
Structured Information on State
and Evolution of Dockerfiles on GitHub

Gerald Schermann, Sali Zumberi, Jürgen Cito
Software Evolution and Architecture Lab

University of Zurich
Zurich, Switzerland
{lastname}@ifi.uzh.ch

ABSTRACT
Docker containers are standardized, self-contained units of appli-
cations, packaged with their dependencies and execution environ-
ment. The environment is defined in a Dockerfile that specifies the
steps to reach a certain system state as infrastructure code, with
the aim of enabling reproducible builds of the container. To lay
the groundwork for research on infrastructure code, we collected
structured information about the state and the evolution of Docker-
files on GitHub and release it as a PostgreSQL database archive
(over 100,000 unique Dockerfiles in over 15,000 GitHub projects).
Our dataset enables answering a multitude of interesting research
questions related to different kinds of software evolution behavior
in the Docker ecosystem.

KEYWORDS
Docker, GitHub, Containers, Mining Software Repositories
ACM Reference format:
Gerald Schermann, Sali Zumberi, Jürgen Cito. 2018. Structured Information
on State and Evolution of Dockerfiles on GitHub. In Proceedings of MSR ’18:
15th International Conference on Mining Software Repositories, Gothenburg,
Sweden, May 28–29, 2018 (MSR ’18), 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Containers are standardized, self-contained units of applications,
packaged with their dependencies and execution environment,
which can be used for software development and to run the appli-
cation on any system independent from the underlying operating
system or hardware. The contents of a Docker container are defined
in a Dockerfile, which specifies instructions to arrive at a certain
infrastructure state [6], following the notion of Infrastructure-as-
Code (IaC) [7]. Software repositories containing Dockerfiles enable
the execution of program code in an isolated environment.

Given the fast rise in popularity, both in industry and academia,
and its surrounding claim of enabling reproducibility [2], we devel-
oped a tool chain that transforms Dockerfiles and their evolution in
Git repositories into a relational database model. Only recently, we
conducted an initial exploratory study [3] on the Docker ecosystem
on GitHub using this dataset. We had a first look on typical base
images and programming languages used for Docker, investigated

MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Proceedings of MSR
’18: 15th International Conference on Mining Software Repositories, May 28–29, 2018,
https://doi.org/10.1145/nnnnnnn.nnnnnnn.

prevalent quality issues (e.g., how many Dockerfiles build success-
fully), and finally at the evolution of Dockerfiles. Our dataset has the
potential to revisit these questions from a more recent perspective
(i.e., allow for replication studies) and to dive even deeper, allowing
for example, to investigate the co-evolution of Dockerfiles. Addi-
tionally, our data has potential to be combined with other software
repositories to explore an even broader range of phenomena (e.g.,
GHTorrent [5], TravisTorrent [1]).

In the following, we present the key characteristics of our dataset,
the process of data collection, details on the underlying data model,
and finally, we list a few illustrative questions that might be an-
swered when exploring our dataset.

2 DATASET AT A GLANCE
Our dataset comprises the entire population of more than 100,000
unique Dockerfiles originating from about 15,000 GitHub projects
(state February 2018), enriched with information from the GitHub
API to get additional metadata (e.g., owner type, owner name, used
programming languages, project size, number of forks, issues, or
the number of watchers). The dataset is available as a PostgreSQL
database archive of around 26GB (uncompressed) in our online
appendix [9]. The dataset can be easily explored using tools such
as pgadmin.

Dockerfile Revisionhas
1 n

Rule
Violation

violates

m

n

Instruction

contains

n

1

Diff
before

1 1

after
1 1

Structured
Change

contains

n

1

Change
Typehas

n

1

Parameter

Co-Evolution
Files

has
1

n

Project

has
n

1

Figure 1: Schematic relational data model

We parse each Dockerfile and all its revisions into a relational
data model (see Figure 1 for a schematic view of the underlying
data model). A Project contains one to many Dockerfiles. A Docker-
file contains one to many Instruction entities (more than 5,900,000
instructions over all Dockerfiles), each of them having one to many
Parameter entities (≥ 11,000,000 parameters). Each Dockerfile entity
stores one to many Revision entities (≥ 350,000 revisions), which re-
flect every commit on this Dockerfile. For two consecutive revisions
(before and after a change) of Dockerfiles, we compute structural
differences, and store the entity Diff with one to many Structured
Change entities for each instruction (more than 2,500,000 changes).

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MSR ’18, May 28–29, 2018, Gothenburg, Sweden G. Schermann et al.

We categorized different types of differences (Change Type): ADD,
MODIFY, DELETE, with subcategories for each instruction, which
enables more fine-grained evolution analysis. Moreover, we collect
information on co-evolution (≥100,000,000 co-evolution files), i.e.,
capturing files (e.g., source code) that changed along with a Dock-
erfile or within a range of commits before or afterwards. Finally,
we gather data on the adherence to best practices by reporting the
results of a Dockerfile linter [8] (rule violation entities).

3 DATA COLLECTION METHOD
In the following, we provide insights on the process (see Figure 2
for an illustration) we established to collect our data.

GitHub
Miner

Checkout
Project

Parse
Dockerfile

Execute
Linter

Compute
Structural
Changes

List of Docker
Projects

Project Files &
Meta Data

Base Image
Data

Dockerfile Rule Violations

Data Persistance

Google BigQuery GitHub DockerHub Dockerfile Linter

For every
Project

Data Analysis
PostgresDB

Figure 2: Method overview

• We started by retrieving a list of repositories that contain
Dockerfiles from the public GitHub archive on Google’s Big-
Query1 in January 2018.
• We removed repositories that were forks from other reposi-
tories to avoid biasing analysis of the dataset with duplicate
entries and to keep the dataset compact. This would have
been particularly problematic, as especially large, popular
projects such as Kubernetes or nginx are forked frequently.
• The observation period for revisions and changes that we
mined to analyze evolution behavior was from the first Dock-
erfile commit that appeared in the respective GitHub reposi-
tory until January 2018.
• Our toolDFA (Docker File Analyzer) is a Java project respon-
sible for checking out a specified GitHub project, parsing
and storing all identified Dockerfiles in a relational data-
base (Postgres), collecting information on the project’s co-
evolution, and computing structural changes with distinct
change types between all Dockerfile revisions in a repository.
The tool’s sources and further details on how to run it are
available in our online appendix [9].
• In addition to the data gathered from the Git repository,
we also collected meta data from GitHub (e.g., number of
stargazers) and DockerHub (e.g., official image available).
• We ran the linter [8] on the most recent version of a Dock-
erfile and store the resulting rule violations in our dataset.

1https://cloud.google.com/bigquery/public-data/github

Challenges and Limitations. The tooling for the data collec-
tion was built on the assumption that Docker projects on GitHub
follow the standard naming convention for Dockerfiles (i.e., Dock-
erfile without attached file type). Moreover, retrieving the entire
Docker ecosystem on GitHub is challenging as Docker has gained
massive popularity. Therefore, the data collection process lasts
multiple days even on multi-core server infrastructure and a thread-
based execution model. As we mined the entire ecosystem we did
not exclude “toy projects”, i.e., projects that were created to play
with and test the functionality of Docker. These projects might
influence potential analysis conducted with our dataset. Finally,
we only considered Docker repositories hosted on GitHub. As a
consequence, findings based on the sole analyses of our dataset
might not generalize to Docker projects hosted on other services
such as Bitbucket or GitLab.

4 DATA MODEL
Figure 1 presents a simplified, schematic view of the underlying
data model. A comprehensive entity relationship diagram of the
database hosting the dataset is provided in our online appendix [9].
In Table 1 we present a more detailed description on selected ta-
bles (i.e., Project, Dockerfile, Snapshot, Changed_Files, and From)
including type information and featuring an example data point.

In our dataset, we distinguish between Docker instructions used
once within a Dockerfile (i.e., single instructions in Table 1 such
as From) and instructions used multiple times (e.g., Add, Expose).
Further, we distinguish between evolution data (i.e., subsequent
revisions of Dockerfiles) and co-evolution data (i.e., which kind
of changes happen to other files in the proximity to changes on
Dockerfiles). While evolution within Dockerfiles is covered by the
tables Snapshot, Snap_Diff, Diff, Diff_Type, co-evolution is mainly
covered by Changed_Files.

Structurally Persisting Revisions. For each revision (i.e., a
snapshot in our data model) of a Dockerfile, we compute the struc-
tural changes with distinct change types. Figure 3 showcases how
we identify and structurally persist revisions for example instruc-
tions RUN and CMD. When comparing snapshots 1 and 2 in Figure 3
we identify a subtle change on the change directory (cd) command
executed within a RUN instruction, i.e., the parameter “YODA-1.5.1”
is modified to “YODA-1.5.8”. In our table Diff_Type this is reflected
by an UpdateType_Parameter change type entry (id 1). Before and
after columns represent the change in detail. In addition, in snap-
shot 2, a RUN instruction is added executing apt-get with parameter
“clean”. In our dataset, this is reflected by an AddType_RUN change
type entry (id 3). A CMD instruction is added executing redis-server
with an attached configuration file (i.e., AddType_CMD change type
entry with id 4). Finally, since the execution of apt-get is removed in
snapshot 2, a DelType_RUN change type is added to the Diff_Type
table (id 2).

Table Diff summarizes the number of changes (split into number
of inserts, modifications, and deletes) occurring for each revision.
For this concrete example, two inserts, one modification, and one
deletion.

Quality Issues and Adherence to Best Practices. Best prac-
tices and coding guidelines not only exist for programming lan-
guages but also evolved for Infrastructure-as-Code (IaC) languages
such as Puppet, Chef, or in our case Docker [4]. For this reason,

https://cloud.google.com/bigquery/public-data/github

Structured Information on State and Evolution of Dockerfiles on GitHub MSR ’18, May 28–29, 2018, Gothenburg, Sweden

cd YODA-1.5.1 cd YODA-1.5.8

Id Instruction Executable Before After ChangeType DiffId

1 RUN cd YODA-1.5.1 YODA-1.5.8 UpdateType_Parameter 1

Executable Parameter Executable Parameter

apt-get install -y -q curl

2 RUN apt-get install -y -q curl null DelType_RUN 1

mkdir /www

mkdir /www

apt-get clean

3 RUN apt-get null clean AddType_RUN 1

./redis-server /etc/redis.conf

4 CMD ./redis-server null /etc/redis.conf AddType_CMD 1

DiffId Ins Mod Del CommitDate

1 2 1 1 17-01-2018

DiffId SnapshotId

1 1

1 2

Old Snapshot [SnapshotId = 1] New Snapshot [SnapshotId = 2] snap_diff Table diff Table

diff_type Table

Diff Object DiffType
Object

1 n

DiffId = 1

Figure 3: Illustration of how two snapshots (revisions) are structurally persisted

during the data collection process, we executed an open source lin-
ter [8] for each Dockerfile to analyze the adherence to best practices
and to reveal potential quality issues. The reported violations of best
practices (i.e., ids of violated rules) were added to the Violated_Rules
table in our dataset. Detailed descriptions and illustrating examples
for rule violations can be found in the linter’s documentation on
GitHub.

5 FUTURE RESEARCH QUESTIONS
In the following, we list a few illustrative questions that can be
answered with our dataset, potentially in combination with data
from other software repositories. Meta data such as commit hashes
allow researchers to fetch additional information for example from
the GHTorrent [5] or TravisTorrent [1] datasets to explore an even
broader range of phenomena.

• Characterizing Co-Evolution: What types of files change fre-
quently together with Dockerfiles?
• What is the influence of failed CI tests of Dockerfile builds (e.g.,
what kind of changes happen after failed builds)?
• Do Dockerfiles change in similar rates to regular source code?
• Is there a connection between Dockerfile quality (e.g., adherence
to best practices, build quality) and the quality of program source
code?
• How is documentation (i.e., comments) in Dockerfiles used com-
pared to regular source code?
• What is the relationship between Dockerfile documentation and
quality?
• What kind of configuration files (e.g., shell scripts, ini files) have
evolved into parts of Dockerfiles and what kind of configuration
files are kept separated?
• What is the proportion of infrastructure code that is still executed
in an external shell script as opposed to in Dockerfiles?
• Can we relate quality issues in Dockerfiles to questions asked on
StackOverflow?
• Does Dockerfile quality correlate with build success/failure?
• Are projects that have updated Dockerfiles more often adopted
by the community (i.e., comparing Dockerhub and GitHub stats
with Dockerfile evolution)?

6 EXAMPLE QUERIES
In our online appendix [9], we provide examples as to how the
dataset can be effectively queried. In the following we list three
concrete examples. The first query returns the top used base images
and their frequencies in descending order. The second query selects
the most frequent used RUN instructions and parameters. Finally,
the third query returns the average number of files that change (i.e.,
co-evolution) when a Dockerfile gets updated.
SELECT imagename, count(imagename) FROM df_from

WHERE current = true
GROUP BY imagename
ORDER BY count DESC

SELECT executable, count(executable), run_params
FROM df_run df NATURAL JOIN run_params rp
WHERE df.current
GROUP BY executable, run_params
ORDER BY count(executable) DESC

SELECT avg(snap_id)
FROM (

SELECT snap_id, count(snap_id)
FROM changed_files
WHERE range_index = 0
GROUP BY snap_id
ORDER BY count(snap_id) DESC) s

7 CONCLUSIONS
With our dataset we provide researchers the possibility to explore
the Docker container ecosystem on GitHub in a fast and simple
manner. Structured change types move the investigation of the
evolution of Dockerfiles into a new light as we parse Dockerfiles
specified in a declarative language and enrich them with change
information. In addition, we foster analyses on co-evolution as we
capture information of files that are changed in the proximity of a
Dockerfile change. Finally, our dataset is enriched with information
about the adherence to Dockerfile best practices. In our online ap-
pendix, we provide additional information to our dataset, including
a link to download the database dump, how to build and execute
our toolchain to start the data collection process, and some example
queries demonstrating how to query the dataset.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden G. Schermann et al.

Table 1: Description of selected tables and data fields (excerpt)
Column Name Description Type Example

Table Project

project_id Auto generated id (primary key) Integer 1
git_url Project URL String https://github.com/zazujs/zazu
repo_id GitHub repository ID Integer 40297144
repo_path Repository name String zazujs/zazu
created_at Project creation date Integer 1438846911
i_forks Number of forking projects Integer 1
i_owner_type Owner type (User or Organization) String Organization
i_size Project size in KB Integer 511
i_stargazers Number of stargazers on GitHub Integer 3

Table Dockerfile

dock_id Auto generated id (primary key) Integer 3
docker_path Path to the Dockerfile String Dockerfile
first_docker_commit Date when Dockerfile was added Integer 1438846911
commits Number of commits on the Dockerfile Integer 2
project_id Foreign key to Project table Integer 1

Table Snapshot

dock_id Foreign key to Dockerfile table Integer 3
snap_id Auto generated id (primary key) Integer 3
instructions Number of instructions in this snapshot Integer 10
from_date Date of commit of this revision Integer 1463433484
to_date Date of commit of subsequent revision Integer 1485480002
image_is_automated Automated GitHub Build Boolean false
image_is_official Official DockerHub image? Boolean false
current Current snapshot? Boolean true

Table Changed_Files

snap_id Foreign Key to Snapshot table Integer 3
changedfile_id Auto generated id (primary key) Integer 43
changetype ADD / DELETE / MODIFY String MODIFY
commit_sha Commit SHA String f87d9dad99b779936bf32e38662be4631840c675
insertions Insertions made to the file Integer 1
deletions Deletions made in the file Integer 1
range_index 0: Revision occurred when Dockerfile was changed; Integer -2

-1: Revision occurred one commit before Dockerfile;
1: Revision occurred one commit after Dockerfile;

file_name Name of changed file String instances
file_path Path of changed file String server/init/apps/
file_type Type of changed file String js

Table From

snap_id Foreign Key to Snapshot table Integer 15
current Current FROM instruction? Boolean true
full_name Full image name String ubuntu:14.04
image_version Image version String 14.04

ACKNOWLEDGMENTS
The research leading to these results has received funding from
the Swiss National Science Foundation (SNSF) under project name
“Whiteboard” (SNSF Project no. 149450). We further like to thank
the Swiss Group for Software Engineering (CHOOSE) for providing
financial support to attend the conference.

REFERENCES
[1] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Synthe-

sizing Travis CI and GitHub for Full-Stack Research on Continuous Integration.
In Proceedings of the 14th working conference on mining software repositories.

[2] Jürgen Cito, Vincenzo Ferme, and Harald C. Gall. 2016. Using Docker Containers to
Improve Reproducibility in Software andWeb Engineering Research. Springer Interna-
tional Publishing, Cham, 609–612. https://doi.org/10.1007/978-3-319-38791-8_58

[3] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi,
and Harald C Gall. 2017. An empirical analysis of the Docker container ecosystem
on GitHub. In Proceedings of the 14th International Conference on Mining Software
Repositories. IEEE Press, 323–333.

[4] Docker. 2018. Best practices for writing Dockerfiles. (2018).
https://docs.docker.com/engine/userguide/eng-image/dockerfile_
best-practices/, accessed 2018-02-01.

[5] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings of
the 10th Working Conference on Mining Software Repositories (MSR ’13). IEEE Press,
Piscataway, NJ, USA, 233–236. http://dl.acm.org/citation.cfm?id=2487085.2487132

[6] Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar Eilam. 2013.
Testing Idempotence for Infrastructure as Code. Springer Berlin Heidelberg, Berlin,
Heidelberg, 368–388.

[7] Yujuan Jiang and Bram Adams. 2015. Co-evolution of Infrastructure and Source
Code: An Empirical Study. In Proceedings of the 12th Working Conference on Mining
Software Repositories (MSR ’15). IEEE Press, Piscataway, NJ, USA, 45–55.

[8] Lukas Martinelli. 2018. Haskell Dockerfile Linter. (2018).
https://github.com/lukasmartinelli/hadolint, accessed 2018-02-01.

[9] Gerald Schermann, Sali Zumberi, and Jürgen Cito. 2018. Paper – Online Appendix.
(2018).
https://github.com/sealuzh/msr18-docker-dataset, accessed 2018-03-12.

https://doi.org/10.1007/978-3-319-38791-8_58
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://github.com/lukasmartinelli/hadolint
https://github.com/sealuzh/msr18-docker-dataset

