In Proceedings IASED VIIP Conference, pages 628-633, 2005.

XSplat: External Memory Multiresolution Point Visualization

Renato Pajarola*

"Visualization and MultiMedia Lab
Department of Informatics
University of Zirich

Abstract

With the popularity of points as graphics primitives, it is
important to handle large-scale point sets that exceed avail-
able in-core (main) memory. In particular, high-perfor-
mance level-of-details (LODs) visualization from
out-of-core is a challenging problem. In this context we
present a novel point-splatting approach, short XSplat, that
breaks the main memory barrier. It is based on a paginated
multiresolution point hierarchy and virtual memory map-
ping. The main contributions are a novel block-based
sequential multiresolution point hierarchy, an efficient
LOD-block paging mechanism and dynamic mapping into
video-cache. XSplat is scalable by using sequentialized
data structures, and it seamlessly bridges the disk-, main-
and video-memory sub-systems. Experiments demonstrate
the quality and efficiency that is achieved by XSplat.

Key Words: out-of-core visualization, point-based render-
ing, multiresolution, levels-of-detail, geometry caching

1. Introduction

Points as display primitives have become a powerful alterna-
tive to traditional 3D object representations. In fact, points or
3D coordinates are the most simple and fundamental geome-
try-defining entities. Discrete point samples have long been
established in the field of volume rendering as splatting primi-
tives. Points have only recently received increased attention
(i.e. after [17]) in the context of surface representations. Fur-
thermore, points have proved very useful in different aspects
of visualization such as multiresolution modeling [2, 6, 9, 12],
simplification [26], and for example rendering of surface
uncertainty [16] or scattered data [18].

With the dramatically increasing data sizes, it has become
increasingly difficult to visualize the generated large point sets
in an efficient way. Level-of-detail (LOD) techniques [23]
trade-off object complexity and accuracy for rendering perfor-
mance. However, standard multiresolution techniques fail
with models exceeding the physical main memory capacity
due to uncontrolled memory-trashing from random virtual
memory accesses, possibly causing the system to almost come
to a halt. To cope with this situation, efficient out-of-core
based multiresolution techniques are necessary.
Contributions: In this paper we introduce XSplat that fills the
gap of out-of-core multiresolution point-representation and
interactive-visualization. The main contributions are an
out-of-core multiresolution data structure and a LOD-based
visualization algorithm based on the following novel con-
cepts:

* two-way interleaved sequential ordering of a space-subdi-
viding multiresolution point-hierarchy,

* paginated organization of point data to reduce overhead
for micro-management of huge data sets,

pajarola@acm.org, msainz@ics.uci.edu, ¥rlario@dacya.ucm.es

Miguel Sainz
NVIDIA Corporation

Roberto Lariot

*Dpto. Arquitectura de
Computadores y Automatica
Universidad Complutense Madrid

e paging from out-of-core to in-core memory as well as
dynamic mapping into video-memory.

Figure 1: Example visualizations of large point data from
out-of-core using XSplat. Lucy displayed using about SM
and David 3.4M points. From out-of-core, Lucy renders
at about 1.2 fps and David at about 3 fps.

2. Related Work

Point-based splatting has widely been used in volume visual-
ization. However, points scattered on surfaces pose an entirely
different problem setting with their irregular sampling and dis-
tribution in 3D space. In particular we target multiresolution
modeling and interactive visualization of large point-sampled
surface data sets from out-of-core, external memory.

Closely related works are point-based techniques for effi-
cient multiresolution modeling and view-dependent
LOD-based rendering. Very efficient point-based hierarchical
multiresolution representations have been proposed with a
focus on efficient representation [29, 5], hardware accelerated
rendering [29, 28, 3, 25], or integration with polygons [6, 9,
12, 8]. Other point-based approaches have concentrated more
on high-quality rendering [27, 34, 19, 4]. See also the over-
views [31, 30] for more on PBR. Our work differs signifi-
cantly in that we introduce a novel paginated and sequential
out-of-core multiresolution data structure for view-dependent
LOD visualization.

An efficient method to render points in a sequential way
has been proposed in [10]. Note that in [10] the entire LOD
point-hierarchy generally has to fit in video memory and is
thus not directly applicable to data exceeding physical main
memory or even graphics card video memory. Furthermore,
this approach does not allow for any visibility culling before
caching and GPU processing. Our approach is similar in that
we use a sequential data arrangement, however, we take it to
the next level. We employ two different interleaved sequential
orderings: one in space for individual points and one in the
LOD-metric for blocks. Moreover, XSplat takes all memory
levels of the system into account for caching data and allows
for visibility culling.

In [15] a hierarchy of point-cloud blocks is proposed for
efficient rendering of very large point data sets which offers
simple progressive block refinement and culling, exploits
caching in graphics memory, and hides disk latency effec-
tively. We discuss the differences between this approach and
ours in Section 6.

A number of out-of-core techniques have appeared for sim-
plification and multiresolution rendering of massive polygonal
meshes. In particular, triangle meshes have been addressed in
[13, 21, 11, 7, 22] and general polygonal models in [32].
These techniques are fundamentally different in that face-con-
nectivity is an integral part of the mesh representation which
must be maintained.

3. Out-of-Core Multiresolution Modeling

3.1 Level-of-Detail Hierarchy

The data is assumed to be a set of 3D points p,, ...,p, € R’
that satisfy necessary surface sampling criteria such as the
Nyquist sampling condition, and fully define the geometry as
well as the topology of a surface. Furthermore, it is assumed
that the points are initially organized in a LOD-hierarchy as
outlined below.

In a preprocess, XSplat converts a conventional
point-based LOD-hierarchy to a sequential out-of-core multi-
resolution data structure. This input can be any nested
point-hierarchy such as the widely used point-octree variants
(ie. [29, 5, 3, 24, 10, 25]). The nesting properties include
bounding sphere and normal-cone attributes in each node,
which confine all elements and normals in the corresponding
subtree. Figure 2 illustrates the LOD-node format of such a
multiresolution point-hierarchy H which is embedded as an
array of node elements. Each node H; represents a disk with
radius r; and color ¢; centered at position p; and oriented with
respect to normal n;.

LOD-node i | average position p;

average normal n;

average color ¢;

bounding sphere radius r;

bounding normal cone semi-angle 6;
index to first child node first;
number of child nodes n;

Figure 2: Node attributes of a nested LOD-hierarchy H.

The LOD-metric implemented in XSplat is a commonly
used screen-space area error. Given the viewpoint v and a user
specified screen-space tolerance €, in a top-down traversal of
H aLOD-node i is rendered if & - r? - |p; — v/ < ¢ and refined
otherwise if not a leaf node. The bounding sphere and nor-
mal-cone attributes allow for effective visibility culling in a
LOD-selection algorithm. Given the normals N; 4 of a
four-sided view-frustum pyramid and the viewpoint v, a node i
is outside the view-frustum if (p,—v) ¢ N;>r; for any of the
normals Ny 4. A node i is back-face culled if the angle
between (v — p;) and normal n;, minus 8;, is larger than 90°.

3.2 Sequential Layout

For efficient out-of-core management, XSplat converts the
LOD-hierarchy H into a sequential list of points S. For this we
must resolve the LOD-refinement dependencies in the hierar-
chy H as described in [10]. We can define the minimal dis-
tance rmin; at which a node i will be split for a given error
tolerance € by ¢ - rmin} = n-r?. Consequently we can define
a maximal distance rmax; at which the node i will be merged
based on the rmin; of its parent node j. This, however, must be
compensated for the distance between node 7 and its parent j to

arrive at a conservative measure for all possible viewpoints.
Hence we get a merge distance of rmax; = rmin;+ |p, - pB
The point attributes of elements in this sequential LO

point-sequence S are given in Figure 3.

Render-point i | average position p;
average normal n;
average color ¢;
bounding sphere radius r;
split distance rmin;
merge distance rmax;

Figure 3: Point attributes of a sequentialized hierarchy S.

Given a viewpoint v and a user specified screen-space tol-
erance €, all points i of S with rmin; < /e - |p, - vLs rmax; are
selected for rendering. Note that as discussed in [10] this LOD
selection is conservative as for some nodes j also some
descendant nodes i — with respect to the initial hierarchy H
— may be rendered as well. However, this does not affect the
LOD selection and visualization efficiency noticeably in prac-
tice.

The major feature of this point-sequence S is that the LOD
selection has been de-coupled from the hierarchical data struc-
ture that holds the points and guides the tree traversal. This
fact is exploited in [10] to sort all points in S with respect to
their rmax values which allows a fast, coarse-grain and con-
servative LOD selection of a range of sequential points. All
points within this range are then submitted to the graphics
hardware which does the fine-grain LOD selection as outlined
above. Note that no visibility culling can so be performed
before the entire conservative range of points is processed by
the graphics engine. Here is where XSplat differs significantly
to accommodate for effective out-of-core multiresolution
modeling and visualization.

We first observe that a recursive spatial subdivision hierar-
chy implicitly defines a space-filling curve index on the nodes.
In fact, a proper traversal order defines a hierarchical z-order
(see also [14]) which preserves spatial locality and thus
improves coherence in memory access. This index is illus-
trated in Figure 4. Note that we consider all leaf nodes to be
consecutively numbered from z; to z;,,, ;. In a multiresolution
context this linear index must be combined with the
LOD-metric, e.g. by a top-down level-wise grouping (classifi-
cation) of the nodes. This can lead to grouping nodes of signif-
icantly different LOD into the same level as shown in
Figure 4, where level 2 contains LOD-nodes that contain from
1 up to 6 original input points (leaf nodes). Hence subtrees
rooted in the same level can differ dramatically in point cover-
age and thus also in the LOD-metric.

Considering the bounding sphere size which is used in the
LOD-metric, a bottom-up LOD classification is much more
likely to put nodes of similar LOD-importance into the same
class. Therefore, we classify the nodes of the input hierarchy
H based on a layer-index as shown in Figure 4. This layer
number /; is basically the length of the longest path from a
node i to any leaf in its subtree. Second, we set z; of each
(inner) node i to the smallest z; of any of its descendants
(leafs) to preserve the spatial ordering within all layers and
levels.

Each point/node from H thus is associated with an index
pair (/;, z;) consisting of layer and spatial ordering information.
To arrive at the final ordering of the sequence of render-points
S; (see Figure 3) corresponding to nodes in H;, we order them
lexicographically in (/;, z;), decreasing in /; and increasing in
Z;, as illustrated in Figure 5. All render-points of layer / will so
be stored consecutively in the sequence S.

Zjx2 Zjx3 e
z-indices z;

LOD layer numbersl; %+ ™

Figure 4: Hierarchical level- and layer-based LOD
classification, and linear ordering of leaf nodes in z-index.

T = T9 caQ T
SER3ERE 3832555, 338 444
LS A A S A A S A A A A A A A A) LA

s:[514]3[3[2]2[2[1[1[1[1[1[1[1]1]o[o]o]o]..]..]o]o]0]
layer numibers I;

Figure 5: Layer-wise ordering of LOD render-points in
sequential LOD representation S.

3.3 Pagination

Since a fine-grain visibility culling, LOD selection, paging
and caching on the point sequence S is not feasible for large
data, in particular when considering accessing data from
out-of-core, XSplat paginates the point sequence S into a list
of blocks B as depicted in Figure 6. The pagination starts at
the first layer / with more elements than block capacity. Also,
the layers are padded by NULL-points to an integral multiple
of the the block capacity. Each block i references its points by
an index first; to the first element in S and the number n; of
elements in block B;.

As the number m of blocks in the block list B is an order of
magnitude smaller than the number n of render-points, an effi-
cient coarse culling, LOD selection, paging and caching can
be performed on the set B as described in more detail in
Section 4.

layers padding

1 e I A 2T) I ¢ I

blocks B:[Bo[By[Bp[.. | | | [[[[[| [Bui
Figure 6: Pagination and padding into blocks of
point-sequence S.

For effective visibility culling, each block B; stores bound-
ing sphere radius r; and normal-cone semi-angle 0; attributes
over all points S; in B;, see also Figure 7 for the render-block
node format. Therefore, as for individual points, it holds for a
block B;, with center p;, normal n;, bounding sphere radius r;
and normal-cone semi-angle 0;, that: given a viewpoint v and
view-frustum normals N; 4, B; is not visible and hence culled
if (p;—v)*N;>r; or w—6,>90°, for the angle o between
(v —p;) and normal n;.

Furthermore, as for the point sequence S, the block list B
has no more a hierarchical organization. However, the blocks
B can exploit the same concept of split and merge distances
rmin and rmax of points in S on a per-block basis in B. For a
block B; and all of its points j ;Sj €B, we set
rmin; = MIN»(rminj) and rmax; = MAX(rmax;). Hence
given the viewpoint v and screen-space tolerance €, a block B;

contains _rendered points only if it holds that
rmin; = Je - (|p;—v| +r;) and rmax, = Je - (|[p;=v|-r;). The
addition and subtraction of the block’s bounding sphere radius
r; accounts for the possible spatial deviation of points within a
block, as indicated in Figure 8.

Render-block i | average position p;

average normal n;

bounding sphere radius r;

bounding normal cone semi-angle 6;
split distance rmin;

merge distance rmax;

index to first point first;

number of points n;

Figure 7: Block attributes of a paginated sequential
point-list S.

vl

. o—
viewpoint v

Figure 8: Worst-case occurrence of rmin; and rmax;
within a block B;.

To aid fast estimation of blocks to render for a given view-
point v, we apply the sorting proposed in [10] to blocks. Hence
the blocks B; are ordered according to their rmax; value as
depicted in Figure 9. Based on the largest bounding sphere of
block 0 (radius r,, center p,) the merge and split distances are
dmin = Je - (‘po—ﬂ+r0) and dmax = Je- (\po—v‘ -ry)-
Within the rmax-ordered block list B, only the conservative
range [lo, hi] must be considered for rendering as shown in
Figure 9; with lo and hi being the smallest and largest index
for which rmin;, < dmin and rmax,; > dmax . Further details
on fast LOD-block selection for rendering is given in
Section 4.

block numbers

dmin
— dmax

Figure 9: Ordering of blocks in B with respect to the
block’s rmax values and selection of range.

3.4 File Format

As described in the preceding sections, the XSplat data struc-
tures consist of an array S of render-points (Figure 3) and an
array of blocks B (Figure 7). Both of these arrays are com-
puted in a pre-process. (See also Section 3.1) Most prepro-
cessing can be done also using memory mapped files.

The input hierarchy H must be traversed only once to gen-
erate the layer- and space-index pairs (/;, z;) for each ren-
der-point S; as well as the split/merge distances rmin;/rmax;
described in Section 3.2. This resulting array S, and its tempo-
rary indices (/;, z;), can be maintained in a memory mapped
(read-write) file for out-of-core processing. The array S is then
sorted by the imposed index order (/;, z;). This sorting can be
achieved by a quicksort algorithm on S, which also performs
well since quicksort exhibits strong memory access coherence.

The (/;, z;)-ordered and memory mapped array S is the XSplat
rendering data format.

The block array B is initialized by one linear pass over the
render-points S generating the block attributes (Section 3.3).
This is followed by a sorting of B in rmax. As the size of B is
an order of magnitude smaller than S it can generally be man-
aged in main memory, but as well using a memory mapped
file out-of-core.

In the current implementation, the arrays B and S are in fact
consecutively stored as two segments in one and the same sin-
gle binary file with some additional header information such
as number of elements. The XSplat rendering tool reads and
memory maps the file accordingly to access blocks and ren-
der-points.

4. Rendering

4.1 Overview

For efficient LOD-visualization it is critical to quickly arrive
at a reduced object complexity for the given view. XSplat per-
forms this LOD reduction based on block information
(Section 3.3). The coarse-grain block-based LOD selection
and visibility culling uses minimal CPU time to reduce the
complexity as much as possible. At the expense of little CPU
time block-based LOD and culling can improve over a pure
sequential point-range selection [10] by reducing the data sub-
mitted to the GPU. In particular, it allows for visibility culling
on a block-level not possible otherwise. Paginated processing
also reduces CPU cost compared to a top-down traversal of
the multiresolution hierarchy with per-vertex LOD-selection
and visibility-culling. Block-based processing can strike a bet-
ter CPU/GPU load-balance where coarse filtering is per-
formed on the CPU and fine-grain evaluation on the GPU.

Block-based culling and LOD-evaluation becomes even
more important for large point sets that exceed available video
and main memory size. Per-point evaluation becomes infeasi-
ble as the large number of individually processed points can
clog the CPU and may cause excessive paging of virtual mem-
ory. Conservative selection of point-ranges curbs caching in
video memory, as a large fraction of points is wasted and
floods the bus and GPU with elements which will be rejected
and not rendered.

The three main stages are described in the following sec-
tions:

1. In the first stage, a coarse LOD-selection and visibility
culling on the blocks B is performed on the CPU to
quickly cut down the data size for rendering the object
with respect to the current viewing parameters.

2. If not already in the geometry cache, the blocks selected
for rendering are copied to the video memory.

3. The visible blocks are streamed to the GPU which per-
forms the per-point culling and LOD-selection, and image
synthesis.

The file-segments holding the render-points S and ren-
der-blocks B are memory-mapped to provide seamless
out-of-core access via indexing and virtual memory address-
ing.

4.2 LOD Selection and Culling

When graphics card video memory is used to cache geometric
data, the number of rendered points per frame is limited to a
constant of C (blocks). Section4.3 explains the dynamic
updating of this geometry cache. The basic block selection is
performed as in Section 3.3 and illustrated in Figure 9, how-
ever, must be adjusted to select at most C blocks. Blocks and

their render-points can also directly be rendered from the
memory mapped array S without caching if desired.

The conservative dmin = /¢ (|po—v|+7¢) and
dmax = e~ (LpO - v‘ —ry) give an initial range [lo, hi] on the
array B, a starting point to select at most C blocks. The hi
range is easily found in the ordered array B by binary search
for rmax;,; just above dmax. The lower bound /o is found by a
linear search from the start of B.

The conservative range [lo, hi] is then scanned as shown in
Figure 10 to select up to C blocks. A per-block B; error toler-
ance ¢; = (rmax;/(|p;~v| - r))? is maintained for block cen-
ter p; and radius r; to define the achieved error threshold when
rendering is limited to C blocks. The cache size C is targeted
by starting with ¢, = ¢, and continually adding the next
block B; with the next smaller ¢;<¢_,. . Thus decreasing the
tolerance ¢, until the cache size C is met. Outside-view and
back-face visibility culling of blocks can be accounted for
while scanning the blocks due to fixed viewing parameters for
a given frame. Culled blocks do not waste any slots in the
geometry cache. If no cache is used, the visible blocks within
[lo, hi] that pass the LOD-evaluation are rendered.

iterative search to select C rendering blocks

rmax

dmin
— dmax

Figure 10: Scanning for C number of blocks in B, that fit
into geometry cache if desired, within the conservative
range [lo, hi].

4.3 Geometry Caching

XSplat can use video memory to cache the geometry of ren-
der-points, but it can also visualize large out-of-core data
without caching as demonstrated in the experiments of
Section 5. The format to access video memory is via vertex
array ranges. In fact, the binary layout of the render-point for-
mat given in Figure 3 is such that it can directly be used by the
OpenGL graphics API as interleaved vertex arrays.

The geometry cache manager partitions the available video
memory in C slots to hold compact vertex array ranges corre-
sponding to blocks. If cached, the entire vertex array S, to
Sfirst,+n,—1 Of ablock B; is copied as a whole from the mem-
ory-mapped array S to a video memory slot, see also
Figure 11. The cache manager keeps track of re-usable slots
by a least-recently-used strategy. Each of the C slots features a
timestamp when its content was last rendered on screen. The
oldest slot is overwritten if new data needs to be fitted in the
cache.

B -

CPU Q: P GPU

video memory

main mem

memory mapped disk pages
sme|||||i|n||

file of render-points arranged in blocks

Figure 11: Organization of render-point file § as
memory-mapped array, and block-array B in conjunction
with optional geometry caching in video memory.

4.4 Point Splatting

The back-end point-splatting pipeline is similar to other recent
approaches. In particular, XSplat offers the choice between
GLPoints, opaque sprites, and o-textured sprites. The sprites
represent the surface by oriented circular disks while the
GLPoints only draws screen aligned splats. The a-textured
sprites provide a smooth and continuous poing blending. See
[30] and [31] for more details on these rendering primitives.

As in [10] a fine-grain visibility culling and LOD-evalua-
tion is done on the GPU over the individual points Sj in the list
of blocks B; selected by the main CPU culling and LOD-selec-
tion algorithm outlined above. The visibility culling and
LOD-simplification as outlined in Figure 3 is performed by a
vertex-program.

5. Experiments

The experiments reported in this section were performed on a
Dell Pentium4 PC with 2.4GHz CPU, 512MB main memory
and NVIDIA GeForce 5900 GPU.

In Table 1 we summarize the test models. The columns .spt
and .blk denote the sequential point tree format [10] (.spt) and
XSplat’s block-based out-of-core format of Section 3 (.blk).
The .blk format contains both, the ordered array of blocks B
and the two-way sorted sequential points S. The block capac-
ity has been set to 64 render-points per block.

Model #points .spt .blk

LCucy 14,022,061] 760MB | 770MB
David 2mm | 4,129,534 224MB 230MB
David head | 2,000,646 109MB | 112MB
Female 302,948| 16MB | 16.5MB

TABLE 1. Test models.

In Table 2 we report timings of XSplat. It reports ammor-
tized values of rendering 1000 frames at 512x512 image reso-
lution flying around the object with just about the full object in
view and rendered as GLPoints (e.g. see Figure 1 on page 1).
The second column denotes the screen projection error toler-
ance in percentage of the viewport size. The third column
shows the average number of visible points. This represents
the CPU block-processed coarse approximation. The fourth
column shows the number of rendered points per second
(PPS) with respect to the overall cost (including visibility cull-
ing, LOD selection and rendering) and just rendering. Note
that David and David head at 0.0001 used geometry caching
on the video memory, hence the high FPS achieved.

Model Tol. e #pts/frame #pts/sec FPS
Tucy 0.0% 5.1M| 5.OM/O.3M| 1.2

) 0.0% 34M[9.6M/123M| 2.9
David 2mm

0.0001% 663K|11.1M/1.2G 17

0.0% 2.3M| 10M/12.4M 4.5
0.0001% 467K|12.3M / 1.2G 26
Female 0.0% 839K| 12M/0.4G 36
TABLE 2. Visualization experiments averaged over 1000
frames. Performance in points per second given for overall
timing and for rendering only.

Performance of the out-of-core memory mapped file is pre-
sented in Table 3. The peak-values are reported by Windows
XP Task Manager during the execution. The second column
presents the Working Set of the application, process memory
and shared memory with other processes. The third column
reports the exclusive memory allocated by the process. We
can observe the effectiveness based on the David 2mm and
Lucy models which only partially map the out-of-core data
into main memory: The performance, despite the out-of-core

David head

mapping and memory management, scales well compared to
the smaller David head model which fully resides in-core.

Mem

Model Usage(KB) Virtual(KB)| File Size (KB)
Tucy 790,028 28,408 776,370 |
David 2mm 136,992 14,184 229,648
David head 118,592 11,624 111,787
Female 22,420 7,504 16,930

TABLE 3. Peak memory allocation for the experiments.

6. Discussion

As shown in Section5, large models accessed from
out-of-core at run-time (see Table 3) can be rendered by
XSplat at several million PPS (see Table 2). The achieved FPS
are generally lower than in-core rendering as reported in [30].
Besides the approach in [15], no previous point-rendering sys-
tems is targeted at interactive rendering from out-of-core.

In [15], layered point clouds (LPC) for rendering huge
point sets have been proposed. Indeed LPC is very efficient in
that its block-based hierarchy is simple to traverse for
LOD-selection or culling and caching in video-memory is
supported. An important difference is that LPC heavily
exploits quantization of geometric attributes. This results in
very large models occupying not more than a few 100MB in
memory, and thus fitting into main memory. The rendering
experiments in [15] were performed with 2GB main memory
which can keep all of their test models in-core. In contrast, our
tests were performed with limited memory to explore real
out-of-core access (i.e. for the Lucy model). LPC [15] reports
average rendering rates of 30M to 40M splats/sec. However, it
is not declared if these numbers are derived from the full
model size multiplied by the frame rate, or if only the final
selected points are considered. XSplat achieves 6M to 12M
visible and displayed splats/sec including culling, LOD-selec-
tion and rendering; or 9M to 1,200M points/sec considering
the rendering part only.

Due to their differences, we believe a quantitative compari-
son of XSplat to LPC is out-of-scope in this place. However,
we acknowledge the benefit of quantization as applied in LPC
which allows many more points to be kept in-core per memory
unit. This greatly reduces the overall amount of memory to be
accessed for rendering, which not only noticeably improves
display performance but also significantly decreases
out-of-core access time. The arguable performance benefit of
LPC over XSplat potentially stems from this memory access
difference due to quantization. Hence reducing memory usage
based on rigorous quantization is a viable approach in general,
and for future extensions of XSplat.

Figure 12: A close-up image of the David head model
using the high quality blended point rendering system.

7. Conclusion

We have presented a novel out-of-core point visualization
algorithm. The main advantages: simplicity of its sequential
data layout, no quantization or compression of attributes, bal-
anced CPU/GPU load and dynamic and seamless paging from
out-of-core to main memory, and graphics video memory.
XSplat achieves good performance on large data sets, it ren-
ders the large models from out-of-core at the best resolution at
more than one FPS. XSplat is also reasonably efficient for
medium sized model and offers high-speed rendering when
the visible data fits into the geometry cache. In that case,
XSplat is able to render 12 million PPS from out-of-core for
the 2M point David head model. It even achieves rates of 6 to
9 million points per second from out-of-core. Therefore, it
offers a transparent and efficient way of rendering any sized
point models on any available main memory configuration.

Given a linearized multiresolution point-hierarchy a simple
preprocess — adaptable to out-of-core as well, using memory
mapping — has been presented. Further preprocessing steps on
how to generate a multiresolution hierarchy and LOD
attributes initially are beyond the scope of this paper. How-
ever, using external memory sorting techniques (see also [1,
33]) and clever use of memory mapped files, this can be
addressed as well.

Acknowledgements

We would like to thank the Stanford 3D Scanning Repository
and Digital Michelangelo projects as well as Cyberware for
freely providing geometric models to the research community.
This research was partly supported by awards UCI
SIIG-2003-2004-19 and New Del Amo UCDM-33657 .

References

[1] J. Abello and J.S. Vitter. External Memory Algorithms. American
Mathematical Society, Providence, R.1., 1999.

[2] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shackar Fleishman,
David Levin, and Claudio T. Silva. Point set surfaces. In Proceed-
ings IEEE Visualization, pages 21-28. Computer Society Press,
2001.

[3] Mario Botsch and Leif Kobbelt. High-quality point-based rendering
on modern GPUs. In Proceedings Pacific Graphics, pages 335-343.
IEEE, Computer Society Press, 2003.

[4] Mario Botsch, Michael Spernat, and Leif Kobbelt. Phong splatting.
In Proceedings Symposium on Point-Based Graphics, pages 25-32.
Eurographics, 2004.

[5] Mario Botsch, Andreas Wiratanaya, and Leif Kobbelt. Efficient high
quality rendering of point sampled geometry. In Proceedings Euro-
graphics Workshop on Rendering, pages 53—-64, 2002.

[6] Baoquan Chen and Minh Xuan Nguyen. POP: A hybrid point and
polygon rendering system for large data. In Proceedings IEEE Visu-
alization, pages 45-52, 2001.

[7] Paolo Cignoni, Claudio Montani, C. Rocchini, and Roberto Scopi-
gno. External memory management and simplification of huge
meshes. IEEE Transactions on Visualization and Computer Graph-
ics, 9(4):525-537, October 2003.

[8] Liviu Coconu and Hans-Christian Hege. Hardware-oriented
point-based rendering of complex scenes. In Proceedings Euro-
graphics Workshop on Rendering, pages 43-52, 2002.

[9] Jonathan D. Cohen, Daniel G. Aliaga, and Weiqiang Zhang. Hybrid
simplification: Combining multi-resolution polygon and point ren-
dering. In Proceedings IEEE Visualization, pages 37-44, 2001.

[10] Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger.
Sequential point trees. In Proceedings ACM SIGGRAPH, pages
657-662. ACM Press, 2003.

[11] Christopher DeCoro and Renato Pajarola. XFastMesh: Fast
view-dependent meshing from external memory. In Proceedings
IEEE Visualization, pages 363-370. Computer Society Press, 2002.

[12] Tamal K. Dey and James Hudson. PMR: Point to mesh rendering, a
feature-based approach. In Proceedings IEEE Visualization, pages
155-162. Computer Society Press, 2002.

[13] Jihad El-Sana and Yi-Jen Chiang. External memory view-dependent
simplification. In Proceedings EUROGRAPHICS, pages 139-150,
2000.

[14] Sarah F. Frisken and Ronald N. Perry. Simple and efficient traversal
methods for quadtrees and octrees. Journal of Graphics Tools,
7(3):1-11, 2002.

[15] Enrico Gobbetti and Fabio Marton. Layered point clouds. In Pro-
ceedings Symposium on Point-Based Graphics, pages 113-120.
Eurographics, 2004.

[16] Gevorg Grigoryan and Penny Rheingans. Probabilistic surfaces:
Point based primitives to show surface uncertainty. In Proceedings
IEEE Visualization, pages 147-154. Computer Society Press, 2002.

[17] J.P. Grossman and William J. Dally. Point sample rendering. In Pro-
ceedings Eurographics Rendering Workshop, pages 181-192. Euro-
graphics, 1998.

[18] Matthias Hopf and Thomas Ertl. Hierarchical splatting of scattered
data. In Proceedings IEEE Visualization, pages 433-440. Computer
Society Press, 2003.

[19] Aravind Kalaiah and Amitabh Varshney. Modeling and rendering
points with local geometry. IEEE Transactions on Visualization and
Computer Graphics, 9(1):30-42, January-March 2003.

[20] Leif Kobbelt and Mario Botsch. A survey of point-based techniques
in computer graphics. Computers & Graphics, 28(6):801-814, 2004.

[21] Peter Lindstrom. Out-of-core simplification of large polygonal mod-
els. In Proceedings SIGGRAPH, pages 259-262. ACM SIGGRAPH,
2000.

[22] Peter Lindstrom. Out-of-core construction and visualization of mul-
tiresolution surfaces. In Proceedings Symposium on Interactive 3D
Graphics, pages 93-102. ACM SIGGRAPH, 2003.

[23] David Luebke, Martin Reddy, Jonathan D. Cohen, Amitabh Varsh-
ney, Benjamin Watson, and Robert Huebner. Level of Detail for 3D
Graphics. Morgan Kaufmann Publishers, San Francisco, California,
2003.

[24] Renato Pajarola. Efficient level-of-details for point based rendering.
In Proceedings IASTED Invernational Conference on Computer
Graphics and Imaging (CGIM), 2003.

[25] Renato Pajarola, Miguel Sainz, and Patrick Guidotti. Confetti:
Object-space point blending and splatting. IEEE Transactions on
Visualization and Computer Graphics, 10(5):598-608, Septem-
ber-October 2004.

[26] Mark Pauly, Markus Gross, and Leif P. Kobbelt. Efficient simplifi-
cation of point-sampled surfaces. In Proceedings IEEE Visualiza-
tion, pages 163-170. Computer Society Press, 2002.

[27] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus
Gross. Surfels: Surface elements as rendering primitives. In Pro-
ceedings SIGGRAPH, pages 335-342. ACM SIGGRAPH, 2000.

[28] Liu Ren, Hanspeter Pfister, and Matthias Zwicker. Object space
EWA surface splatting: A hardware accelerated approach to high
quality point rendering. In Proceedings EUROGRAPHICS, pages
461-470, 2002. also in Computer Graphics Forum 21(3).

[29] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multiresolution
point rendering system for large meshes. In Proceedings SIG-
GRAPH, pages 343-352. ACM SIGGRAPH, 2000.

[30] Miguel Sainz and Renato Pajarola. Point-based rendering tech-
niques. Computers & Graphics, 28(6):869-879, 2004.

[31] Miguel Sainz, Renato Pajarola, and Roberto Lario. Points reloaded:
Point-based rendering revisited. In Proceedings Symposium on
Point-Based Graphics, pages 121-128. Eurographics Association,
2004.

[32] Gokul Varadhan and Dinesh Manocha. Out-of-core rendering of
massive geometric datasets. In Proceedings IEEE Visualization,
pages 69-76. Computer Society Press, 2002.

[33] Jeffrey S. Vitter. External memory algorithms and data structures:
Dealing with massive data. ACM Computing Surveys,
33(2):209-271, 2001.

[34] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus
Gross. Surface splatting. In Proceedings SIGGRAPH, pages
371-378. ACM SIGGRAPH, 2001.

