
Department of Informatics, University of Zürich

Facharbeit

Centroid Decomposition Based
Recovery for Segmented Time Series

Jonathan Nagel
Matrikelnummer: 08-737-421

Bülach, Zürich, CH

Email: jonathan.nagel@uzh.ch

September 5, 2013
supervised by Prof. Dr. M. Böhlen and M. Khayati



Abstract

The application of the Centroid Decomposition technique has been used for the recovery of
missing values in time series. This technique uses the entire time series in order to recover a
block of missing values. However, no work was proposed to evaluate the recovery accuracy
using segments of time series and to compare it against the recovery using the entire time
series. This is main goal of this work. In fact, we propose to combine two segmentation
techniques i.e., sliding windows and bottom up and we apply applied them for the recovery
in different types of time series. The results show that in some cases the recovery performs
better when only a segment of the entire time series is used.
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1 Introduction

1.1 Context and Motivation
Matrix decomposition on based recovery technique is able to accurately recover missing val-
ues in time series using a set of time series [KB12]. The Centroid decomposition in a matrix
decomposition technique that has been applied for the recovery of missing values using entire
data sets [Bö13]. The application of the previous technique on synthetic data showed that in
some cases the recovered values imitate the shape of the time series used for the recovery. For
such cases the recovery technique is dependent on the shifts between the time series with the
missing values and the other time series.

The main task of this work is to evaluate the impact of using segmentation of the time series
the accuracy of the recovery. In order to achieve this goal, first a combination of two segmen-
tation techniques, i.e., sliding windows and bottom up techniques are applied to segment time
series. Then, the obtained segments are used for the recovery of missing blocks in time series.
We present an empirical evaluation with different setups of time series.

1.2 Contributions
The main contributions of this thesis are the following:

• Implement the Centroid Decomposition and apply it for the recovery of missing values
in time series

• Implement the segmentation techniques sliding windows and bottom up to create seg-
ments that can be used as input of the recovery process.

• apply the implemented algorithms for real world hydrological dataset

• compare the accuracy of recovery using segmented time series against the entire time
series

1.3 Structure of Thesis
In Chapter 2, we introduce the main concepts that we be used throughout this report. In
Chapter 3, we introduce the different segmentation techniques of time series. Chapter 4, we
experimentally evaluate the accuracy of the recovery based on segmented time series. In
chapter 5, we summarize the main contributions and we discuss future works.
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2 Background

2.1 Time Series
A time series Si is a sequence of n observations xj , such that Si = {x1, . . . , xn}. Each value
xj has a corresponding timestamp ti, such that every observation is a pair of {xi, ti}. We use
the following notation throughout this report:

• Sref : The time series that contains the missing values that shall be recovered

• Sinf : The series containing the information (e.g. their shape) used to recover the Sref

• Sorg: The time series Sref before some values are skipped out and are declared as miss-
ing values.

• Sseg: the Sref recovered by using only a segment of the whole data set

• SnoSeg: the Sref recovered by using the whole data set

Missing values occur, when for a specific time series S1, no value is recorded for an existing
timestamp ti. Then, the time series contains a missing value or block compared to another time
series S2. The aim is to accurately recover the missing values in time series. In the following
Mi denotes the set of missing values

Mi = [av1, . . . , aw1]

where v is the first and w the last timestamp containing a missing value in the first column
of A, which is the Sref .

2.2 Pearson Correlation
In this report, the Pearson correlation ρ is used as the method to compare any time series with
each other. This correlation describes the relation between two time series S1 and S2 such that
ρ = 1 is a fully positive linear relation, r = -1 is a fully negative linear relation and ρ = 0 is no
linear relation at all. The closer the absolute value of ρ to 1 is, the better one series can be used
in the recovery process. In this report the Pearson correlation is used to compare different time
series or segments with each other.

In order to compare different time series with each other, we use the correlation value be-
tween them. In case of the comparison of different segments with each other, the average of
all the correlations between each series off Sinf and the Sref is calculated in each segment.
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2.3 Centroid Decomposition
The centroid decomposition is a technique to decompose a matrix An×m into two matrices
Ln×m and Rm×m such that A = LRT where RT is the transpose of R.

Each value aij denotes the value of the variable i for the entity j. R is called the factor
matrix with the column vectors [r1, . . . , rm] L is called the loading matrix with the column
vectors [l1, . . . , lm].

A =


a11 . . . a1j . . . a1m
. . . . . . . . . . . . . . .
ai1 . . . . . . . . . . . .
. . . . . . . . . . . . . . .
an1 . . . . . . . . . anm



For more detailed explanations about the algorithm of the centroid decomposition one may
read [CRF02]. Algorithm 1 describes the Centroid Decomposition process of an input matrix
A.

Algorithm 1: CD()
Data: Anxm

Result: L, R
1 i = 1;
2 Ai = A;
3 m = A.numberOfColumns;
4 while m > 0 do
5 z = FindSignVector(Ai);
6 ci = AT

i z;
7 ri =

ci
‖ci‖ ;

8 li = Airi;
9 Ai = Ai − bivTi ;

10 R = append(R, ri);
11 L = append(L, li);
12 i++;
13 m–;

14 return L, R;

2.3.1 Frobenius Norm
The Frobenius norm is defined as the difference between Ai and Ai+1. This difference is
defined as follows:
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‖A‖F :=

√√√√ m∑
i=1

n∑
j=1

a2ij.

This norm will be used in the recovery process of missing values in time series.

2.3.2 Recovery Process
To be able to recover missing values in a time series using the centroid decomposition based
recovery technique, these missing values have to be initialized. So for each pair {xi, ti} in a
time series Si where no xi exists, a value is created.

For the recovery, the input matrix Ai is decomposed into Li and Ri. Next the matrix LRT is
calculated out of li and ri. li is the first column of Li and ri is the first row of Ri. Algorithm 2
describes the recovery process.

Algorithm 2: RecoveryProcess
Data: A: with Sref in the first column and Sinf

Data: M: set of timestamps of the missing values
Result: A: A with recovered missing values

1 i = 1;
2 j = 1;
3 Ai = A;
4 Ai+1 = A;
5 repeat
6 Ai = Ai−1;
7 Li, Ri = centroidDecomposition(A);
8 li = Li.getFirstColumn();
9 ri = R.getFirstColumn();

10 x = liri;
11 for j=1; j<=M.getSize() do
12 Ai[Mj, 1] = x[Mj, 1];

13 i++;
14 until ‖Ai−1‖F − ‖Ai‖F < εF ;

In each iteration of Algorithm 2 the values in Ai at the timestamps av1 to aw1 are replaced
with the values with the same timestamps from LRT with the same timestamps. Therefore, the
obtained matrix Ai+1 is then used as the new Ai in the next loop. This procedure is repeated
until a stopping criteria is met.

In order to perform an accurate recovery, a precise stopping criteria has to be set. The
obtained matrix Ai should be different from the matrix Ai, because the values on av1 to aw1

are meant to have changed and by that recover the data differently than the initialized values.
If these values did not change strongly, further iterations of the loop will not change them any
stronger. So it would not make sense to continue the recovery process.
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(a) Example for a non recovered time series (b) Example for a recovered time series

Figure 2.1: Sref before and after recovery using the Sinf

A value of the Frobenius norm between Ai and Ai+1 that is below a predefined threshold
value, denoted as εF , will terminate the loop of the recovery process.
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3 Segmentation

The main task of this report is the comparison of the recovery accuracy when a segmentation
technique is used and compare it with the recovery using the entire time series. For this seg-
mentation a combination of the sliding windows and the bottom up method is used [KCHP01].

3.1 Sliding Windows
In the sliding windows method, an initial segment of size minS is defined and than grown by
adding neighboring values. After each update, the segment is evaluated and while a predefined
stopping criteria is not yet reached, the growing of the segment is continued. This way a stream
of data can be segmented. The segments created by the sliding windows method are saved in a
sequence denoted Seg as triplets segi containing the lower bound lbi and upper bound ubi and
the corresponding correlation ρsegi of the segment segi as follows: Seg = [seg1, . . . , segn]

One of the main advantages of the sliding windows method is the online Applicability.
Because it parses through the data it is not necessary to have the whole data set from the
beginning. This makes it online applicable.

3.1.1 Application of Sliding Windows
The aim of applying the sliding windows is to separate those segments that have more sim-
ilarities with the Sorg from those that have less. As described above, a high correlation ρ
indicates, whether one series is similar to another one and though useful to recover another.
So the stopping criteria is defined using the Pearson correlation. Normally a constant error ε
is chosen and used to decide, whether more data is added to a segment or not ([KCHP01]).
This way segments are created with ρ >= ε. For the function the sliding windows shall have
in this report, a constant ε does not lead to the desired result.

To separate the highly correlated parts from the lowly correlated ones, a variable error εsw
has to be defined. The aim is, to find the pair of timestamps ti, ti+1 between which the local
correlation, e.g. the correlation of a subsegment of A, changes from high to low or vice-versa.
If such a pair is found, ti is set as the upper bound of the actual segment and ti+1 is the lower
bound of the next segment. To find such a pair of timestamps the error εsw is defined as a
relative value of the initial correlation ρinit of the actual segment as follows: εsw = ρinit/d

The variable d is a predefined constant which defines, how sensible the stopping criteria
for the sliding windows is. The higher it is, the earlier the growing of the segment stops and
though the segments will be smaller. The ρinit is calculated from the initial segment before it
is grown. Algorithm 3 introduces the application of the sliding windows technique.
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Algorithm 3: slidingWindows
Data: Matrix A
Data: εsw
Data: minS
Result: seg: a sequence saving the segments and their ρsegi

1 lb = 1;
2 anchor = minSize-1;
3 i = 1;
4 repeat
5 ρinit = getCorrelation(A, lb, anchor);
6 repeat
7 anchor++;
8 ρnext = getCorrelation(A, lb, anchor);
9 until rnext > ρinit − εsw ∧ ρnext < ρinit + εsw;

10 segi1 = lb;
11 segi2 = anchor;
12 segi3 = ρnext;
13 lb = anchor+1;
14 anchor = lb+minSize-1;
15 until anchor < A.getNumberOfTimestamps;
16 return seg;

where getCorrelation(X, y, z) returns the average correlation between the Sref and each of
the Sinf of the subsegment A(y, z).

3.2 Bottom Up
The bottom up method does what one could guess: It segments a whole data set into the
smallest possible segments and merges them until a stopping criteria is met. More precisely:
For each segment the cost of merging is calculated and then the merge with the lowest cost is
done. This is repeated until the cost for the next merge exceeds a threshold.

3.2.1 Application of Bottom Up
First applying the sliding windows to create segments and then apply the bottom up method
using these segments instead of the smallest possible ones, has already been proposed in the
context of representing data [KCHP01]. In this report the same combination is used in to
recover missing values in time series.

The aim of the bottom up method is to find a segment segi that contains a block of missing
values and has ρ as high as possible. So the idea of the bottom up method is only applied
to the segments containing missing values and not to all the segments in seg. The criteria
whether the merging is done or not is as well different to the above described criteria that uses
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a maximum cost threshold. Because the aim is, to find a highly correlated segment, merging
a segment segi is not done if the correlation of the new segment would be smaller then ρsegi.
If merging a segment segi with one of it’s neighboring segments segi+1 and segi−1 would
increase the correlation, the merge that increases the correlation more is made.

The obtained segment is then the input matrix A in the in Algorithm 2. If there is another
segi in seg with missing values, the bottom up is applied for it using the non-merged segments
obtained from the sliding windows. So, the merged segment obtained through the bottom up
method is not saved. In case where low correlated segment segi is merged with a segment
segi+1 also containing missing values, only the values of segi are recovered. The aim of this
is to avoid that segments that contain missing values and already have a high correlation are
merged with preceding segments, that would decrease the correlation.

The effect of the bottom up application in this report should though be, that the highly
correlated segments segi are directly used for the recovery and that the lowl correlated segi
are merged before applying the recovery.

Algorithm 4: bottomUp
Data: A
Data: seg
Data: mv: indicates which segi contains the missing values and shall be processed
Result: Asub: Subsegment of A

1 Asub= getSubsegment(A, seg.getLowerBound(mv), seg.getUpperBound(mv);
2 ρ = seg.getCorrelation(mv);
3 ρright = seg.getCorrelation(mv+1);
4 ρleft = seg.getCorrelation(mv-1);
5 while ρ < ρleft ∨ ρ < ρright do
6 if (ρleft > ρright) then
7 Asub = mergeLeft(A, seg, mv)
8 else
9 Asub = mergeRight(A, seg, mv);

10 mv = mv − 1;

Where getSubsegment(X, y, z) returns the subsegment of X(y, z), mergeLeft and merg-
eRight return the subsegment of A with a new lowerBound or a new upperBound respectively
and getCorrelation(x) returns the correlation of the segment segx.
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4 Experiments

4.1 Evaluation Strategy
In order to compare the accuracy of recovery produced based on segmentation strategy, we
compare the resulting recovered time series Sseg and SnoSeg. We compute the mean square
error MSE between each of the recovered time series and the Sorg.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2.

where Ŷi is the original value of Sorg and Yi is the recovered value.
Secondly the two MSEs are subtracted, such that the improvement gets positive, when the

MSEseg between the Sseg and the Sorg is smaller than the MSEnoSeg between SnoSeg and the
Sorg. The improvement is computed as follows

impr =MSEnoSeg −MSEseg.

Further the correlations will be compared with the corresponding MSEs. So the MSEseg

will be opposed to the ρsegi and the MSEnoSeg will be compared to the correlation ρwhole,
which is calculated as the average of all the correlations between Sref and each Sinf .

4.2 Input Matrices
To test the differences between no segmented and segmented time series, a sine-curve is cre-
ated and used as the Sorg. It’s frequency forg is used for the calibration and is though set to 1.
The Offset is 0.

For the Sref in A, the frequencies are multiplied by a variable f-multiplier and the phase in
degrees is used to denote the shift.

The missing values in Sref are created in blocks either on a peak of the Sorg or between
peaks, as shown in figures 4.1(a) and 4.1(b). For this the values in Sorg are skipped out and
replaced with interpolated values.

4.3 Pretesting
First the recovery is made with Sinf = Sorg to test, what the minimum MSEorg is. The
MSEnoSeg and the MSEseg are identically in this case, because the segmentation methods
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(a) missing values block at a peak (b) missing values block between two peaks

Figure 4.1: Positioning of the missing values blocks

used creates only one segment containing the entire data set. The obtained value is an orien-
tation for the other results. The MSEorg is set to -0.0025.

4.4 Irregular Data

4.4.1 Recovery of Data at a Peak
When the block of missing values is set at a peak and the f-multiplier is set to 0.5 or 1.5 the
impr gets positive. When the f-multiplier is set to 2 the improvement gets worse.

f-multiplier MSEnoSeg MSEseg impr
0.5 0.149 0.0577 0.0912
1.5 0.1413 0.0385 0.1028
2 0.1455 0.2291 -0.0835

For all other tested values of f-multiplier no linear relation to the improvement or any other
regularity can be found. What can clearly be seen is, that the MSEnoSeg varies less than the
MSEseg. So the low values as well as the high values of impr are due to the variation of the
MSEseg.

When comparing the figures 4.2, 4.3 and 4.4 the different reactions on different frequencies
can be seen very clearly. The recovery, when using the entire dataset (SnoSeg), does only
change little when tested with different frequencies for Sinf . So the small differences between
the figures 4.2(a), 4.3(a) and 4.4(a) are because of the recovery using the entire data set. The
values are recovered with a value close to zero, which is the same value as the average of all
values in a sine-curve. The average value of a sine-curve changes, when only a segment is
taken, which can be seen in the figures 4.2(b), 4.3(b) and 4.4(b) which show the results when
the segmentation is used. The recovered values are very sensible to different frequencies and
do though recover differently for each frequency of Sinf .
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(a) Snoseg (b) Sseg

Figure 4.2: recovered series with f-multiplier = 0.5 with missing values at peak

(a) Snoseg (b) Sseg

Figure 4.3: recovered series with f-multiplier = 1.5 with missing values at peak

(a) Snoseg (b) Sseg

Figure 4.4: recovered series with f-multiplier = 2.0 with missing values at peak
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4.4.2 Recovery of Data between Peaks
When the block of missing values is set between two peaks, impr has the opposite results.

f-multiplier MSEnoSeg MSEseg improvement
0.5 0.084 0.1676 -0.0836
1.5 0.0745 0.1295 -0.0550
2 0.0958 0.0135 0.0822

Again the MSEseg has a bigger variation then the MSEnoSeg.
In the figures 4.5, 4.6 and 4.7 the same can be observed as when the recovered values are on

a peak. When the segmentation is made, the recovery is more sensible to different frequencies
of the Sinf .

(a) Snoseg (b) Sseg

Figure 4.5: recovered series with f-multiplier = 0.5 and missing values between peaks

(a) Snoseg (b) Sseg

Figure 4.6: recovered series with f-multiplier = 1.5 and missing values between peaks
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(a) Snoseg (b) Sseg

Figure 4.7: recovered series with f-multiplier = 2.0 and missing values between peaks

4.4.3 Correlations
When looking at the correlations and their corresponding MSEs than a big difference between
the ρwhole and the ρsegi appears. Interestingly for the results of no segmentation the abso-
lute values ρwhole are always lower than those of ρsegi. Still the MSEseg and the MSEnoSeg

have impr values that lie in a similar range. So: no clear relation between the MSEs and the
corresponding correlations can be seen.

MSEnoSeg ρwhole MSEseg ρsegi
0.0839 -0.2529 0.1675 -0.4675
0.0745 -0.1512 0.1295 0.8971
0.0958 0.1387 0.0135 -0.9547

4.5 Shifted Data

4.5.1 Recovery of data at a peak
When the block of missing values is at a peak, the impr has no linear relation to the phase at all.
Phases of 60 and 90 degrees result in a positive improvement and the phase 70 degrees produce
a negative improvement. 80 degrees shift has almost the value 0 and the highest absolute value
is at a shift of 240 degrees.

phase MSEnoSeg MSEseg impr
60 0.1025 0.0806 0.0219
70 0.1281 0.1564 -0.0283
80 0.1525 0.1491 0.0033
90 0.17 0.1387 0.0312
240 0.1025 0.1499 -0.0473
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(a) Snoseg (b) Sseg

Figure 4.8: recovered series with phase = 90 and missing values at a peak

(a) Snoseg (b) Sseg

Figure 4.9: recovered series with phase = 240 and missing values at a peak

So as well as for the irregular Sinf no simple linear relation can be found. It is not possible
to predict the outcome of the recovery based on the shift.

The figures 4.8(a) and 4.9(a) show, that taking the whole dataset as input for the recovery
does not lead to big differences, even though the shift of the Sinf are very different. As it is
for different frequencies, the segmentation is more sensible to shifts too. This can be seen in
the figures 4.8(b) and 4.9(b).

4.5.2 Recovery of data between peaks
When the block of missing values is set between two peaks, again no direct relation between
the phase and the resulting impr can be seen. The most catching similarity to the results when
the block of missing values is set at a peak is, that the highest absolute value of impr is found
as well, when the phase is 240 degrees.

In contrast to the results presented above, there is a small general trend of the improvement.
When calculating the average of all the resulting impr for shifts from 10 to 350 degrees in
steps of 10 degrees, one gets the value 0.009. Even though this is a relative small value it
shows, that the segmented method in average performs better.
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4.6 Summary
The main results of the experiments are:

• The impr value is more sensible to irregular Sref than to shifts.

• The variation of impr is mostly due to the segmented inputs.

• For both, phase and f-multiplier, no linear relation with the impr can be found.

• ρsegi > ρwhole does not imply a higher impr.

• when the Sinf are shifted and the block of missing values is between peaks, the results
of impr are slightly positive in average.
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5 Conclusion

Using the segmentation for the recovery of the initialized values is more sensible to shifts and
frequencies of the Sinf . In some cases this is an advantage. The main difference between
using the entire dataset and using the segmentation is, that the recovered values are closer to
zero when using the entire dataset. So if the average of the value of the Sinf is close to zero
but the original values of Sref are not, then the segmentation has a chance to recover more
precisely. But at the same time it has a higher risk to recover worse.

The overall conclusion though is, that there are cases, in which the segmentation can provide
a better result of the recovery, because it reacts stronger to the local values of Sinf around the
values that are recovered. So when a dataset is highly irregular, the segmentation seems to be
the better choice.

An additional conclusion has been made when the first implementation of the recovery
process had been tested with real world data. The recovered values were more or less the
same as the initialized had allready been. The reason for this was the idea of calculating the x
not just out of the first column li of Li and the first row ri of Ri. Instead the matrices Li and
Ri had just been reduced by one column and one row respectively and were then multiplied to
obtain the x. This led to a second implementation which is described in the 2.
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