0
3 193
4 1106
4 1104

feed_key name_de
193 Soja
1106 Maisganzpflanze, Teigreife
1104 Maisganzpflanze, Milchreife
800 Haferflocken

Table 6.2: Extract of table t_formula_feed and d_feed

38

6.3.2 Query

In a next step, a query has to be defined, that retrieves all the derived nutrient abbreviations
from the table t_formulas that should be displayed in the nutrient select field. To get all
the derived nutrients that should appear in the nutrient field, it has to be iterated on table
t_formulas. It has to be checked for each nutrient whether there is data for all involved
components. The query that is described in this section retrieves all the id numbers of derived
nutrients where enough data is available, considering the selected conditions. These conditions
are specified in the sql_from_where-query that is generated in JavaScript depending on the
selected options. The subqueries of the WHERE-clause (line 7-10 and 16-30) are described
below:

• The first subquery (line 7 to 10) retrieves all the involved component abbreviations of a
derived nutrient. This is done with the help of the function getInvolvedAbbreviations().
The array with all the involved abbreviations that is returned by this function can be
transformed to a set of rows with the pg-array-function called unnest(anyarray).[5]

• The second subquery selects all the involved abbreviations that are retrieved by the
sql_from_where-query.

If the total set difference of these two subqueries is empty, data for each component of the
formula is available. So, the ID of the corresponding derived nutrient is retrieved, which
means that the corresponding nutrient abbreviation will appear in the nutrient field.

Query to retrieve all the IDs of derived nutrients for the nutrient field:

1 select id
2 from t_formulas as f 1
3 where not exists (
4
5 /∗∗ Se l e c t s a l l the invo lved abbrev ia t ions of a formula with a given id . ∗∗/
6
7 (
8 select abbrev ia t i on
9 from unnest (ge t Invo lvedAbbrev ia t i ons ((select formula from t_formulas as f 2 where

f 2 . id=f1 . id) : : t ex t)) as abbrev ia t i on
10)
11
12 except

13
14 /∗∗ Se l e c t s a l l the invo lved abbrev ia t ions of a formula with a given id for

which data i s a v a i l a b l e tha t s a t i s f i e s the s e l e c t e d r e s t r i c t i o n condi t ions .
∗∗/

15
16 (
17 select abbrev ia t i on
18 from unnest (ge t Invo lvedAbbrev ia t i ons ((select formula from t_formulas as f 2

where f 2 . id=f1 . id) : : t ex t)) as abbrev ia t i on
19 where abbrev ia t i on in

20
21 (
22 select abbreviat ion_de
23
24 /∗∗ sql_from_where−Query (generated in JavaScript) . ∗∗/
25
26 from d_nutrient , fact_table , d_time , d_origin , d_quality_parameters , d_feed
27 where id_time_fkey=time_key and id_or ig in_fkey=orig in_key and

id_qual ity_fkey=qual ity_key and id_feed_fkey=feed_key and (
drying_condition_de in (’ unbe lü f t e t ’)) and (d_feed . name_de in (’Emd ’))

28 and nutrient_key=id_nutr ient_fkey and t_day i s not null

29)
30)
31
32)

39

6.3.3 PHP / JavaScript Implementation

The integration of the previously described query into the web application requires changes
in the following PHP- and JavaScript-Files:

• js1.update_selectfield.js

• jsE.update_selectfield_Queries.js

• ajax-pg-options.php

In order to add the retrieved derived nutrient abbreviations to the nutrient select field, the
javaScript function js1_getNewOptions() was changed as follows: If the select field that has
to be updated is named nutrient[], the query that is sent as an ajax request is composed
of two parts:

1. The first query part consists of all the non-derived nutrients that should appear in
the list. This query is stored in the variable sql_newOptions.

2. With the query in the variable sql_newOptions_derived, the abbreviations of de-

rived nutrients are retrieved. This is done with the help of the query that is discussed
in the previous subchapter. How this query is generated in JavaScript can be looked
up in the function jsE_updateNutrientField().

In order to get all the abbreviations that should appear in the select field, the queryparts
named sql_newOptions and sql_newOptions_derived are put together with the UNION op-
eration. The illustration below depicts the basic structure of the query as it is explained
above.

Query structure to retrieve all the options for the nutrient select field:

/∗∗
Query , tha t returns a l l non−derived nutr ient abbrev ia t ions tha t should
appear in the nutr ient s e l e c t f i e l d . The Query i s generated in the
funct ion jsE_updateBaseQuery () .

∗∗/

sql_newOptions

UNION

/∗∗
Query , tha t returns a l l der ived nutr ient abbrev ia t ions tha t should appear
in the nutr ient s e l e c t f i e l d . The Query i s generated in the funct ion
jsE_updateNutrientField (sql_from_where)

∗∗/

sql_newOptions_derived

40

6.4 Update select fields depending on selected derived nu-

trients [Task 2]

6.4.1 Query

The aim of this task is to retrieve the options for a specific select field, depending on the
previously selected conditions. Special consideration is required if a derived nutrient is selected
in the selection part of the web application. In such a case, it has to be checked for each
component of the derived nutrient, whether there is data available or not.

The query that retrieves the desired options is explained in this section by the example of
the select field canton[]. For the select fields labeled as altitude[], year[] and season[],
the query works in the same way.

If a derived nutrient is selected, all the cantons should be displayed where enough data for
the computation is available. This means that for each component of the derived nutrient, it
has to be checked if there is data available for a specific canton or not. In case there is no
data for one or multiple nutrient components of the formula, the canton is not displayed in
the options list.

The query that retrieves the desired result can be structured as the one that is described
in task 1. This means that it can be stated using the NOT EXISTS and the EXCEPT operator.
Unfortunately, it could be verified, that the query is quite cost-intensive in this case.

An alternative query that retrieves the desired cantons in a more efficient way, is presented
in the listing below. The description of the query follows on the next page.[9]

Query to retrieve all cantons that should appear in the canton select field:

1 select dist inct canton_de /∗∗ canton [] i s used as an example s e l e c t f i e l d ∗∗/
2 from d_origin as o
3 where not exists

4
5 (select ∗
6 from d_nutrient as n
7 where (d . abbreviat ion_de in

8 (select abbrev ia t i on from unnest (ge t Invo lvedAbbrev ia t i ons ((select

formula from t_formulas where abbr=’#ADF_Haferk ’) : : t ex t)) as

abbrev ia t i on
9)

10)
11 and not exists

12
13 (select ∗
14
15 /∗∗ sql_from_where−Query (r e t r i e v e s s e l e c t e d opt ions) ∗∗/
16 from d_nutrient , fact_table , d_time , d_origin , d_quality_parameters , d_feed
17 where id_time_fkey = time_key and id_or ig in_fkey = orig in_key and

id_qual ity_fkey = qual ity_key and id_feed_fkey = feed_key and (
drying_condition_de in (’ b e l ü f t e t ’)) and (d_feed . name_de in (’Emd ’)) and

nutrient_key=id_nutr ient_fkey
18
19 /∗∗ add i t i ona l r e s t r i c t i o n : There must be a timestamp for the measurement

value , otherwise i t cannot be used for the time−varying computation of
the regress ion . ∗∗/

20 and t_day i s not null

21 and o . canton_de=canton_de and n . abbreviat ion_de=abbreviat ion_de)
22)

41

This alternative query uses two-level nesting and is more complex than the one that is
defined in task 1. In the part from line 13 to 17, all the tuples that statisfy the selected
restriction conditions are retrieved. This query is generated in JavaScript and stored in a
variable called sql_from_where. The listing above considers the case, that the feed “Emd”
and the drying condition “belüftet” is chosen in the selection part of the web application.

The outer nested query (from line 5) selects any d_nutrient tuples with a nutrient ab-
breviation that corresponds to one of the abbreviations that is involved in the formula, if
there is not a tuple with the same abbreviation in the retrieved result of the generated
sql_from_where-query.

So, the whole query can be rephrased as follows: Select each canton such that there does
not exist an abbreviation of the derived nutrient components that is not in one of the tuples
that are retrieved by the sql_from_where query.

To put more simply: A canton is retrieved if there is data available (with the selected
restriction condition) for each involved nutrient component of a formula.

6.4.2 PHP / JavaScript Implementation

The integration of the previously described query into the web application requires changes
in the following PHP- and JavaScript-Files:

• js1.update_selectfield.js

• jsE.update_selectfield_Queries.js

• ajax-pg-options.php

The query to get all the options for the select field (that is followed by the nutrient field) is
generated in the the function jsE.updateAfterNutrientField() and consits of two parts.
If we take the select field canton as an example field that has to be updated, the structure of
the query would look like that:

1. In the first part of the query, all the cantons are retrieved where non-derived measure-
ment values exist.

2. In the second part of the query, all the cantons are retrieved, where we have enough
data to compute the selected derived nutrient. This second query part is also generated
in the function jsE.updateAfterNutrientField().

As in task 1, both query parts are put together with the UNION command the retrieve all
the options for a specific nutrient field. The structure of the query is depicted below:

42

Query structure to select all the options for a specific select field:

/∗∗
Query that r e t r i e v e a l l
[canton | | a l t i t u d e | | year | | season] ,
where e x i s t s data for the s e l e c t e d "non−derived " nutr i en t s .
(generated in funct ion jsE_updateAfterNutrientField ())

∗∗/

UNION

/∗∗
Query that r e t r i e v e a l l
[canton | | a l t i t u d e | | year | | season] ,
where e x i s t s data for the s e l e c t e d derived nutr i en t s .
(generated in funct ion jsE_updateAfterNutrientField ())

∗∗/

6.5 Compute time-varying regressions [Task 3]

6.5.1 PL/pg SQL Function for temporal results

The PL/pg SQL function that presented in this chapter is used for the integration of derived
nutrients into the result display of the web application. It is based on the PL/pg SQL function
that makes use of a 3-dimensional array to store the relevant measurement data in memory.
This approach was presented in chapter 5.5.2.

The function is declared ascomputederivedresults(expression, sql_from_where):
• The first input parameter corresponds to the formula of the selected derived nutrient.

• The second parameter that is named as sql_from_where is the query that is generated
in JavaScript depending on the selected options.

The basic structure of the PL/pg SQL Function corresponds to the already presented one in
chapter 5.5.2. However, the main steps of the function is explained below.
Step 1: Expand the formula if it contains derived components (indicated by a #-sign).

Step 2: Extract all abbreviations from the formula and store them in an array.

Step 3: Fill a 3-dimensional array with data from the database.

Step 4: Perform combining algorithm as described in chapter 5.5.2.

Step 5: Replace all the abbreviations that are in the formula with the corresponding
measurement values that are resulted from the combining process.

Step 6: Compute the result of the formula (formula contains now only numerical values
because of the replacement in step 5).

Step 7: Return the computed value and the timestamp that was considered as fix.

43

6.5.2 PHP / JavaScript Implementation of temporal results

The integration of time-varying derived nutrients values into the web application requires
changes in the following PHP- and JavaScript-Files:

• js2_result_coordinator.js

• js4_result_diagram.js

• js4_result_aggregate.js

• jsF_resultQueries.js

• ajax-pg-result-aggregate.php

• ajax-pg-result-linediagram.php

• ajax-pg-result-scatterdiagram.php

The query that retrieves the computed values of a selected derived nutrient is generated
in the javaScript-function jsF_createResultQuery_derived(sql_from_where). With the
UNION operation that query is set together with the query that retrieves all the result values
for the selected non-derived nutrients. If there are for instance only non-derived nutrients
selected, only the first part of the query is sent as an ajax-request to the server. The same
applies the other way round.

The illustration below shows the basic structure of the query that is sent to the server to
get the required data for the aggregation table and the line-diagram.

Query structure to select values used in the aggregation table:

(select abbreviation_de , count (quant i ty) , min(quant i ty) , max(quant i ty) , avg (
quant i ty) , stddev_samp (quant i ty)

/∗ input : sql_from_where var i a b l e from jsF_createResultQuery_nonderived ∗/

group by abbreviat ion_de order by abbreviat ion_de)

UNION

(select a l l d e r i v e d . abbreviation_de , count (a l l d e r i v e d . quant i ty) , min(a l l d e r i v e d .
quant i ty) , max(a l l d e r i v e d . quant i ty) , avg (a l l d e r i v e d . quant i ty) , stddev_samp (
a l l d e r i v e d . quant i ty)

from(

/∗ input : sql_from_where var i a b l e from jsF_createResultQuery_derived ∗/

) as a l l d e r i v e d
group by a l l d e r i v e d . abbreviat ion_de order by abbreviat ion_de))

Visualization of aggregation table containing a derived nutrient:

44

Query structure to select values used in the line-diagram:

((select abbreviation_de , (case when t_day i s null then to_date (t_year | | ’−01−01 ’
, ’YYYY−MM−DD’) else t_day end) as day , t_year , avg (quant i ty)

/∗ input here : sql_from_where var i a b l e tha t i s generated in
jsF_createResultQuery_nonderived ∗/

) group by abbreviation_de , t_day , t_year order by abbreviation_de , day)

UNION

((select a l l d e r i v e d . abbreviation_de , to_date ((a l l d e r i v e d .day : : t ex t) , ’YYYYMMDD’)
as t_day , null , avg (a l l d e r i v e d . quant i ty)

from(

/∗ input here : sql_from_where var i a b l e tha t i s generated in
jsF_createResultQuery_derived ∗/

) as a l l d e r i v e d
group by a l l d e r i v e d . abbreviation_de , t_day order by abbreviation_de , t_day)

Visualization of line-diagram/scatter-diagram containing a derived nutrient:

45

6.6 Compute derived nutrient values grouped by mea-

surement samples [Task 4]

6.6.1 Query

For the sample enlistment table, only values from the same meaurement sample are used
for the computation. The listing below shows how the query can be defined to retrieve the
desired measurement values that are later used for the calculation.

Assume that we have a derived nutrient #ZUCK_FE containing the components ZUCK
and FE. In this case and we want to list all the sample keys with the corresponding ZUCK
and FE-Values. So, the formula can be calculated with the values that come from the same
measurement sample. For that, the sample_key and an array with all the nutrient component
values that correspond to the sample_key is retrieved. Is there no ZUCK value or no FE
value in a specific measurement sample, the sample_key is not retrieved. In case that there
are multiple measurement values of a nutrient in the same sample, the average of all these
values is taken.

Query that retrieves all the sample keys with their related ZUCK and FE value

1 select array [ZUCK. quantity , FE. quant i ty] as values , sample_key
2 from

3 (select avg (quant i ty) as quantity , id_sample_fkey
4 from d_nutrient ,
5
6 /∗ i n s e r t here sql_from_where−Query according to s e l e c t e d opt ions ∗/
7
8 fact_table , d_time , d_origin , d_quality_parameters , d_feed
9 where id_time_fkey = time_key and id_or ig in_fkey = orig in_key and

id_qual ity_fkey = qual ity_key and id_feed_fkey = feed_key and (
drying_condition_de in (’ b e l ü f t e t ’)) and (d_feed . name_de in (’Heu ’)) and

nutrient_key=id_nutr ient_fkey and d_nutrient . abbreviat ion_de =’ZUCK’
10 group by id_sample_fkey) as ZUCK,
11
12
13 (select avg (quant i ty) as quantity , id_sample_fkey
14 from d_nutrient ,
15
16 /∗ i n s e r t here sql_from_where−Query according to s e l e c t e d opt ions ∗/
17
18 fact_table , d_time , d_origin , d_quality_parameters , d_feed
19 where id_time_fkey = time_key and id_or ig in_fkey = orig in_key and

id_qual ity_fkey = qual ity_key and id_feed_fkey = feed_key and (
drying_condition_de in (’ b e l ü f t e t ’)) and (d_feed . name_de in (’Heu ’))

20
21 and nutrient_key=id_nutr ient_fkey and d_nutrient . abbreviat ion_de =’FE ’
22 group by id_sample_fkey) as FE,
23
24 d_sample
25
26 where ZUCK. id_sample_fkey=sample_key and FE. id_sample_fkey=sample_key ;

• In the SELECT-clause of the query, the sample_key is retrieved with a corresponding
array that contain values for all the nutrient components for a specified derived nutrient.
In the example above, the derived nutrient is composed of the nutrients ZUCK and FE.

• In addition to the relation d_sample that occurs in the FROM-clause, a temporary
table is defined for each involved component (line 3-10 and 13-22). In these subqueries,
all the measurement values (quantity) that satisfy the restriction condition that are
selected in the select part of the web application. Together with those measurment
values, the corresponding sample keys are retrieved.

46

• In the WHERE-clause, the join condition on the sample_key is set. So, all the values
that are retrieved as an array are measured in the same sample with the correspond-
ing sample_key. With the help of an array as an attribute in the select clause, it is
guaranteed that the query works for a various number of nutrient components.

In the next sub-chapter it is explained, how the described query is generated dynamically
depending on the selections in the web application.

6.6.2 PL/pg SQL Function for sample results

The PL/pg sql function computederivedresults_bySamples(formula, sql_from_where)
calculates derived nutrients values by using only measurement values that come from the
same measurement sample. As input parameter of this function acts the formula of a specific
derived nutrient and the sql_from_where-Query that represents the selected options in the
web application. The main steps in these functions are listed as follows:

1. In a first step, all the abbreviations that are involved in a derived nutrient must be re-
trieved. This is done with the help of the function getInvolvedAbbreviations(formula),
which returns an array with all the abbreviations that are in the specified formula.

2. In a second step, a query as described in chapter 6.6.1 is generated. The retrieved result
of that query contains all the measurement values of the involved nutrient components,
grouped by the sample_key. The listing below shows the generation of that query,
where for each abbreviations in the array abbr[] , an additional part in the select-
clause, from-clause, and where-clause is added.
FOR n in array_lower (abbr , 1) . . array_upper (abbr , 1) LOOP

sq l_s e l e c t := sq l_s e l e c t | | ’ , ’ | | abbr [n] | | ’ . quant i ty ’ ;

sql_from := sql_from | |
’ (s e l e c t avg (quant i ty) as quantity , id_sample_fkey
from d_nutrient , ’

| | sql_from_where | |

’ and nutrient_key=id_nutr ient_fkey and d_nutrient . abbreviat ion_de
= ’ | | ’ ’ ’ ’ | | abbr [n] | | ’ ’ ’ ’ | | ’

group by id_sample_fkey) as ’ | | abbr [n] | | ’ , ’ ;
sql_where := sql_where | | ’ and ’ | | abbr [n] | | ’ . id_sample_fkey=

sample_key ’ ;

end loop ;

sql_query := ’ s e l e c t array [’ | | substring (sq l_se l e c t , 2) | | ’] as a ,
sample_key

from ’ | | sql_from | | ’ d_sample ’ | |
’ where ’ | | substring (sql_where , 5) ;

3. Then, all the abbreviations of the formula are replaced with the measurement values
from the query and the result of the expression is computed.

4. Finally, the function returns for each sample the result of the calculation and the cor-
responding lims_number that refers to a specific sample_key.

47

6.6.3 PHP / JavaScript Implementation for sample results

The integration of derived nutrients values into the sample enlistment of the web page requires
changes in the following PHP- and JavaScript-Files:

• js2_result_coordinator.js

• jsF.resultQueries.js

• js3.result_list-map.js

• ajax-pg-result-google.php

The illustration below show how to basic structure of the query to retrieve the required data
for the sample enlistment. Again, the query is split in two parts:

1. In the first part, the measurement values for non-derived nutrients are retrieved,
together with the corresponding lims_number and the nutrient abbreviation.

2. In the second part, the calculated values of derived nutrients are retrieved. The
lims_number that indicates the measurement sample is retrieved as well. The second
part of the query is generated in jsF_createResultQuery_derived_bySamples().

Query structure to select values used in the sample enlistment:

(select dist inct lims_number , abbreviation_de , quant i ty

from

/∗ sql_from_where , created in jsD_CreateFromWhereQuery () ∗/

order by lims_number)

UNION

(select a l l d e r i v e d . lims_number , a l l d e r i v e d . abbreviation_de , a l l d e r i v e d . quant i ty
as quant i ty

from(
/∗ sql_derived_bySamples , created in jsF_createResultQuery_derived_bySamples (

sql_from_where) ∗/

) as a l l d e r i v e d

order by abbreviation_de , lims_number)

Visualization of sample enlistment with a derived nutrient:

48

Chapter 7

Summary

In the preceding elaborations, some implementation methods for computing regressions for
derived nutrients have been proposed. The focus of the project has been to find an effi-
cient solution for computing derived nutrients as time-varying regressions. For that, different
approaches have been described and implemented. Because of the performance problems de-
scribed in chapter 5.2.3, the approach of using standard SQL to retrieve the computed values
of derived nutrients could not be carried out successfully. In any case, an approach using
SQL views is not scalable. This means that it is not possible to compute time-varying values
on a variable data set that is selected by the user, because the data set has to be specified in
the view definition. That is why an alternative solution had to be found.

Finally, a number of algorithms were implemented as PL/pg SQL functions. The most
efficient approach, which involves using 3-dimensioal arrays (presented in chapter 5.5.2) was
then used for the integration of derived nutrients into the current web application.

The adaption of the web application consisted of four main tasks, which are dividable into
two main stages: After the changes of the update mechanism accoridng to the selection fields
has been made, the methods that retrieve and display the result data have been adapted.

For derived nutrients, two different computation methods were integrated:

• First, the derived nutrient values are computed as time-varying regressions. The com-
puted temporal result values are used for the representation of the line-diagram
and the scatter-diagram. The aggregation values for displaying statistical information
about a derived nutrient are computed by the same algorithm. With the help of the line-
diagram, the derived nutrient values can be compared over time and historical analyses
are possible.

• On the other hand, derived nutrients can be computed as sample result values.

These values are only calculated for measurement samples that contain data for each
component involved in a formula. These values are integrated in the sample enlistment
on the left hand-side of the wep-page.

Both methods support the calculation of any type of formula that is composed of algebraic
expressions containing the most common mathematical operators. The PL/pg SQL function
has been tested for some sample formulas of derived nutrients on the complete data set. So
far, the web-application has been tested on a limited data set. Depending on the complexity of
the formula and the number of tuples has to be retrieved and stored in memory, the execution
time can amount to several seconds.

49

An possible approach to the solution would be the development of a restriction condition,
limiting the number of selectable derived nutrients. Otherwise, a potential execution time of
several seconds has to be put up.

An alternative and more efficient solution could be realized by computing the regression
results for the historical representation in the same way as it is done in the sample enlistment.
In that case, the derived nutrient values are computed only with data that exists within a
measurement sample. However, this would decrease the number of data values, limiting the
significance of the results considerably. On the other hand, the use of the cost-intensive com-
bining algorithm would not be needed, which would result in an improvement of performance.

50

Bibliography

[1] Agroscope Liebefeld-Posieux (2009). Schweizerische
Futtermitteldatenbank. URL: http://www.agroscope.admin.
ch/futtermitteldatenbank/index.html?lang=de [Last access: 2011-11-13]

[2] Douglas, K., Dougklas S. (2003) PostgreSQL. A comprehensive guide
to building, programming, and administering PostgreSQL databases.
Sams Publishing. First Edition.

[3] Kemper, A. , Eickler, A. (2006). Datenbanksysteme: Eine Einführung.
Oldenbourg Wissenschaftsverlag. 6. Auflage.

[4] Gupta A. , Mumick S. (1999). Materialized views techniques,
implementations, and applications. MIT Press. First Edition.

[5] The PostgreSQL Global Development Group (2010). PostgreSQL 9.0.4
Documentation. URL: http://www.postgresql.org/
docs/9.0/interactive/index.html [Last access: 2011-11-20]

[6] Hitoshi, H. (2008). Window Functions for PostgreSQL Design
Overview. URL: http://umitanuki.net/pgsql/wfv08/design.html

[7] Worsley J., Drake J. (2002). Practical PostgreSQL. URL:
http://www.linuxtopia.org/online_books/database_guides/Practical_PostgreSQL_database
[Last access: 2011-11-20]

[8] Google (2011). Google chart tools. Collection of tutorial, examples and
API library URL: http://code.google.com/intl/en/apis/chart/
interactive/docs/index.html [Last access: 2011-11-22]

[9] Elmasri R., Navathe S. (2004). Fundamentals of Database Systems.
Pearson Education. Fourth Edition.

51

