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Introduction
In this project we deal with missing data values to be calculated in a database by an appropriate 
choice of a statistical regression and the evaluation of a database query performance. The database 
contains values of measurements of animal feed that have been made by specific data. The number 
of measurements is the main factor in the evaluation of food quality. But since chemical analysis is 
long and costly, we usually tend to make a sufficient number of measurements only for a small 
number of components. To perform a good analysis of the mixture of feed, it is essential to look at 
all individual components, even when they are not measured. The regression method, currently just 
calculated outside the database and for a limited time period, helps us to fill these missing data in 
the food database. We have to consider that correlated components can change with time: correlated 
components become uncorrelated and correlation parameters change. Therefore we consider both a 
linear and a non-linear regression method, kernel regression, to find correlated components, and to 
compare the two methods with each other. Assuming correlated components are known and 
parameters of linear regression are stored in the database, we introduce an Entity-Relationship 
model as a design for our feed database, translate it into a SQL schema and evaluate our SQL 
queries.



The Test Data
Before we can calculate any statistical regression in the database, we have to take a closer look at it. 
If we consider the food database “Analyses of Barley 1992-2009” in more detail, it is obvious that 
there are no intrinsic values of the nutrients 'OS', 'RPT', 'RPL', 'RLPs', 'RLGC', 'RFB' and 'BE'. 
Therefore we can not determine the values of these nutrients, since we have no fundamental data. 
The following graphical extract from the database shows its main characteristics (Table 1).

In Table 1, the first row gives us the food type or component. The second row is about the 
production place and the next row specifies the date, when the nutrient was measured. All of the rest 
rows contain measurements for the nutrients. The first line in Table 1 gives us the name of the row 
or nutrient, the second line gives us the scale, so that we know how to interpret the measurements.1 
The nutrient 'TSO' has only one single entry with the component “Gerste undef” from18th May 
2004.2 The nutrients 'CA', 'SE' and 'NA' have very inaccurate measurements in the database:

• For example, the nutrient 'CA',  in the components 
▪ “Orge entier”, “orge moulu”, “Orge APLATIE” (17th line), 
▪ “Orge APLATIE 1” (18th line), 
▪ “Orge APLATIE 1” (26th line), and 
▪ “Gerste” (27th line) 

has the entry "<1.0". 

• With the nutrient 'SE' the measurement of the component “Gerste undef” from 2002, 
has three entries “<20”, which is a rather useless piece of information.

• The nutrient 'NA' contains similar information: in three entries of the component 
“Gerste undef” from 23rd of March 2005 we have “<.20” and the same in the last 
three entries in the component “Gerste undef” from 17th of August 2005.

The lines 86-91 (Table 2) contain useful overall information for each column:

• Line 86 contains the number of component entries for a specific nutrient.
• Line 87 contains the mean value of all component entries for a specific nutrient.
• Line 88 calculates an estimate of the standard deviation based on all the entries.
• Lines 89 and 90 show the minimal and maximal component value respectively.
• Line 91 contains the median value for a specific nutrient. It can also be empty.

1 “TS” is short for “Trockensubstanz” or in English “dry substance”.
2 This and all following information in this section can be found in the database “Analyses of Barley 1992-2009”

Table 1: Partial representation of the feed database

Anbauort Probe TSO TSL OS RA RP RPK
Produktion g/kg g/kg g/kg TS g/kg TS g/kg TS g/kg TS

Wintergerste Schweiz 870 26 113
Sommergerste Schweiz 870 25 119
Wintergerste Westschweiz 26.44 131.03
Gerste Schweiz 5.6.1992 901.92 25.98 116.97
Gerste Schweiz 12.23.1992 874.82 24.72 115.68
Gerste 863.20 27.56

Überprodukt rohnmin
arrival

Table 2: Example for the lines 86-91 of the test data

86 n 31 66 79 67 5
87 x 879.21 881.85 24.79 120.47 119.14
88 17.583 15.327 4.200 8.564 6.997
89 min 819.9 852.95 19.73 98.54 113
90 915.5 936.9 55.62 142.42 131.03
91 Median

sd

max



Linear Regression and Kernel-Regression 
By means of regression we can examine a possible correlation in our food database, concerning the 
relationships between the measurements. We assume that there is a connection between the 
nutrients. In the following we have the linear regression and the non-linear kernel regression. The 
common factor in both approaches is the assumption that the function is not continuously present, 
but only measured pair of values (xi, yi)i=1,...,n  are at hand, whereas yi describes the measurement at 
the parameter point xi.

Linear Regression
In the linear regression, the goal is to find an affine (“linear”) figure

f(x) = m*x+b

which approaches the pair of values as near as possible. Mathematically, this means that the root 
mean square becomes as small as possible. For a precise representation see [Sauter 10]. The 
implementation of the regression in Matlab is dealt with the QR-method taken from [Sauter 10]. 
What is important for us is the assignment of the both coefficients 'm' and 'b' in the affine function. 
For this we prepare a text file in the format 'dat', that contains the pairs of value in two columns and 
as an example it could appear as follows:

901.92 25.98
874.82 24.72
863.20 27.56
927.15 26.16
919.10 25.02
876.70 30.57
896.70 26.54
...... ......

The first column consists of the measured points as the basis x-values, and the second column of the 
measured points as the y-values. After the file is loaded we save the contents into variables. To 
calculate the coefficients, we solve it by means of the QR-method, which were implemented in the 
functions qrsolve_er and qrsolve3 and save the coefficients in a variable named coeff. The 
corresponding M-file linreg.m consists of the following Matlab commands:
K = load('tsl_ra.dat');
H = K(:,1); %% 1. Spalte: Parameterpunkte 
g = K(:,2); %% 2. Spalte: Wertepunkte
coeff = qrsolve_er(H,g);
x = min(H):0.1:max(H);
y = coeff(1)+coeff(2)*x;
plot(H,g,'bx',x,y,'r-'); grid

That means we can retrieve the coefficients coeff (1) and coeff (2) and thereby calculate the missing 
y-values for the appropriate components by simple insertion. Therefore we only have to decide 
where we want to assume a linear relationship. Following that we simply change the file name 
'tsl_ra.dat'  in the M-file linreg.m to the file name where our pairs of values are and the calculation 
procedure is the same as before.

3 See Appendix B



Kernel-Regression
In the study of linear regression we can assume our data to be linear. But if we know or suppose that 
the data is not linear, we need a corresponding model, which approximates our data locally in a non-
linear way. For this we use Kernel-Regression. The advantage is that it requires no distribution of 
the data. A set of identical weighted function called Kernel local to each parameter point is 
assigned, based on distance from the parameter point. So this means by putting the kernel at our 
parameter point xi, we can extend the parameter values at a certain small step. There are some 
different ways to calculate the kernel. The formula of Gaussian Kernel is 

K α(x , xi)=exp(−
(x− xi)

2

2⋅α2 )

where xi is our parameter point, x the point near to xi and α is the kernel width.4 Then the estimated 
value yj at xj is given by the following Kernel Regression formula, known as the Nadaraya-Watson  
kernel weighted average:

y j=
∑
i=1

n

wi⋅K α( x j , x i)

∑
i=1

n

K α( x j , x i)

Or in words: “The nominator of the Kernel Regression formula is an array sum product of kernel 
and weight, while the denominator is just the sum of kernel values at domain xj for all data points 
xi.”5 The weights of each kernel have to minimize the sum of square error. See [Teknomo 07] for 
how this is done. There are also other kernel estimators, such as Priestley-Chao or Gasser-Müller.
To calculate the regression in Matlab we use a “Kernel Regression Toolbox”. We save the paired 
values from our data file into the vectors x and y as before and start the calculation by the Matlab 
command kern(x,y). Then we start to find optimized parameters for the regression, for example 
optimal bandwidth. After finding them, we have the results and we are then able to visualize them. 
To extract any numbers from the results, we plot the figure and open up the property editor in the 
menu “View”. After clicking on “More properties...” a new window pops up and in the rows 
“XData” and “YData” we can find the actual values on the figure. An alternative is to use the “Data 
Cursor” from the “Tools” menu. See [Koláček 09] for further details.

Results
The calculated values are plotted in Matlab. The following is a table of five assumed linear 
relationships:

Missing values 
for nutrient

Basis for regression 
is nutrient

Analysis made for  
the year(s)

TSL RA 2005, 2008
TSO TSL 2005
RP RA 2005, 2008
NA P 2008
Co SE 2008

4 From [Teknomo 07] about kernel width: “Wider kernel bandwidth will span to larger domain. You can imagine 
kernel width as the width of a window center at the data point and give weighting value to any points located in the 
window. These weights will be used as local average for all points within that window.”

5 Taken from [Teknomo 07]



Below are the graphs, comparing the linear regression on the left and the kernel regression on the 
right side. 

a) Analysis for the year 2005 and the nutrients 'TSL' and 'RA' (corresponding file 
“tsl_ra2005.dat”)

b) Analysis for the year 2008 and the nutrients 'TSL' and 'RA' (corresponding file 
“tsl_ra2008.dat”)

c) Analysis for the year 2005 and the nutrients 'TSO' and 'TSL' (corresponding file 
“tso_tsl.dat”)

d) Analysis for the year 2005 and the nutrients 'RP' and 'RA' (corresponding file 
“rp_ra2005.dat”)



e) Analysis for the year 2008 and the nutrients 'RP' and 'RA' (corresponding file 
“rp_ra2008.dat”)

f) Analysis for the year 2008 and the nutrients 'NA' and 'P' (corresponding file “na_p.dat”)

g) Analysis for the year 2008 and the nutrients 'Co' and 'SE' (corresponding file “co_se.dat”)

Analysis for the whole given period
All graphs are for a period of one year. We repeat the calculations for the whole given period. Here 
we note that the analysis for the nutrients 'Co' and 'SE' is the same as before, since we have no 
additional useful data outside the year 2008. As before the linear regression is on the left side and 
the kernel regression computation is shown on the right side.



a) Analysis for the nutrients 'TSL' and 'RA' (corresponding file “tsl_ra_whole.dat”)

b) Analysis for the nutrients 'TSO' and 'TSL' (corresponding file “tso_tsl_whole.dat”)

c) Analysis for the nutrients 'RP' and 'RA' (corresponding file “rp_ra_whole.dat”)

d) Analysis for the nutrients 'NA' and 'P' (corresponding file “na_p_whole.dat”)



Graphical observations and comparisons
We see that not all of the assumed linear relationships deliver good results. The linear regression 
analysis for the year 2005 and the nutrients 'TSL' and 'RA' or the nutrients 'TSO' and 'TSL' are such 
examples. In fact linear regression is not applicable at all for these. The kernel regression method 
works better here and thus finds new non-linear correlations between the aforementioned 
components. A very good example for this is the kernel regression analysis for the year 2005 and 
the nutrients 'TSO' and 'TSL'.

Furthermore the kernel regression seems to find all correlated components as it does linear 
regression. But we can only say “seems to find”, because the kernel regression works only locally. 
So outside our data range we can only speculate. The reason, why kernel regression finds more or 
less correlated components as good as linear regression lies in the non-parametric technique. We 
don't get linear results, but comparing both methods, we see that the kernel regression is similar and 
near to the linear results. This is because the kernel regression does not assume any distribution, so 
it finds nearly linear correlations, too. Adjusting the parameters in the kernel regression shows us 
that we can get very near to linear approximations of our data, if we want to force it. This 
demonstrates the flexibility of the kernel regression method.

On the other hand, kernel regression does not help very much if we can clearly assume a linear 
correlation between the components. An excellent example for this is the comparison between the 
linear and kernel regression analysis for the years 2005, 2008 and the whole given period and the 
nutrients 'RP' and 'RA', where the linear correlation is clearly given. Although the kernel regression 
also finds a correlation near to the linear regression, the linear method is a better alternative.

We observe that if we analyse the regression methods for the whole given period, the linear 
regression seems to work better except for the nutrients 'TSL' and 'TSO', where the two pair of 
values on the right side force the linear regression to deliver a declining line, whereas the kernel 
regression adjusts the values – as it should – to get a satisfactory result. 

Another conclusion we can make, is, that correlations vary depending on time intervals. An 
example for this, is, the correlation between the nutrients 'TSL' and 'RA'. Whereas the linear 
correlation doesn't apply to the year 2005 for these nutrients, it seems to work for the year 2008 and 
even better for the whole given period. It can also occur, that the correlation doesn't change through 
time, as it is in the case for the nutrients 'RP' and 'RA'. We get a linear correlation for the years 2005 
and 2008 and also for the whole given period. Correlated nutrients can become uncorrelated in 
terms of the regression method by new measurements for the nutrients made in the future. So for a 
fixed time interval, we can determine if there's a correlation change or not. But we can 
unquestionably say that correlations can vary with time.



Numerical observations and comparisons
For a numerical comparison we need to calculate an error. The standard deviation is suitable in our 
case, with which we can compare both methods. The standard deviation is calculated by

σ=√ 1
n⋅∑i=1

n

( f ( x i)− yi)
2

where n is the number of measurements, xi and yi are the pair of values and f(xi) is the value of the 
regression function at the parameter point xi. Below is a table with the numerical observations 
representing the error in each regression method.

Missing values 
for the nutrient

Basis for  
regression is  
the nutrient

Year of analysis Error (linear 
regression)

Error (kernel  
regression)

TSL RA 2005 4.2838 5.3080
TSL RA 2008 11.0625 10.9749
TSO TSL 2005 6.5379 8.0942
RP RA 2005 10.0765  10.7102
RP RA 2008 7.1560 7.6932
NA P 2008 0.0105 0.0120
Co SE 2008 18.5111 18.5752

TSL RA Whole given period 14.1645 15.7086
TSO TSL Whole given period 17.1067 19.5016
RP RA Whole given period 8.4512 8.4627
NA P Whole given period 0.0584 0.0592

We are now confronted with the fact that the kernel regression delivers minimal greater errors. In 
general, we can see that the difference between the kernel and linear method is a small one. We 
have already stated that the linear method works better for the analysis of the whole given period, 
but why does the kernel regression method deliver a greater error for the nutrients 'TSO' and 'TSL'? 
The answers lie in the two pairs of values at the right side, where the linear line is nearer than the 
kernel regression, which affects the error in the kernel method more than in the linear one. As we 
have already noted in the graphical observation, the linear method works clearly better for the 
nutrients 'RP' and 'RA' for the years 2005 and 2008. The figures in the table support this fact.

Conclusion
The comparison of results shows us, that given a clearly linear correlation, the linear regression 
method works better. But if the data is somewhat “not specifically linear”, the kernel regression 
method is sufficient enough. If we regard both methods in the aspects of capability and flexibility, 
the kernel regression is the better method. In terms of simplicity the linear method is clearly the 
better one and can be used in many cases. The kernel method however, can up to some degree also 
cope with linear correlations. So all in all, the more flexible kernel regression method suits our 
needs better. We have also another important aspect to consider in a feed database: correlations vary 
depending on time interval.



Database query execution generating missing values
In this section we assume that correlated nutrients and parameters of linear regression are known 
and stored in the database. Our question is how such a table will look when we design a SQL query 
which computes missing values of one nutrient based on known values of other nutrient and 
parameters of linear regression and how the SQL query operates on the data.

Database Design
An ER diagram of the feed database together with the parameters could look as in the following 
figure.

If a component is deleted out of the database, the corresponding measures and the depending 
parameters have to be deleted too. The “Time interval” attribute for the weak entity “Parameters” 
defines the period for which the parameters are valid. With this database design we enable storage 
of time varying correlations.

SQL schema
We now represent our design in a SQL schema, where the primary keys are underlined and the 
foreign keys are dotted underlined. Below is a partial representation of our design in a SQL schema.

Components
Name Measured as
TSO g/kg
TSL g/kg
OS g/kg TS
RA g/kg TS
RP g/kg TS
RPK g/kg TS
RPT g/kg TS
RPL g/kg TS
... ...

Measures
ID Food type Place Date Value Name
1 Wintergerste Schweiz 870 TSO
2 Sommergerste Schweiz 870 TSO
3 Wintergerste Westschweiz TSO
... ... ... ... ... ...
81 Wintergerste Schweiz TSL
82 Sommergerste Schweiz TSL
83 Wintergerste Westschweiz TSL
84 Gerste Schweiz 5.6.1992 901.92 TSL
... ... ... ... ... ...

Components NameMeasures

Parameters

ID

ID

Food type

n 1

1

n depend on

of

ValueDate
Measured as

Place

Coeff1

Coeff2

Basis 
component

Time interval



We can see that the “Measures” table will be large, since every component consists of 80 
measurement entry fields. Most of the entries for the attributes “Date”, “Place” or “Value” will be 
empty. There are some nutrients like 'OS', 'RPT' or 'RPL', which don't have any measurement values 
at all, as mentioned before in the section “The Test Data”.

Parameters
ID Basis  

component
Coeff1 Coeff2 Time interval Name

1 TSL 1123.7 - 0.2780 1992-2009 TSO
2 RA 108.9586 0.4812 1992-2009 RP
3 RA 823.3514 2.4242 1992-2009 TSL
... ... ... ... ...

In this partial table of our parameters, there are three examples for the parameters of a linear 
regression. The order of the coefficients in the linear regression matters, so we have to pay attention 
to this, when we insert new values. We can extract the following information from the table above:

• Nutrients 'TSO' (missing y-values) and 'TSL' (basis for regression) give us for the whole 
given period the parameters 1123.7 and –0.2780, so 

y = 1123.7 – 0.2780*x

• Nutrients 'RP' (missing y-values) and 'RA' (basis for regression) give us for the whole given 
period the parameters 108.9586 and 0.4812, so

y = 108.9586 + 0.4812*x

• Nutrients 'TSL' (missing y-values) and 'RA' (basis for regression) give us for the whole 
given period the parameters 823.3514 and 2.4242, so

y = 823.3514 + 2.4242*x
So if we design a SQL query which has to compute missing values, by this way the information is 
directly taken out of the feed database and we get the calculated values. The advantage from this 
method is, that if the correlation parameters should be updated or new parameters should be 
inserted, it can be easily done this way. This table represents the design that the parameters are for a 
fixed period. If we want to restrict the parameters to another limited time period, all we have to do 
is to store the year or years in the attribute “Time interval”. By this way, we are able to store 
multiple parameters for time dependent correlations.

Database queries
For a database query we focus our attention to the linear correlated nutrients 'RP' (missing y-values) 
and 'RA' (x-basis for regression) for the whole given period, so as above 

y = 108.9586 + 0.4812*x. 

First we restrict our entries only to the values we need to calculate. Here we have to note, that for 
both nutrients 'RA' and 'RP' there are missing values for the food type named “Gerste undef” and 
the date '18.05.2004'. This is the only entry we have to omit. The SQL query

create view RAandRPValues as
select * from

(select * from Measures where Name = 'RA' or Name = 'RP')
where Date != '18.05.2004'
order by ID;



accomplishes this, yielding 158 entries, 79 for each nutrient. The ID numbers for the nutrient 'RA' 
range from 241 to 320, and for the nutrient 'RP' from 321 to 400. 

RAandRPValues
ID Food type Place Date Value Name
241 Wintergerste Schweiz 26 RA
242 Sommergerste Schweiz 25 RA
243 Wintergerste Westschweiz 26.44 RA
... ... ... ... ... ...
321 Wintergerste Schweiz RP
322 Sommergerste Schweiz RP
323 Wintergerste Westschweiz RP
... ... ... ... ... ...

To combine the corresponding values in the calculation and to make the SQL statement easier, we 
first split up the parts of the table containing the values for the nutrient 'RA' in a temporary view. In 
the next step, we design a SQL query generating all missing values for the nutrient 'RP' based on the 
values for 'RA' and the linear regression parameters and saving them in our view 
“RAandRPvalues”.

with Parameters p as (
select Coeff1, Coeff2 from Parameters
where Basis component = 'RA' and Name = 'RP' 
and Time interval = '1992-2009' )

, RAvalues ra as (
select * from RAandRPValues where ID in (241,320)
)

update RAandRPValues 
set Value = p.Coeff1 + p.Coeff2 * ra.Value
where ID = ra.ID + 80 and Value is NULL

The update clause in the SQL query computes twelve missing (“NULL”) values for the nutrient 
'RP'. The result of this query is partially illustrated below, where the empty entries of values for the 
nutrient 'RP' are now filled with the calculated numbers. 

RAandRPvalues
ID Food type Place Date Value Name
241 Wintergerste Schweiz 26 RA
242 Sommergerste Schweiz 25 RA
243 Wintergerste Westschweiz 26.44 RA
... ... ... ... ... ...
321 Wintergerste Schweiz 121.4698 RP
322 Sommergerste Schweiz 120.9886 RP
323 Wintergerste Westschweiz 121.6815 RP
324 Gerste Schweiz 5.6.1992 121.4602 RP
... ... ... ... ... ...



It is advisable therefore to leave the original feed database as it is and to store the values in a new or 
temporary view, since the correlation parameters can change over time. 

Another alternative would be to alter the table “Measures” to include one more attribute called 
“computed” with a Boolean data type or predefined numbers, for example “0” meaning 'measured' 
and “1” meaning 'computed'. But then again, we have to update all old numbers and pay attention to 
the entries, which are measured and not computed. Creating a new view and deleting the old, 
deprecated one, is far easier.

Summary
Firstly we analyzed the test data and subsequently introduced mathematical concepts, our 
implementations and work tools for both statistical regression methods. Using these tools, we can 
see in our visual and numerical analysis that correlated components can become uncorrelated and 
that the kernel regression method finds new correlated components in comparison with the linear 
regression. One of the main conclusions of our work is, that correlations vary, depending on time 
intervals. The numerical comparison of both regression methods show, that the difference is 
minimal. The graphical comparison, however clearly shows that a sophisticated choice is more 
appropriate, depending on time intervals and simplicity and necessity of application. 

Our goal was to integrate regression analysis into the feed database. After introducing our Entity-
Relationship model of the feed database and a possible SQL schema filled with our test data we 
evaluated a query which computes missing values based on known linear correlations and stored 
regression parameters. We observed the fact, that it is better, to keep the original database as it 
stands and to create new views of the feed database to be able to manipulate, store and alter the 
information in the tables without taking other factors into account, which only would complicate 
our work. Our goal was achieved but at cost of a big “Measures” table. 

The next questions could be how to model a more efficient alternative database design, for example 
resulting in a smaller “Measures” table with better complexity, and how to deal with components 
with useless entries.
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Appendix A: Files for the pair of values
File co_se.dat File na_p.dat File tsl_ra2008.dat File rp_ra2008.dat

8.13 15.89
14.12 21.01
10.46 4.35
17.72 18.16
34.19 73.61
44.11 40.66
22.59 8.36
56.69 3.51
31.93 17.76
29.9 48.18
31.63 26.45
1.77 32.11
35.61 13.57
11.18 11.74
41.21 4.52
21.14 3.93

4.3653 0.0630
4.1922 0.0241
4.4343 0.0433
4.8049 0.0244
3.8077 0.0402
3.8699 0.0383
4.2289 0.0180
3.7276 0.0303
4.4740 0.0224
4.1821 0.0657
3.9828 0.0340
3.8202 0.0409
4.1137 0.0343
4.0028 0.0249
4.0951 0.0275
4.2803 0.0309
4.1215 0.0418
4.3998 0.0329
4.4158 0.0363
4.2622 0.0426
3.6549 0.0316
4.2339 0.0324
3.7632 0.0360
3.6843 0.0357
3.7914 0.0376
3.6551 0.0315
3.6554 0.0251

23.48 885.08
21.09 900.64
22.93 862.15
24.21 881.29
20.38 880.13
22.29 886.2
25.27 894.45
23.25 884.15
25.45 884.2
22.99 881.94
22.37 881.99
22.33 892.71
23.78 876.46
21.89 863.89
21.91 869.05
24.16 902.89
22.42 878.94
23.94 862.69
24.14 870.33
23.4 897.35
22.93 869.55
25.29 887.53
24.1 884.46
22.61 894.25
23.72 885.68
22.51 889.55
22.73 895.2

23.48 125.07
21.09 118.75
22.93 123.01
24.21 127.31
20.38 119.81
22.29 116.9
25.27 134.61
23.25 131.37
25.45 115.64
22.99 113.45
22.37 124.61
22.33 121.26
23.78 111.6
21.89 129.07
21.91 122.72
24.16 129.58
22.42 128.91
23.94 136.61
24.14 118.63
23.4 111.46
22.93 129.78
25.29 142.42
24.1 124.6
22.61 118.37
23.72 124.09
22.51 117.7
22.73 115.67

File rp_ra2005.dat File tsl_ra2005.dat File tso_tsl.dat

24.05 117.71
22.85 115.81
22.24 118.09
23.42 119.32
25.43 123.25
27.62 122.78
25.22 125.22
25.6 102.62
25.11 98.54
25.69 102.62
25.61 136.97
25.43 136.71
22.83 109.85
21.97 109.92
22.53 110.91
21.57 111.07
23.76 113.15

24.05 878.47
22.85 880.75
22.24 880.25
23.42 877.51
25.43 881.96
27.62 875.53
25.22 876.84
25.6 869.91
25.11 869.39
25.69 869.44
25.61 873.54
25.43 872.68
22.83 872.19
21.97 871.58
22.53 871.71
21.57 869.48
23.76 868.9

878.47 883.5
880.75 882.5
880.25 884.1
877.51 881
881.96 877.5
875.53 876.4
876.84 877.2
869.91 867.7
869.39 879.6
869.44 873.5
873.54 895.2
872.68 885.4
872.19 885.4
871.58 889.6
871.71 891.9
869.48 883.7
868.9 884.7



tso_tsl_whole.dat na_p_whole.dat tsl_ra_whole.dat rp_ra_whole.dat

927.15 855.6
876.70 866.1
936.90 819.9
859 862.2
860.25 864.3
852.95 859.2
882.65 889.7
901.85 913.5
889.20 915.5
878.47 883.5
880.75 882.5
880.25 884.1
877.51 881.0
881.96 877.5
875.53 876.4
876.84 877.2
869.91 867.7
869.39 879.6
869.44 873.5
873.54 895.2
872.68 885.4
872.19 885.4
871.58 889.6
871.71 891.9
869.48 883.7
868.90 884.7
885.28 893.1
883.94 882.4

4.6107 0.0753
4.0554 0.0593
4.2650 0.0388
4.1095 0.1478
4.0951 0.1709
3.9380 0.1588
4.1291 0.1605
3.7046 0.0421
4.0608 0.0333
4.3653 0.0630
4.1922 0.0241
4.4343 0.0433
4.8049 0.0244
3.8077 0.0402
3.8699 0.0383
4.2289 0.0180
3.7276 0.0303
4.4740 0.0224
4.1821 0.0657
3.9828 0.0340
3.8202 0.0409
4.1137 0.0343
4.0028 0.0249
4.0951 0.0275
4.2803 0.0309
4.1215 0.0418
4.3998 0.0329
4.4158 0.0363
4.2622 0.0426
3.6549 0.0316
4.2339 0.0324
3.7632 0.0360
3.6843 0.0357
3.7914 0.0376
3.6551 0.0315
3.6554 0.0251
4.0112 0.3149

25.98 901.92
24.72 874.82
27.56 863.20
26.16 927.15
25.02 919.10
30.57 876.70
26.54 896.70
24.66 875.9
19.73 866.50
22.97 901.30
22.62 881.95
24.82 888.55
33.73 936.90
23.15 859
23.18 860.25
22.59 852.95
26.77 882.65
25.77 901.85
29.56 889.20
24.05 878.47
22.85 880.75
22.24 880.25
23.42 877.51
25.43 881.96
27.62 875.53
25.22 876.84
25.6 869.91
25.11 869.39
25.69 869.44
25.61 873.54
25.43 872.68
22.83 872.19
21.97 871.58
22.53 871.71
21.57 869.48
23.76 868.90
25.4 885.28
21.88 883.94
23.48 885.08
21.09 900.64
22.93 862.15
24.21 881.29
20.38 880.13
22.29 886.2
25.27 894.45
23.25 884.15
25.45 884.2
22.99 881.94
22.37 881.99
22.33 892.71

25.41 114.66
25.78 121.13
26.09 109.84
25.85 108.36
25.72 112.86
24.66 119.31
29.21 120.59
28.62 120.16
22.12 117.2
23.68 118.59
22.97 124.26
22.62 112.25
33.73 131.6
23.15 127.47
23.18 126.13
22.59 128.38
26.77 125.59
25.77 125.46
29.56 125.34
24.05 117.71
22.85 115.81
22.24 118.09
23.42 119.32
25.43 123.25
27.62 122.78
25.22 125.22
25.6 102.62
25.11 98.54
25.69 102.62
25.61 136.97
25.43 136.71
22.83 109.85
21.97 109.92
22.53 110.91
21.57 111.07
23.76 113.15
25.4 116.91
21.88 121.05
23.48 125.07
21.09 118.75
22.93 123.01
24.21 127.31
20.38 119.81
22.29 116.9
25.27 134.61
23.25 131.37
25.45 115.64
22.99 113.45
22.37 124.61
22.33 121.26



23.78 876.46
21.89 863.89
21.91 869.05
24.16 902.89
22.42 878.94
23.94 862.69
24.14 870.33
23.4 897.35
22.93 869.55
25.29 887.53
24.1 884.46
22.61 894.25
23.72 885.68
22.51 889.55
22.73 895.2
22.76 873.4

23.78 111.6
21.89 129.07
21.91 122.72
24.16 129.58
22.42 128.91
23.94 136.61
24.14 118.63
23.4 111.46
22.93 129.78
25.29 142.42
24.1 124.6
22.61 118.37
23.72 124.09
22.51 117.7
22.73 115.67
22.76 123.71



Appendix B: Own Matlab-Programs

File qrsolve_er.m
function [x] = qrsolve_er(X,f)
clc
[n k] = size(X);
M = zeros(n,k+1);
M(1:n,1) = 1;
M(:,2:k+1) = X(:,1:k);
A=M;
R = A'*A;
x = qrsolve(R,A'*f);
x

File qrsolve.m
function x = qrsolve(A,b);
R = A;
n = size(R);
QH = eye(n);

for i = 1:(n-1)

    a = R(i:n,i);
    u = a;
    u(1) = a(1)/abs(a(1))*(abs(a(1))+norm(a));
    beta = 1/(norm(a)*(abs(a(1))+norm(a)));
    I = eye(n+1-i);
    P = I-beta*u*u';
    P = blkdiag(eye(i-1),P);
    R = P*R; % Obere rechte Dreiecksmatrix
    QH = P*QH; % QH =P=P n−1  · P n−2  · ... ·P1   

end

y = QH*b;

for i = n:-1:1;

    s = y(i,1);

    for j = i+1:n;

        s = s-R(i,j)*x(j,1);

    end

        x(i,1) = s/R(i,i);

end

x
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