

In

Proceedings Visualization 99

, pages 299–305. IEEE Computer Society Press, 1999.

Implant Sprays:
Compression of Progressive Tetrahedral Mesh Connectivity

Renato Pajarola

‡

, Jarek Rossignac, Andrzej Szymczak
Graphics, Visualization & Usability Center

Georgia Institute of Technology

Abstract

Irregular tetrahedral meshes, which are popular in many engineer-
ing and scientific applications, often contain a large number of
vertices. A mesh of V vertices and T tetrahedra requires 48·V bits
or less to store the vertex coordinates, 4·T·log

2

(V) bits to store the
tetrahedra-vertex incidence relations, also called connectivity
information, and k·V bits to store the k-bit value samples associ-
ated with the vertices. Given that T is 5 to 7 times larger than V
and that V often exceeds 32

3

, the storage space required for the
connectivity is larger than 300·V bits and thus dominates the over-
all storage cost. Our “implants spray” compression approach
introduced in this paper reduces this cost to about 30·V bits or less
– a 10:1 compression ratio. Furthermore, implant spray supports
the progressive refinement of a crude model through a series of
vertex-splits operations.

CR Categories and Subject Descriptors:

I.3.5 Computational
Geometry and Object Modeling - object representation; E.2 Data
Storage Representation - object representation; E.4 Coding and
Information Theory - data compaction and compression

Additional Keywords:

tetrahedral meshes, compression, multi-
resolution models, progressive incremental reconstruction

1. INTRODUCTION

A large portion of finite element meshes, and scientific and engi-
neering analysis results are expressed in terms of sample points
distributed through 3D space, associated scalar values, and connec-
tivity information which defines how the sampled scalar values are
to be interpolated. The simplest and most commonly used interpo-
lation is based on a decomposition of the 3D space into a tetrahe-
dral mesh, which may be defined by a tetrahedra-vertices incidence

table that takes bits for a mesh with

V

 vertices and

T

tetrahedra. In this paper we propose a compression technique
which reduces this storage cost to about 5·

T

bits.

Our compressed format, called

implant sprays

, describes a
coarse mesh and a series of implants, refinement operations. Each
implant inserts a new vertex and a series of incident tetrahedra. The

implants

 are simple extensions of the vertex split operation intro-
duced in [

5

] that are applied to tetrahedral meshes [11]. The
implant is defined by the selection of an existing vertex

v

, called
the split-vertex, a displacement vector defining the location of a
new vertex, and a cycle of triangle-faces incident upon the open
vertex

v

, called the

skirt

. We describe here an encoding of the
selection of split-vertices that requires less than 3 bits per tetrahe-
dron. Furthermore, we propose an encoding of the skirt that
requires roughly 3 bits per tetrahedron. Combined, these two tech-
niques reduce the connectivity costs per tetrahedron from the ini-
tial bits to less than six bits. Even for modest size
meshes, we obtain a compression ratio better than 10:1. These sav-
ings are important, because otherwise the connectivity data domi-
nates the storage costs. Indeed, there are roughly 6 times as many
tetrahedra as vertices – this number varies with the structure of the
mesh. Even for a small mesh of 32

3

vertices the uncompressed
connectivity cost is 360·

V

 bits (i.e. 4·6·15·

V

). In comparison, ver-
tex location may be represented with only 48·

V

 bits using 16-bit
integer coordinates in an optimally chosen coordinate system [1].

The rest of the paper is organized as follows: Section 2 pro-
vides an overview of related work on triangular and tetrahedral
meshes, in Section 3 the basic simplification and refinement opera-
tions are described, Section 4 presents detailed explanation of the
implant sprays encoding and Section 5 provides an implementation
framework, experiments are reported in Section 6, and Section 7
concludes the paper and gives an outlook over future work.

2. RELATED WORK

Recently, a lot of work has been done in short encodings of the
connectivity of triangular meshes. With few exceptions, i.e.

Pro-
gressive Forest Split Compression

 (PFS) [12] and

Compressed
Progressive Meshes

 (CPM) [8], most methods only work for sin-
gle-resolution meshes. Very successful approaches for triangular
mesh encoding are the

Topological Surgery

 method [13],

Edge-
breaker

 [10], real time connectivity compression of [

4

], and the
triangle mesh compression presented in [15]. A comprehensive
overview can also be found in [10] or [14]. These single-resolution
mesh compression algorithms are able to encode the connectivity
of a triangular mesh with less than 2 bits per triangle. The multires-
olution mesh compression methods PFS and CPM achieve a con-
nectivity encoding of less than 5 (PFS) or less than 4 bits (CPM)
per triangle while providing a progressive triangulation with sev-
eral levels of detail of increasing approximation accuracy.

Much less work has been performed on compressing the con-
nectivity of tetrahedral meshes, even though in the tetrahedral case
the incidence information dominates the geometry data, the 3D
coordinates of vertices. Only recently the

Grow & Fold

 method
was presented in [17] that encodes the connectivity of tetrahedral
meshes with roughly 7 bits per tetrahedron. However, as most of

4T V()2log⋅

4 V()2log⋅

‡

GVU Center, College of Computing
801 Atlantic Dr.
Georgia Institute of Technology
Atlanta, GA 30332-0280
pajarola@acm.org

2

the triangle mesh compression methods, this approach encodes one
single-resolution tetrahedralization. Thus it provides one level of
detail only. Progressive multiresolution tetrahedralizations [11, 16]
have only recently been presented. However, no concise encoding
of the refinement operations has been provided. Each refinement
operation of the progressive tetrahedralization in [11] needs to
specify one vertex that will be split, the so called split-vertex, and 5
to 7 incident triangular faces that will be cut and expanded into tet-
rahedra, the cut-faces. The split-vertex can be identified using

 bits in a tetrahedral mesh with

V

 vertices. The cut-
faces can be encoded locally with respect to the split-vertex.
Because a vertex in a tetrahedral mesh has about 36 incident faces,
the cut-faces can be encoded with roughly bits. A
similar coding scheme can also be applied to the multiresolution
tetrahedralization of [16].

3. PROGRESSIVE MESHES

In [

5

] the

edge collapse

 operation, and its inverse the

vertex split

,
was introduced for triangular mesh simplification, see also
Figure 1 for an example.

Progressive Meshes

 [6] apply a sequence
of edge collapse operations

M

i

→

 M

i

-1

 to a given triangular, high
resolution input mesh

M

l

max

 to create a series of simplified
meshes

M

l

max

,

M

l

max-1

, …,

M

i

,

M

i

-1

, …,

M

1

,

M

0

 with decreas-
ing approximation accuracy. The meshes

M

i

 (0 <

i

≤

l

max

) can be
reconstructed by performing the inverse sequence of vertex splits

M

i

-1

→

M

i

 starting with a crude base mesh

M

0

.

Figure 1.

Edge collapse and vertex split for triangle
mesh simplification and reconstruction.

The same basic principles of edge collapses and vertex splits
can be extended and applied to more complex meshes such as

sim-
plicial complexes

 [9] and

tetrahedral meshes

 [11]. In tetrahedral
meshes, a collapse of an edge eliminates all tetrahedra incident to
that edge and reduces the number of vertices in the mesh by one,
see also Figure 2 for a graphical example. Again, a sequence of
edge collapses and its inverse, the vertex splits, define a

progres-
sive tetrahedralization

, as proposed in [6, 11], as a series of tetra-
hedral meshes

T

0

, …,

T

l

max

 of increasing precision. In the
remainder of the paper

T

will refer to a tetrahedral mesh if not
specified otherwise. Furthermore, we denote the vertex that results
from an edge collapse as a

split-vertex

, in the refinement process
this vertex will be split into two, and the triangular faces that result
from collapsing the tetrahedra incident to the collapsed edge are
called

cut-faces

, see also Figure 2.

Figure 2.

Edge collapse and vertex split for
tetrahedral mesh simplification and reconstruction.

4. PROGRESSIVE ENCODING

As mentioned above, a progressive tetrahedralization is defined by
a crude base mesh

T

0

 and a sequence of vertex split refinement
operations. Given an intermediate mesh

T

i

, an individual refine-
ment operation is fully specified by the identification of the split-
vertex and the set of incident cut-faces, both given in

T

i

. After
locating the split-vertex

v

, identifying the cut-faces is a local pro-
cess on the neighborhood of

v

 in mesh

T

i

. The following
Section 4.1 describes our new method of locally encoding the set
of cut-faces for an individual vertex split operation. Next, the pro-
gressive encoding of the split-vertex locations is described in
Section 4.2.

Note that our algorithms presume the existance of a canonical
ordering and numbering of the vertices of any tetrahedral mesh

T

i

..
Such an ordering can arbitrarily be specified, i.e. sorted by coordi-
nates, or given by a mesh traversal, i.e. depth-first vertex tree tra-
versal.

4.1 Cut-faces

The cut-faces around a split-vertex, also called the

skirt

, define
how the incidence relations have to be modified for a vertex split
operation. To better understand the coding of the skirt, let us define
the

orbital surface

 of a split-vertex

v

 as the triangular surface con-
sisting of all faces of tetrahedra incident to

v

 that are not them-
selves incident faces of

v

, see also Figure 3. The skirt forms a
connected path, a cycle, on the triangulated orbital surface, see also
Figure 4. Note that the number of different cycles of length

k

, also
called

k

-cycles, without repetition of edges or nodes, on a triangu-
lar planar graph

G

 with

d

 vertices is much smaller than the number
of all subsets of edges of

G

 of size

k

, also called

k

-sets, because the

k

-cycles are a subset of the

k

-sets. Therefore, the corresponding
method to the triangular approach in [8] of encoding the skirt as

one particular

k

-set out of all

1

 possible ones, is not optimal

in a progressive tetrahedralization.

V()2log

6 36()2log⋅

edge collapse

vertex split

split-vertex

cut-edges

1. A planar triangulation has roughly three times as many edges as verti-
ces. Corollary, a vertex in a 3D tetrahedralization has roughly three
times as many incident faces as incident edges.

edge collapse

vertex split

split-vertex

cut-faces

3d
k 

 

3

Figure 3.

a) The

orbital

of a split-vertex

v

 consists of
all faces of tetrahedra surrounding

v

 that are not
incident to

v

. b) The cut-faces form a ring of triangles,
also called the skirt.

An optimized encoding of the skirt could be achieved by
identifying the particular

k

-cycle of a vertex split operation out of
all possible

k

-cycles on the orbital surface. The embedding of the
triangulated orbital surface in a plane is called the triangular planar
graph

G

orb

, see also Figure 4. Given a canonical numbering of the
vertices, an enumeration of all

k-cycles in the graph Gorb can be
achieved by a recursive backtracking algorithm. For every vertex,
starting with the youngest one, initiate a depth-first vertex traversal
of Gorb, again youngest first, for finding paths of length k. Back-
tracking occurs when a path is longer than k, a k-path is not a cycle,
or a node or edge of Gorb is used twice in the current path. More-
over, backtracking also occurs when a younger vertex than the
start-vertex is found on the currently explored path because k-
cycles are only reported for their youngest vertex. Note that other-
wise the same k-cycle would be reported several times, for each
vertex in the cycle. A correct path is found when it is of length k
and the end-vertex is equal to the start-vertex of the initiated tra-
versal. For this method of encoding the skirt, the number k of cut-
faces has to be known to the decoder in advance.

Figure 4. a) Shows a planar embedding of the
triangular graph Gorb of the orbital surface b). The
boundary of the cut-faces, forming a cycle in the
planar graph a), is highlighted using thick lines.

Although providing an optimized encoding in terms of space
cost (bits), the previously described approach of encoding the skirt
is inefficient in time cost. Because the enumeration of all possible
k-cycles for every split-vertex is quite time consuming we imple-
mented a faster encoding of the skirt. The path on the graph Gorb

which defines the skirt, see Figure 4 a), can be encoded as a walk
along edges of Gorb. The start of the path, a vertex of Gorb, is
encoded using bits for a split-vertex of degree d. Since
the average degree of split-vertices in a progressive tetrahedraliza-
tion is more than 14 – thus also the number of vertices of Gorb – the
start vertex encoding requires roughly 4 bits on average. The skirt
can then be specified by a path of length k, forming the k-cycle, as
a set of consecutive edges on Gorb. Each edge can be specified
using less than bits since the degree of vertices in
a planar triangulation is 6 on average. Thus the cut-faces encoded
as a walk along edges of Gorb can be expected to cost about

 bits.

Note that in general the orbital surface could be non-mani-
fold due to edge collapse operations. In the following section we
describe the constraints that prevent non-manifold orbital surfaces.
Also special care has to be taken at the border of the tetrahedral
mesh because the orbital surface will not be homeomorph to a
sphere anymore. If it is a hemisphere, the skirt will still be con-
nected but could form an open path, however, this can still effi-
ciently be encoded as a walk. If due to a non-manifold border of
the tetrahedral mesh the skirt is not anymore connected, a special
encoding would have to be used to indicate that situation.

4.2 Split-vertex

Instead of refining the current mesh Ti by one single vertex split at
a time, we perform a series of vertex splits simultaneously, also
called implants sprays, to achieve the next refined level of detail
(LOD) Ti+1. Identifying one isolated split-vertex in Ti would
require bits in a mesh with Vi vertices, which is very
costly for large meshes. However, identifying a set of Vi / k inde-
pendent split-vertices by a flag, marking all vertices in Ti with one
bit only, amounts to a constant of k bits per split-vertex. The decod-
ing process just needs to visit all vertices in Ti in the same order as
the encoder, and read the respective marking bits from the data
stream to identify the set of vertices that are to be split.

To optimize coding efficiency one would like to maximize
the fraction Vi / k of independent vertex splits that form a refine-
ment step Ti → Ti+1. In a planar triangulation k can be guaranteed
to be less than 4 by the vertex coloring theorem, and experiments
show an average of about 3 [8] for independent vertex splits. In a
tetrahedral mesh k cannot be bounded easily. Vertex coloring of
non-planar graphs depends on the maximal degree of incident
edges on a vertex, which is not bounded in a tetrahedral mesh.
Larger independent sets than induced by the vertex coloring can be
constructed, however, the maximization of k is limited by the sim-
plification process. During the construction of the progressive
mesh, the choice of independent edge collapses in Ti+1 is
restricted. To be able to distinguish the individual vertex splits in
Ti without ambiguities, the following three requirements for edge
collapses in Ti+1 are sufficient:

1. The two sets of tetrahedra in Ti+1 intersecting two
edges to be collapsed in one implant sprays simplifica-
tion batch are disjoint. (Figure 5)

2. For each edge e = (v1, v2) that will be collapsed and a
vertex w that is incident to both v1 and v2, the triple (v1,
v2, w) must define a valid face of Ti+1. (Figure 6 a)

3. For each edge e = (v1, v2) that will be collapsed and
two vertices w1,w2 such that the triangles (v1, w1, w2)
and (v2, w1, w2) are faces of Ti+1, the quadruple (v1, v2,
w1, w2) must define a valid tetrahedron of Ti+1.
(Figure 6 b)

skirtorbital surface
split-vertex

cyclea) b)

a) b)

skirt-boundarytriangular
graph Gorb

orbital surface

d()2log

6()2log 3=

14()2log 6 6()2log⋅+ 19≈

V i()2log

4

Figure 5. Independent edge collapses may not have
common incident tetrahedra. The figure shows an
analogous case in a 2D triangulation with two
selected edge collapses. All faces of the forbidden
area must not be incident to another edge collapses.

Figure 6. Examples of non-valid edge collapses,
where a) fails test number 2 and b) fails test number 3
of the constraints mentioned above.

Thus during progressive mesh construction, the simplifica-
tion process must select sets of edge collapses of maximal size that
form a simplification step Ti+1 → Ti according to the requiremenst
mentioned above. In our current implementation independent edge
collapses are selected greedily, see also Algorithm 2 in Section 5.
Our experiments suggest that in practical situations k is in the
range of 12 to 16 for the very restrictive selection of edge collapses
mentioned above. A less restrictive selection of edge collapses
would allow an even larger fraction Vi / k of split-vertices. The
average number of nearly 6 removed tetrahedra per edge collapse
results in a split-vertex encoding with less than 3 bits per tetrahe-
dron.

Additional geometric properties and constraints of edge col-
lapses assure that the simplified tetrahedral meshes are good
approximations of the initial tetrahedralization. However, these
constraints are not the subject of this paper and the interested
reader is referred to [11] for further details.

5. IMPLEMENTATION

The main problem of an actual implementation is the construction
of the sequence of increasingly simplified meshes Tlmax, …, T0,
or levels of detail (LODs), such that each set of edge collapses Ci
that forms one simplification step Ti → Ti-1 can unambiguously be
encoded using the techniques described in the previous section.
The simplification and encoding procedure EncodeOneStep() is
iteratively called by the main encoding loop of Algorithm 1 for the
current tetrahedral mesh starting with the best LOD Tlmax. After
arriving at a sufficiently simplified and small mesh T0, a simple
single-resolution encoding can be used for this base mesh. The

encoding of the crude mesh T0 followed by popping the codes
from the stack obtained by the EncodeOneStep() procedure calls
builds the input data stream for the decoding procedure.

PROCEDURE Encode (mesh: Tetrahedralization);
VAR code: Stack; data: OutputStream;
BEGIN

code.initStack();
WHILE mesh not simplified enough DO

(* encode simplification steps *)
mesh := EncodeOneStep(mesh, code)

END;
(* encode base mesh T0 *)
data.output(mesh.simpleEncoding());
WHILE code.notEmpty() DO

data.output(code.pop())
END

END Encode;

Algorithm 1. Pseudocode for the main simplification
and encoding algorithm.

The procedure EncodeOneStep(), performs one simplifica-
tion step Ti → Ti-1 at a time and provides the respective encoding
of the vertex splits on a stack. The first foreach-loop in
Algorithm 2 over all edges of a mesh Ti can be ordered according
to an increasing simplification error of edge collapses as used in
[11]. Validation of edge collapses is performed by the validCol-
lapse() procedure according to the constraints described in the pre-
vious section. Next, the method mesh.collapseEdges() performs
the actual simplifications, and stores the vertex split information
for every edge collapse with its respective vertex. The following
foreach-loop traverses the vertices of the simplified mesh Ti-1 in
the inverse order of the decoding process, and marks all vertices
with one bit. For the marked split-vertices the associated cut-faces
code is given as well. All codes are pushed on a code stack such
that popping the codes from that stack provides the correct
sequence for the decoding process and its traversal of vertices.

PROCEDURE EncodeOneStep (mesh: Tetrahedral-
ization; VAR code: Stack)

: Tetrahedralization;
VAR v: Vertex; e: Edge; ecol: EdgeSet;
BEGIN

ecol = EmptySet;
FOREACH e IN mesh.edges()

IF validCollapse(e, mesh, ecol) THEN
ecol.insert(e)

ENDIF
END;
mesh.collapseEdges(ecol);
FOREACH v IN mesh.inversedVertexTra-

versal()
IF v.isCollapsedEdge() THEN

code.pushBit(1);
code.pushCode(v.cutFacesCode())

ELSE
code.pushBit(0)

ENDIF
END;
RETURN mesh

END EncodeOneStep;

Algorithm 2. Pseudocode for one step of
simplification and encoding of vertex splits.

edge collapse

forbidden area

v1

v2

w

v1
v2

w1

w2

a) b)

5

Decompression involves first decoding the crude mesh T0
according to the chosen single-resolution encoding method, and
then traversing the vertices of the current LOD and simultaneously
reading marking bits and vertex split information from the input
data stream to create the implants sprays refinement updates. In
Algorithm 3 the method mesh.simpleDecoding() performs the task
of reading and constructing the base LOD T0. The following
while- and nested foreach-loops repeatedly traverse the vertices of
the current mesh. While traversing the vertices of Ti, the marking
bits indicate the occurrences of vertex split refinement opera-
tions.If a marking bit signifies a split-vertex the respective vertex
split information, the encoding of the cut-faces, is read from the
input data stream by the readCutFacesCode() method in
Algorithm 3. The individual vertex splits can emmediately be per-
formed to refine the current mesh. However, note that the so newly
created vertices should not affect the current vertex traversal order
of Ti, and that these new vertices should only be included in the
vertex traversal of the next LOD Ti+1.

PROCEDURE Decode (data: InputStream): Tetra-
hedralization;
VAR mesh: Tetrahedralization;
BEGIN

(* decode base mesh T0 *)
mesh.simpleDecoding(data);
WHILE data.notEndOfStream() DO

(* decode refinement steps *)
FOREACH v IN mesh.vertexTraversal()

IF data.inputBit() = 1 THEN
v.readCutFacesCode(data);
mesh.splitVertex(v);

ENDIF
END

END;
RETURN mesh

END Decode;

Algorithm 3. Pseudocode for the main decoding
algorithm.

The marking of vertex splits is already shown in above algo-
rithms, the cut-faces encoding depends heavily on the data struc-
ture used for maintaining a tetrahedral mesh and is described in
Section 4.

6. RESULTS

We have implemented the simplification and encoding algorithms
mentioned above in a prototype system. Even though the encoding
of enumerated cycles performed well in terms of coding costs, the
current implementation was unreasonably slow. Therefore, we
have only included results for encoding the cut-faces as walks on a
planar triangular mesh. Note that the results presented here do not
include an encoding of the base mesh T0.

With an average of 6 incident tetrahedra per edge we can con-
clude that a split-vertex has about 15 incident vertices. Therefore,
we can expect to encode the start vertex of a skirt using roughly 4
bits, which is also supported by our experiments. The encoding of
the skirt is completed by specifying a path of edges of length 6 on
average, where the path could take 5 different directions at each
vertex, thus requiring about 14 bits. The encoding of the split-ver-
tex depends on the fraction of vertices which can be split in every
batch. This ratio can be bounded by the size of an independent set,
which for general graphs depends on the number of incident edges
per vertex. In the case of tetrahedral meshes this number is about
15. Thus for every marked split-vertex we will waste about 14
zero-bits for unmarked vertices. Note that our experiments show a
much better selection rate for the turbine data set.

Table 1 presents results for a real world data set, the turbine,
and a Delaunay tetrahedralization [2] of a random point set. For the
turbine data set an average of k = 5.77 tetrahedra were removed
with every edge collapse in 49 simplification steps, whereas the
random tetrahedralization reported 6.25 tetrahedra per edge col-
lapse in 54 LODs. Overall, the connectivity of the tetrahedral
meshes was encoded with less than 6 bits per tetrahedron which
includes a large number of different LODs that are progressively
available during decompression time.

Figure 7 shows the turbine volume data set that was used in
our experiments. The volume data consists of solid turbine blades
(Figure 7 a) and a large number of sampled data points in between
the blades. All vertices of the surface of the turbine blades
(Figure 7 b) and the data points are represented in one large tetra-
hedral mesh (Figure 7 c). For the very common approach of stor-
ing the turbine mesh as a set of indexed tetrahedra, the connectivity
cost requires 13MB in ASCII and still 4.7MB using a simple
binary encoding. The Grow & Fold method [17] cuts this cost
down to 492KB for a single-resolution representation, whereas the
method presented in this paper only requires 87KB for represent-
ing the base mesh T0

1 and 291KB for the 49 refinement steps.

1. i.e. using the grow and fold single-resolution encoding

data set LODs vertices
TTTT lmax

vertices
TTTT0

tetrahedra
TTTT lmax

tetrahedra
TTTT0

edge
collapses

start
vertex

loop split-
vertex

total bits bits per
tetrahedron

turbine 49 106795 24550 576576 101619 82245 4.14 14.5 10.35 2384643 5.020755

random 54 10000 928 66487 9799 9072 4.19 15.69 16.2 327386 5.775230

Table 1. Encoding results for the turbine data set and a Delaunay tetrahedralization of a random point
set in space. The start vertices have been encoded with roughly 4 bits, and the cut-faces using about
15 bits for every edge collapse. The marking of all vertices in each LOD resulted in an amortized cost
of 10.35 bits per edge collapse for specifying the corresponding split-vertex.

6

Figure 7. Pictures a) and b) only show the solid turbine blades parts of the tetrahedralized volume data set in c) which
was used in our experiments. Note that the rim where the blades are mounted on is not shown in images a) and b). (Data
set courtesy of AVS Inc.)

7. CONCLUSION

The presented implant sprays method presented in this paper is a
simplification, storage and transmission technique for tetrahedral
meshes. Implant sprays provides a progressive tetrahedralization,
starting from a crude base model, at significantly lower storage or
transmission costs than previously known methods. It even
improves connectivity encoding on the best known single-resolu-
tion tetrahedral mesh compression method [17]. The low coding
cost is achieved by grouping vertex splits into batches, called the
implant sprays, and by a concise encoding of the skirt, the cut-
faces of a split-vertex. Compressed multiresolution tetrahedral
meshes can be used for cooperative scientific visualization, fast
exploration of volumetric data sets, or provide different LODs for
interactive visualization.

Combining the implant sprays simplification procedure with
an edge collapse error measure for tetrahedral meshes [11] pro-
vides an efficient mesh encoding of a progressive multiresolution
tetrahedralization. Note that only the split-vertex encoding
depends on the fraction of selected edge collapses in every batch.
Based on our experience with triangular meshes [8] we can expect
that an error driven edge collapse selection does not lead to a worse
split-vertex encoding in tetrahedral meshes.

Future work includes efforts to reduce the edge collapse
selection constraints to increase the vertex split rate, thus lowering
the split-vertex coding costs, while still guaranteeing locally unam-
biguous mesh updates. Furthermore, we will also investigate faster
k-cycle enumeration and coding techniques to improve on the cut-
faces encoding. However, the optimization in connectivity cost is
far less important than inventing an efficient coordinate geometry
compression method for tetrahedral meshes.

Because the connectivity cost of a tetrahedral mesh is less
than 6 bits per tetrahedron using implant sprays, it is no longer the
dominant cost factor. In contrast, uncompressed floating point
coordinates now take up most of the storage space with at least 96
bits per vertex, or 18 bits per tetrahedron. However, the progressive
encoding of the topological mesh connectivity allows for efficient
coordinate compression as it is already exploited in triangular
meshes. Based on the local mesh connectivity and geometry
around a split-vertex, the displacement vector can be encoded
using predictive error compression techniques [7].

Acknowledgments

This work was supported by the Swiss NF grant Nr. 81EZ-54524
and US NSF grant Nr. 9721358. We would like to thank Oliver
Staadt for providing the turbine data set.

References

[1] M. Deering. Geometry compression. In Proceedings SIG-
GRAPH 95, pages 13–20. ACM SIGGRAPH, 1995.

[2] H. Edelsbrunner and E. P. Mucke. Three-dimensional
alpha shapes. ACM Transactions on Graphics, 13(1):43–
72, 1994.

[3] T. S. Gieng, B. Hamann, K. I. Joy, G. L. Schussman and
I. J. Trotts. Constructing Hierarchies for Triangle Meshes.
IEEE Transactions on Visualization and Computer Graph-
ics, 4(2):145–161, April-June 1998.

[4] S. Gumhold and W. Strasser. Real time compression of tri-
angle mesh connectivity. In Proceedings SIGGRAPH 98,
pages 133–140. ACM SIGGRAPH, 1998.

[5] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W.
Stuetzle. Mesh optimization. In Proceedings SIGGRAPH
93, pages 19–26. ACM SIGGRAPH, 1993.

[6] H. Hoppe. Progressive meshes. In Proceedings SIG-
GRAPH 96, pages 99–108. ACM SIGGRAPH, 1996.

[7] W. Kou. Digital Image Compression: Algorithms and Stan-
dards. Kluwer Academic Publishers, Norwell, Massachu-
setts, 1995.

[8] R. Pajarola and J. Rossignac. Compressed progressive
meshes. Technical Report GIT-GVU-99-05, GVU Center,
Georgia Institute of Technology, 1999.

[9] J. Popovic and H. Hoppe. Progressive simplicial com-
plexes. In Proceedings SIGGRAPH 97, pages 217–224.
ACM SIGGRAPH, 1997.

[10] J. Rossignac. Edgebreaker: Compressing the incidence
graph of triangle meshes. Technical Report GIT-GVU-98-
17, http://www.cc.gatech.edu/gvu/reports/1998, GVU
Center, Georgia Institute of Technology, Atlanta, GA,

a) b) c)

7

1998. (to appear in IEEE Transactions on Visualization and
Computer Graphics)

[11] O. G. Staadt and M. H. Gross. Progressive tetrahedraliza-
tions. In Proceedings Visualization 98, pages 397–402.
IEEE, Computer Society Press, Los Alamitos, California,
1998.

[12] G. Taubin, A. Guéziec, W. Horn and F. Lazarus. Progres-
sive forest split compression. In Proceedings SIGGRAPH
98, pages 123–132. ACM SIGGRAPH, 1998.

[13] G. Taubin and J. Rossignac. Geometric compression
through topological surgery. ACM Transactions on Graph-
ics, 17(2):84–115, 1998.

[14] G. Taubin and J. Rossignac. 3D geometric compression. In
Siggraph 98 Course Notes 21. ACM SIGGRAPH, 1998.

[15] C. Touma and C. Gotsman. Triangle Mesh Compression.
In Proceedings Graphics Interface 98, pages 26–34, 1998.

[16] I. J. Trotts, B. Hamann, K. I. Joy and D. F. Wiley. Simplifi-
cation of tetrahedral meshes. In Proceedings Visualization
98, pages 287–295. IEEE, Computer Society Press, Los
Alamitos, California, 1998.

[17] A. Szymczak and J. Rossignac. Grow & Fold: Compres-
sion of tetrahedral meshes. to appear in Solid Modeling,
1999.

