
Pattern Matching in Compressed Raster Images

Renato Pajarola Peter Widmayer

Department of Computer Science

Institute of Theoretical Computer Science

ETH Zurich, Switzerland

Abstract

We study the problem of �nding a two-dimensional pattern in a compressed satellite

image. We present an algorithm that solves this problem without decompressing the image.

The runtime of our algorithm is linear in the sum of the sizes of the compressed image and

the pattern, unless the image contains many large parts that match the pattern partially,

but not fully | an unlikely situation for satellite images. This study contributes to a

better understanding of what operations can be performed directly on compressed raster

images.

1 Introduction

The amount of data that is stored in computers has grown substantially over the past few
years, and the growth is expected to continue. In particular, satellite images are sent to earth
regularly, and they �ll computer �le archives quickly. This data should therefore be kept in
compressed form. With these large amounts of compressed data in computer archives, the
need arises to process the data in it's compressed form. Here, processing implies complex
operations, such as spatial searches in compressed raster images [15] or pattern matching in
compressed �les [2, 3, 9]. More details about the role of complex operations in a variety of
settings is illustrated in the IEEE Computer special issue on Finding the Right Image [10].

For satellite images, we want to be able to quickly match a (small) raster image with a
(large) two-dimensional compressed raster image; let us call this the two-dimensional com-

pressed pattern matching problem. This problem has been studied for the case in which run-
length compression has been applied to the image [2]. In our experience, however, run-length
compression is not the method of choice for satellite images; pre�x codes such as Hu�man's
seem to be more e�cient in terms of compression ratio and are already used in state of the
art compression methods [11, 14].

In this paper, we propose a compressed matching method that is e�cient whenever the
number of partial matches found in the search process is not very high | a situation that
is very likely for satellite images. Our proposal is described in Section 4; it follows the
spirit of Bird's [5] proposal for (non-compressed) two-dimensional pattern matching, with an
additional twist that aims at the expected case for satellite images. A crucial step in Bird's
algorithm is the matching of one-dimensional rows; since there are many in the pattern, this
is a multiple one-dimensional pattern matching problem [8]. In the non-compressed case, this
problem has been solved by Aho and Corasick [1]. We propose a solution for compressed
strings, based on the solution in [1], in Section 3.

In order to arrive at a fair comparison between the compressed and the non-compressed
case, we need to apply operations of the same power in both cases. In the latter, a comparison

1

for equality between two symbols in a given, �nite alphabet � is counted as one step. To do
the same for pre�x compressed strings, we compare two bit strings of length dlog j�je in one
step. This introduces some extra di�culty and complexity into the string matching problem
even for a single string. We suggest a solution to this problem in Section 2.

In more detail, we study three problems in the following setting. We are given a �nite
alphabet �, and we count one step for a comparison operation between two symbols from � or
between two strings of dlog j�je bits each. We call w = dlog j�je the word size (of a conceptual
machine). In their non-compressed form, we have a one-dimensional pattern P [1::m], several
patterns P i[1::mi] (note that i is an index, not an exponent), a text T [1::n], a two-dimensional
pattern PP [1::m; 1::m], and a two-dimensional image TT [1::n; 1::n]. In compressed form, we
have P [1::m], where m is the number of w-bit words in P , and correspondingly P i[1::mi],
T [1::n], PP [1::m; 1::m] and TT [1::n; 1::n] (this assumes that a two-dimensional pattern or
image is compressed row by row; for details, see Section 4). We study the following three
problems:

Compressed String Matching Given the pattern P [1::m] and the compressed text T [1::n],
�nd all occurrences of P in the uncompressed text T .

Compressed Multiple String Matching Given t patterns P 1[1::m1]; : : : ; P t[1::mt], and
the compressed text T [1::n], �nd all occurrences of any pattern P i in T .

Compressed Two-Dimensional Pattern Matching Given the two-dimensional pattern
PP [1::m; 1::m] and TT [1::n; 1::n], �nd all occurrences of PP in TT .

2 Compressed string matching

Here, we describe the problem for one single pattern, and we show a solution which can
be extended to multiple strings and is used later in the two-dimensional solution. Clearly,
a pattern matching algorithm has to be designed speci�cally for the particular compression
method; the algorithm of [3] shows this for single-pattern matching in Z-compressed �les. The
pattern matching algorithm that we propose works for popular pre�x codes like Hu�man's.

2.1 Compression of text and pattern

To �nd an exact match of a pattern P in its compressed form P in the bitstream of a com-
pressed text T , the search pattern is compressed in the same manner as the text. In the com-
pression method we consider, the compressed form of any character sequence is independent
of its position in the text. A compression scheme with this property is called non-adaptive.
That is, for compressing a pattern P = T [i::i + l], we cannot take into consideration any
information on the preceding string T [0::i� 1] or the subsequent string T [i+ l+1::n]. Thus,
for m = jP j, and Pi = T [i::i+m� 1] and Pj = T [j::j +m� 1], where Pi = Pj and i 6= j, the
compressed bitstreams Pi and Pj are identical. These restrictions on the compression algo-
rithm imply that e.g. arithmetic coding [6] cannot be used, because the distinction between
single symbols in the output gets lost, and the characters T [0::i � 1] inuence the coding of
the remaining T [i::n]. However, common pre�x codes such as Rice, Colomb or Hu�man [12]
can be used.

2.2 Compressed pattern matching

Even for non-adaptive compression methods such as those named above, compressed pattern
matching is not trivial. Just �nding the bitstream P in T is not enough, because the symbol

2

boundaries cannot be identi�ed easily. Figure 1 shows an example with symbol alphabet
� = fa; b; c; d; eg, mapping fa ! 00; b ! 01; c ! 10; d ! 110; e ! 111g, text T = babcada

and pattern P = cada. The �rst bitwise match of P = 100011000 from the left within
T = 010001100011000 is not a match with respect to P in T . We can detect this string
mismatch, if we can recognize each bit that starts a symbol. We will solve this symbol boundary

problem by explicitly identifying some of these start bits (by what we call checkpoints), thereby
breaking the bit sequence into segments within which all start bits can be identi�ed by a scan
through this segment only. For more details, see Subsection 2.4.

1 0 0 0 1 1 0 0 0

1 0 0 0 1 1 0 0 0

0 1 0 0 0 1 1 0 0 0 1 1 0 0 0

b a b c a d a

c a d a

c a d a

bitwise match

bitwise match

string mismatch

string match

text string

bit sequence

Figure 1: A mismatch and a match

A second problem is that a comparison of the symbols in the compressed alphabet � =
f0; 1g is less powerful than a comparison of two symbols of �. To arrive at a fair computational
resource utilization judgement, we want to use the same elementary operations in both cases.
To do so, let us represent each symbol in � by a �xed length bit string of w = dlog j�je bits,
and call a bit string of length w a word. Now assume that two words can be compared in
one step. Due to this aggregation of bits into words, we face another problem: A compressed
pattern P does not have to start at a word boundary in the compressed text T ; it can start
(and end) at any bit position in a word. The next subsection shows a way to handle this word
alignment problem.

2.3 Word alignment

Figure 2 gives an example for the word alignment problem for 4 bit words with the pattern
P = cadae for the compression of Figure 1, that is, for P = 100011000111.

1 0 0 0 1 1 0 0 0 1 1 1

1 0 0 0 1 1 0 0 0 1 1 1

1 0 0 0 1 1 0 0 0 1 1 1

1 0 0 0 1 1 0 0 0 1 1 1

Figure 2: Possible alignments of a pattern

Let Pi be the pattern P with the i-th symbol of P in the �rst position of a word, 1 � i � w,
cut to word boundaries. More formally, Pi = P [i :: m�((m� i+1) mod w)]. For an example,
see Figure 3. Let us call Pi the i-th aligned substring of pattern P , when the word length
w is �xed. An aligned substring of T is a substring of T that starts (and ends) at word
boundaries. A match of an aligned substring of P with an aligned substring of T is called an
aligned match. We conclude directly:

3

Lemma 1 If P matches within T , then at least one of the Pi, 1 � i � w, has an aligned

match within T .

1 0 0 0 1 1 0 0 0 1 1 1

0 1 1 0 0 0 1 1

0 0 1 1 0 0 0 1

0 0 0 1 1 0 0 0

1 0 0 1

1 0 1 1

1 1 1 1

P1

P2

P3

P4

Figure 3: Possible aligned patterns

Of course, an aligned match is only a necessary condition for a bitwise match, because
the di�erence between P and Pi may or may not match within T .

Since we limit ourselves to word comparisons, we can �nd an aligned match by checking
T for each of the w aligned substrings of P | a multiple pattern matching problem that can
be solved e�ciently with the pattern matching automaton of Aho and Corasick [1], A&C for
short (see Figures 4 a), 4 b) and 4 c)). For each aligned match that is found, we perform
an additional comparison with each of the two words at the boundary of P , masked to the
corresponding length, using a bit-table (see Figure 4 d)).

1 2 3

4 5

6 7

8 9

0

1000 1100 0111

0001 1000

0011 0001

0110 0011

state 1 2 3 4 5 6 7 8 9
f(state) 0 0 0 0 1 0 4 0 6

a) Goto-graph b) Failure-function

P2

3

5

7

9

state output

3

P1

P

P4

i 1 2 3 4

(-,-) (1,111) (10,11) (100,1)

c) Output-function d) Bit-table

Figure 4: functions

2.4 Symbol boundaries

Our solution to the word alignment problem does not imply a solution to the symbol boundary
problem. Recall that we need to detect for every bitwise match of P in T , say at positions
T [i::i + m � 1], whether the bit T [i] that starts the match in T is indeed the �rst bit of
an encoded symbol. If so, we have found a match of P in T ; otherwise, we have not. In
order to decide for any given bit in T whether this bit starts a symbol in T , we could simply

4

decode T from the beginning, using the Hu�man tree (or any other pre�x coding mechanism).
This would, however, require time proportional to the length of the decompressed text T |
clearly an undesirable performance. We therefore choose to cut T into segments by introducing
regularly spaced checkpoints (see Figure 5). Then we decompress the part of T that falls in
between two adjacent checkpoints only. In more detail, introduce a checkpoint after every
d words that code for T . A checkpoint CP stores the number of pixels coded since the last
checkpoint and the o�set (in bits) to the beginning of the next pixel in the compressed data
stream (see Figure 5). During the scan of the compressed input, the number of pixels coded,
and the last checkpoint, can be updated at every checkpoint location. This allows to calculate
the current index i and the starting bit of a symbol in T , beginning at the last checkpoint and
processing the bits encountered since then. A reduced version of the decompression method
without code generation allows to increment the index at the correct bit-positions, and also
to test for starting bits of compressed symbols. For a Hu�man (pre�x tree) compression
method, one simply has to repeatedly follow the path in the tree from the root (start of a
symbol) towards a leaf and increment the index i whenever a leaf is encountered.

Number of Pixels since last CP

Offset to next Pixel

Data

Checkpoint

000110 101101100100 001001111110

Checkpoint

8 2

Figure 5: Checkpoints

2.5 Complexity analysis

We assume that d, the number of words between any two adjacent checkpoints, and w, the
number of bits in a word, are �xed parameters of the implementation.

Theorem 1 Compressed string matching can be performed in O(n+k) time for text searching

and O(m) time for pattern preprocessing, where n is the number of words in compressed format

of text T , m is the length in words of the pattern P , and k is the number of occurrences of

any aligned pattern P1; : : : ; Pw.

Proof: The pattern P can be compressed in time O(m) into P . From P , the aligned
patterns P1; : : : ; Pw and the bit-table can be produced in time linear in m. The goto-graph,
the failure- and the output-functions can be created in time linear in the sum of the lengths
of P1; : : : ; Pw, which is at most wm, thus the preprocessing needs O(m+m) = O(m).

Finding all matches of one of P1; : : : ; Pw in T costs no more than O(n) state transitions
in the goto-graph as described in [1]. However, two more checks are necessary for each match
of a Pi in T . First, the left- and rightmost bits have to be checked for an exact match of P
in T ; this can be done with a bit-table similar to Figure 4 d). Second, the start-position of
the symbols in T has to be checked to match with the beginning of the encountered P . For
this we use the checkpoint method; this needs at most O(wd) steps from the last checkpoint.
Therefore, for k occurrences of any aligned pattern Pi, the work sums up to O(n+ k). 2

Note that in the worst case, k can be close to wn; in that case, the proposed algorithm is
asymptotically slower than the one that decompresses the text and applies the algorithm of

5

1 2 3

4 5

6 7

8 9

10 11

12 13

14

0

1000 1100 0111

1100 1100

0001 1000

1001 1000

0011 0001

0110 0011

0010

state 1 2 3 4 5 6 7 8 9 10 11 12 13 14
f(state) 0 10 0 0 1 0 4 0 6 0 10 0 1 0

a) Goto-graph b) Failure-function

3

5

7

9

11

13

14

state output

P1
1

P2
1

P3
1

P4
1

P1
2

P2
2

P3
2

P4
2

i
j 1 2 3 4

1

2

(-,-) (1,111) (10,11) (100,1)

(-,010) (1,10) (11,0) (110,-)

c) Output-function d) Bit-table

Figure 6: functions

Knuth, Morris, and Pratt [13], KMP for short. In many applications, however, we can expect
k to be fairly small. In particular, this is the case for compressed satellite image matching,
the topic that motivates this study.

3 Multiple compressed string matching

With the goal of applying one-dimensional compressed pattern matching for the two-dimen-
sional case in the spirit of Bird [5], we now turn to the problem of searching for more than
one pattern in the compressed text. More precisely, for a given text T and t given patterns
P 1; : : : ; P t, we want to �nd all occurrences of any of the P i in T . This is just an extension to
the one-pattern problem. We compress the t di�erent patterns into P 1; : : : ; P t and create all
possible alignments P 1

1
; : : : ; P 1

w; P
2
1
; : : : ; P 2

w; : : : ; P
t

1
; : : : ; P t

w. For these wt patterns, we create
the A&C goto-graph as described in [1], and also the corresponding failure- and output-

functions. Using the same symbols and coding as in Section 2.2 with w = 4, Figures 6 a),
6 b) and 6 c) show the goto-graph, the failure- and the output-functions for patterns P 1 =
cadae) P 1 = 100011000111, and P 2 = dbcac) P 2 = 11001100010. Therefore, the aligned
patterns P 1

1
= 1000 1100 0111, P 1

2
= 0001 1000, P 1

3
= 0011 0001, P 1

4
= 0110 0011, and

P 2
1
= 1100 1100, P 2

2
= 1001 1000, P 2

3
= 0011 0001, P 2

4
= 0110 0010 have to be matched.

6

For every entry in the output-table, which denotes a match of P i

j
, additional information

is stored to check for an exact match of P i. A bit-table with t rows and w columns can
store the left- and rightmost bits for P i

j
at position [i; j] (1 � i � t ^ 1 � j � w) as shown

in Figure 6 d) for the patterns P 1
1
; : : : ; P 2

4
of this section. Each table entry has two �elds,

containing the left- and rightmost bits which have to be tested. A dash means that nothing
(a sequence of length 0) has to be tested on this side.

3.1 Complexity analysis

Theorem 2 Multiple compressed string matching can be performed in O(n+k) time for text

searching and O(m) time for pattern preprocessing, where n is the number of words of T , m

is the sum of the lengths of the patterns P 1; : : : ; P t, and k is the number of occurrences of

any aligned pattern P 1
1
; : : : ; P 1

w
; P 2

1
; : : : ; P 2

w
; : : : ; P t

1
; : : : ; P t

w
in T .

Proof: Theorem 1 is already based on a modi�ed multiple pattern matching machine. We
just need to extend the set of aligned patterns; hence the preprocessing time is linear in the
sum of the lengths of the patterns. The text searching step remains the same as in the single
compressed string matching algorithm, except that the bit-table is two-dimensional, with one
row for each pattern. 2

Note that in the worst case, k can be close to wtn, where t is the number of patterns;
again, in the compressed raster image matching case, we expect k to be quite small.

4 Two-dimensional compressed pattern matching

Our two-dimensional compressed pattern matching algorithm aims at raster images. For the
algorithmic aspects, a raster image pixel is just a symbol in a (quite large) alphabet. We
will argue later why the extra information that our proposal introduces into a compressed
raster image does not a�ect the compression ratio or the runtime of the matching algorithm
considerably.

The basic two-dimensional pattern matching algorithm by Bird [5] can be used in con-
junction with the proposed modi�cations of the A&C algorithm of Section 3. The basic idea
of Bird is to reduce the two-dimensional problem of searching PP [1::m; 1::m] in TT [1::n; 1::n]
to a one-dimensional one. First, (horizontal) matching pattern rows P i = PP [i; 1::m] of the
two-dimensional pattern are searched in the linearized text TT [1::n2] in the row-matching

step, and afterwards, the vertical correctness of the matched pattern rows is tested in the
column-matching step. For this to work, one also needs the column number whenever an
exact match of a pattern line occurs.

4.1 Non-compressed pattern matching: A variant of KMP

The work of the column-matching step of Bird's algorithm can be reduced signi�cantly for the
average case. In the original algorithm a vector A[0::n] is used, with n the number of columns,
to store pattern row id's in such a way that A[c] = i means that the rows P 1; : : : ; P i�1 of the
pattern PP match the i � 1 text lines above the current one, with each pattern row ending
at column c. This information is enough to use the Knuth, Morris and Pratt algorithm [13],
KMP for short, to decide whether a complete pattern really occurred or not, by applying it
vertically on every column with the pattern-row id's as the one-dimensional pattern. This is
actually done simultaneously on the vector A for all columns of a text line.

7

Bird ignored the results of the previous row-matching step: The column informations of
A[0::n] | which pattern-rows occurred up to the line above the current one | get updated
for every column, even if no pattern-row was found. If we store the additional information
where the last row-match occurred for column c, we can omit the step of updating A[c] for
every column and every row and just update it where a row-match of the pattern really
occurred. To do so, let A[c]:pattern be the row-id of the pattern which matched ending at
column c and A[c]:line the text line where this happened; see Algorithm 2 for details. The
row-matching step in the two-dimensional situation acts as an Oracle for the one-dimensional
column-matching step. Algorithm 1 shows this modi�cation of the KMP algorithm, where
lasti is equivalent to A[c]:line, denoting the last occurrence of a symbol of P in T , and j

means the same as A[c]:pattern, the next symbol which has to be matched.

Lemma 2 Given an Oracle that tells at no computational cost which symbol of the pattern P

occurs next in the text T and where it occurs, the text searching time complexity of Algorithm 1

is O(k), where k is the number of occurrences of any symbol of the pattern in the text.

Proof: This property can directly be derived from Algorithm 1, given text T [1::n], pattern
P [1::m] and the next[1::m+ 1] table.

The Oracle is denoted as getNextIndexFromOracle(T; lasti; P) below in Algorithm 1, and
its computational cost is not counted here. In comparison to the original algorithm in [13],
the outer while-loop of Algorithm 1 is performed as many times as getNextIndexFromOra-
cle() returns an index i � n. For k occurrences of any symbol of pattern P in the text T ,
getNextIndexFromOracle() yields k di�erent (ascending) indices i and the outer while-loop
is performed k times. As in [13], the inner while-loop operation j := next[j] is executed no
more often than the outer statement j := j + 1. Thus the time complexity of Algorithm 1 is
O(k).

The correctness follows from the fact that the if i 6= lasti + 1 then j := 1 endif catches
all situations where in the original algorithm T [i] 6= P [j];8j = 1; : : : ;m, because j was then
set to 0 and incremented afterwards, as it is the case here. 2

The preprocessing complexity remains the same as in the original algorithm, O(m), where
m is the size of the pattern. In addition to KMP, we make use of an entry next[m + 1] to
restart the search for the next occurrence of P , the entry is equivalent to the longest su�x of
P which is also a pre�x of P . We use this KMP-variant in our two-dimensional compressed
pattern matching algorithm of Section 4.3 with the goal to reduce the amount of work for
comparisons and assignments in the (one-dimensional) column-matching step.

4.2 Compressed pattern matching

The results of Section 2 are used in the compressed row-matching step, where the compressed
pattern rows P 1; : : : ; Pm are used to build the pattern matching machine of Section 3 for
multiple compressed patterns. Compression and construction of the goto-, failure- and output-
functions are done in a preprocessing step, see Figure 7. After the row-matching step, we have
the situation of Figure 8, where the column position information of a pattern-row occurrence
is missing, and therefore the vertical alignment of the rows is unknown. The column positions
are derived from the checkpoints; they are used to determine the vertical alignment of the
pattern rows in the text.

8

Algorithm 1

lasti := 0; (* index in T of last occurrence of a symbol of P *)

j := 1; (* next symbol of P to match for in T *)

i := getNextIndexFromOracle(T; lasti; P);
while i � n do

if i 6= lasti + 1 then
j := 1

endif;

while j > 0 and T [i] 6= P [j] do
j := next[j] (* j is decreased in each step *)

endwhile;

if j = m then

reportMatchAt(i �m);
j := next[m+ 1] (* start for next occurrence of P *)

endif;

j := j + 1;
lasti := i;

i := getNextIndexFromOracle(T; lasti; P)
endwhile;

P
P

P1

P2

P3

Pm

Compression Pattern preprocessing

Goto-graph
Failure-function
Output-function
Bit-table

Figure 7: Preprocessing

4.3 Algorithm

Algorithm 2 shows the complete text searching stage of the proposed two-dimensional com-
pressed pattern matching method. The size of the compressed text TT is denoted by n2,
where n is the size of TT in one dimension. The number of rows and the number of columns
in the pattern PP is m, and next indicates the next-table of the KMP algorithm for the
vertical pattern matching of the pattern row id's. The vector a holds the information for the
column-matching step. The procedures used in Algorithm 2 are the following:

readNextWord(T) Returns the next word of the compressed input data stream
T , and updates the current checkpoint cp and index ind which
represents the number of pixels encountered in T up to cp.

nextState(x) Based on the current symbol x, it returns the next state of the
goto-graph of the modi�ed pattern matching machine.

checkFirstLastWord(s) Checks the accordance of the left- and rightmost bits of the
pattern row of state s with the text T . Returns the pattern row
id or 0 if the check fails.

calcAlignedColRow(cp; ind) The alignment of the pattern in T is checked and returned in
aligned, the column and row indices in the original text T are
computed and returned in col and row. These computations

9

?
P1

Pm

T

T

T

Figure 8: Pattern row alignment

are based on the last checkpoint cp and the index ind using the
simpli�ed decompression algorithm.

reportMatchAt(row; col) outputs an exact match, where the lower right corner of P is at
T [row; col].

4.4 Complexity analysis

Algorithm 2 has to preprocess the pattern PP in two ways. First, compress it row by
row () P 1; : : : ; Pm) and generate the functions for the modi�ed A&C compressed pattern
matching machine of Section 3. Second, the uncompressed pattern has to be preprocessed the
same way as in [5] to get the vertical pattern row id's and the corresponding next table of the
KMP pattern matching algorithm. Recall that d, the number of words between checkpoints,
and w, the number of bits in a word, are �xed parameters of the implementation.

Theorem 3 Given a two-dimensional compressed text TT of size n2 and a two-dimensional

pattern PP of size m2, all matches of PP in TT can be found in time O(n2 + k), after a

preprocessing phase time of O(m2), and with extra space O(m2 + n). Here, k is the number

of occurrences of any row P i of PP in a row of TT .

Proof: The preprocessing complexity for the row-matching step follows from Theorem 2, as
it is exactly multiple compressed pattern matching with the pattern rows P 1; : : : ; Pm where
the sum of the lengths of the compressed pattern rows is m2. The preprocessing of the
column-matching step remains unchanged w.r.t. [5], thus, with the size m2 for the pattern
PP the total time is in O(m2 +m2) = O(m2).

The time complexity of Algorithm 2 is mainly determined by the outer for-loop, the
readNextWord(TT) and nextState(x) statements, which build together the A&C pattern
matching machine described in Section 3. Thus the process of reading the compressed input
and determination of the next state is caught in the multiple compressed pattern matching
algorithm and therefore follows Theorem 2 with linear time complexity in the text size n2.
The following if-statements get executed at most as often as a match of an aligned pattern
row P i

j
(1 � i � m ^ 1 � j � w) was found using the multiple pattern matching machine.

Therefore, the inner while-loop gets entered at most k times for k occurrences of any aligned
pattern row. Together with the previous and following if-statement, the inner while-loop
(similar to the inner part of Algorithm 1) performs the KMP variant presented in Section 4.1
and is therefore linear in k, too.

The extra space requirement (apart from storing PP and TT) of the algorithm isO(m2+n)
because the vector a has to hold the pattern id and line information for all n columns of the

10

Algorithm 2

for i = 1 to n2 do

x := readNextWord(T); (* updates also cp and ind *)

s := nextState(x); (* A&C pattern matching machine *)

if s = \terminal state" then

p := checkFirstLastWord(s);
if p > 0 then (* a match of a Pi was found in T *)

(aligned; col; row) := calcAlignedColRow(cp; ind);
(* continue if symbol start coincides within T *)

(* and if pattern is not wrapped between text rows *)

if aligned and col � m then

l := a[col]:line;
if l 6= row � 1 then

a[col]:pattern = 1
endif;

j := a[col]:pattern;
while j > 0 and p 6= P [j] do

j := next[j]
endwhile;

if j = m then

reportMatchAt(row; col);
j := next[m+ 1] (* reset for next search *)

endif;

a[col]:pattern := j + 1;
a[col]:line := row

endif

endif

endif

endfor;

text TT and the row-matching step needs O(m2) space for the goto-, failure- and output-
functions. 2

The proposed algorithm works only if the compressed text TT contains checkpoints. Too
many checkpoints a�ect the compression ratio, too few a�ect the runtime of the algorithm.
Let us now show that for practical situations, there is enough room for good choices of the
number of checkpoints. The time to calculate the alignment value aligned, and the row and
column indices row and col just depends on the parameter d and is independent of the input
text or pattern. The additional space requirement for these checkpoints is quite low. For an
image with a resolution of r bits, where r is typically 8, 16, or 24, alphabet size j�j = 2r, and
with d words in between any two checkpoints, the number of bits used to describe a single
checkpoint is logwd + log j�j, because no more than wd pixels can be coded since the last
checkpoint, and the maximum o�set is equal to the longest code length of any symbol, which
is j�j for the pre�x codes regarded here. Therefore, for an 8 bit greyscale image with d = 32
and w = 8, the additional space for one checkpoint is log(8 � 32) + log 256 = 16 bits, which
amounts to 6:25% of the compressed �le size (32 data bytes followed by 2 checkpoint bytes).
If we raise the number of bytes between checkpoints to d � 512, the size of a checkpoint
description increases to 24 bits; however, the extra information will only enlarge the �le size
by no more than 0:6% (512 data bytes followed by 3 checkpoint bytes).

11

5 Conclusion

We have shown how to �nd all matches of a pattern in a compressed satellite image in
linear time, except for the case in which parts of the pattern match, but the whole does not.
Even though this case is a very unlikely one in satellite imagery, the problem of �nding an
algorithm with a linear performance even in the worst case remains open. However, average
runtime could be improved further by replacing the multiple string matching machine from
Aho-Corasick with the Commentz-Walter [7] method. Also using [4] instead of Bird's 2D
algorithm is possible, although this would increase the row and column calculations using
checkpoints for setting up in the compressed image for the checkmatch procedure described
in [4].

In the course of this algorithm, we have studied the details of compressed string matching.
In order to operate on the machine word level (and not the bit level), we introduced extra
data | the checkpoints | into the compressed text. Even though this extra data does not
a�ect performance a lot, it is an interesting question whether matching in a purely pre�x
compressed text can also be achieved in time linear in the size of the compressed text.

Note that, even though in the description in this paper, the two-dimensional image and the
two-dimensional pattern are both squares, this is not an essential restriction; the algorithm
operates just as e�ciently for any other rectangular pattern and image.

Acknowledgement

We would like to thank the unknown referee for providing reference [4].

References

[1] A. V. Aho and M. J. Corasick. E�cient string matching: An aid to bibliographic search.
Communications of the ACM, 18(6):333{340, June 1975.

[2] A. Amir and G. Benson. E�cient two-dimensional compressed matching. In J. A. Storer
and J. H. Reif, editors, Proc. Data Compression Conference, pages 279{288. IEEE, 1992.

[3] A. Amir, G. Benson, and M. Farach. Let sleeping �les lie: Pattern matching in Z-
compressed �les. In Proc. of the 5th ACM-SIAM Symposium on Discrete Algorithms,
pages 705{714. ACM, 1994.

[4] R. Baeza-Yates and M. R�egnier. Fast two-dimensional pattern matching. Information

Processing Letters, 1(45):51{57, January 1993.

[5] R. S. Bird. Two dimensional pattern matching. Information Processing Letters, 6(5):168{
170, October 1977.

[6] J. G. Cleary, R. M. Neal, and I. H. Witten. Arithmetic coding for data compression.
Communications of the ACM, 30(6):520{540, June 1987.

[7] B. Commentz-Walter. A string matching algorithm fast on the average. In Proc. of the 6th
International Colloquium on Automata, Languages and Programming ICALP, volume 71
of Lecture Notes in Computer Science, pages 118{132, Berlin, 1979. Springer-Verlag.

[8] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, New York,
Oxford, 1994.

12

[9] M. Farach and M. Thorup. String matching in Lempel-Ziv compressed strings. In Proc.

Symposium on Theory of Computing, pages 703{712, 1995.

[10] V. N. Gudivada and V. V. Raghavan. Content-based image retrieval systems. IEEE

Computer, 28(9):18{22, September 1995.

[11] P. G. Howard and J. S. Vitter. Fast and e�cient lossless image compression. In J. A.
Storer and J. H. Reif, editors, Proc. Data Compression Conference, pages 351{360. IEEE,
1993.

[12] D. A. Hu�man. A method for the construction of minimum redundancy codes. In Proc.

Inst. Electr. Radio Eng., pages 1098{1101, 1952.

[13] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM

Journal of Computing, 6(2):323{350, June 1977.

[14] G. Langdon, A. Gulati, and E. Seiler. On the JPEG model for lossless image compression.
In J. A. Storer and J. H. Reif, editors, Proc. Data Compression Conference, pages 172{
180. IEEE, 1992.

[15] R. Pajarola and P. Widmayer. Spatial queries on compressed raster images: How to get
the best of both worlds. Technical Report 240, Dept. of Computer Science, ETH Z�urich,
1995. ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/2xx/240.ps.

13

