
Lukas Yu

The Swiss Feed Database
documentation

February 2017

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland

2

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

–
N

o.
20

17
.x

xx
x

L. Yu:
Technical Report No. 2017.xxxx, February 2017
Database technology group
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zurich, Switzerland
URL: http://www.ifi.uzh.ch/en/dbtg.html

4

Chapter 1

Introduction

1.1 Swiss Feed Database

The Swiss Feed Database is a website where information about nutrient measurements
in feeds can be searched and visualized with tables, heatmaps etc. Several options are
available to choose exactly what is needed. Filters like specific feeds, nutrients, locations
and time are used to narrow down the selection and the user can choose to get the data
shown as a list of single measurements or in a summarized fashion.

The data originates from a database built from data made available from Agroscope and
is continuously updated with new information.

1.2 Application overview

The application is built on top of NodeJS using AngularJS and for storing data Postgres
is used. The frameworks/libraries that are used are listed thereafter.

1.2.1 Used frameworks/libraries

Client:

• AngularJS 1.6.2: https://angularjs.org/
A MVVM framework based on JavaScript

• angular-google-chart: https://github.com/angular-google-chart/angular-google-chart
Google charts libraries wrapped in Angular directives

• angular-ivh-treeview: https://github.com/iVantage/angular-ivh-treeview
A treeview used for selecting search options written for use with AngularJS

5

6

Server:

• Node.js: https://nodejs.org/
Server platform with JavaScript

• Node package manager (npm): https://www.npmjs.com/
Package manager for NodeJS

• Express: http://expressjs.com/
Web framework for NodeJS

• jsonwebtoken: https://github.com/auth0/node-jsonwebtoken
Library for encrypting and decrypting JsonWebTokens (JWT)

• knex: http://knexjs.org/
Promise based query builder

• pg (postgres): https://github.com/brianc/node-postgres
PostgreSQL client for NodeJS

1.2.2 Overview

On the client side, we have angular components, which are views with integrated con-
trollers. A view defines how the layout looks like and it is written in HTML code. A
controller implement the business logic, defined as a function that gets called when ini-
tialized. These components are isolated from each other, so variables and functions are
only available inside the component that defines them. To define a component one more
file is needed, the module file that is used as a container that can be loaded into other mod-
ules as a dependency. To add a component to any HTML, first include the module of the
component to another module and then simply add an HTML-tag with the component’s
name to the HTML code. (eg. loginForm component => <login-form></login-form>)

To communicate between the components, we have services. In order to use an Angular
service, the module of the service has to be included as a dependency in the module
that needs it and the service has to be injected into the controller function. Services are
singletons, which means if multiple components loads the same service, it both references
the same instance of the service. In this application, we use services to share data and
functions if more than one component depends on it (eg. session data). The core functions
of the application are all saved in the services.

The application is a single page application. The whole website is defined in the file
/client/index.html, where the global controller is responsible to switch the <ng-view></ng-
view> with the right component.

On the server. We have several endpoints for retrieveing or saving information from the
database.

7

Server
Endpoints

 Client

TopQueries

auth

End point
/api/params

session query resultsData

SearchOptions ResultsLogin form

Global controller
- Component routing/switching
- Static homepage

End point
/api/login

End point
/api/results

End point
/api/queries

Database

(responsible for)

Components

Services

Figure 1.1: Information flow diagram

8

1.3 Setup

• Install node.js (from https://nodejs.org/en/download/)

• Start the server with the following command within the /feedbase-version2/

folder:

$ npm start

• The server should be running on port 3000 and can be viewed with the address
http://localhost:3000/

The frameworks/libraries that are used are already installed and stored in the folder
/node_modules/ and they don’t have to be reinstalled.

If any additional module has to be installed, it can be done by executing the following
command: $ npm install {module name} --save

The Postgres database has to be installed and listening at port 5432. Further instruction
about Postgres are written in the readme-file in the same folder. Connection information
for the database can be edited in knexfile.js.

1.4 Services

Each service is defined into its own module, so it can be included into other modules (or
other services) seperately. The services are stored in the folder /client/services/.

1.4.1 session service

The session service is used to save user information. It creates an object called session
that has the following fields: username, userlevel, language and a loggedIn boolean.
The function login sets the username and userlevel so that this information is acessible
from any function that injects this service. The default value for userlevel is 0 (guest)
and for language english. Other userlevels are: 2 for subscribers and >2 for admins.

1.4.2 auth service

This service only contains function login() for the login. The function takes the username
and password and makes a POST-request to the /api/login endpoint. If the server ac-
cepts the credentials, Then an encrypted JsonWebToken is sent to the client that includes
all session information (eg.userlevel). The client stores this token as the authorization
http header. The server is stateless, so all the session information is only stored in the
token. All future request from the client includes the header, which the server will use to
identify the client.

9

1.4.3 query service

This service is responsible for the query options. It uses the variable query.categories

that defines a query using the following attributes:

agrideaFeeds Agridea Feeds [tree]
unclassFeeds Unclassified Feeds [tree]
classFeeds Classified Feeds [tree]
nutrients Nutrients [tree]
nutrientsDerived Derived nutrients [tree]
cantons Cantons [list]
altitudes Altitudes [list]
years Years [list]
seasons seasons [list]
radius radius number (not used at the moment)
fresh Fresh or dry matter boolean
dataType Detail or summary data (’td’, or ’sd’)
raw Raw data boolean

The tree and list options are stored in a way the angular-ivh-treeview can parse it and
draw the tree structure menus. The structure looks like this:

[

{

label: ’Cereal grains’,

selected: false,

children: [

{

label: ’ Barley grains, heavy (70 - 74 kg/hl) (lat. Hordeum vulgare)’,

selected: false

},

{

label: ’ Triticale, grains (lat. Triticum x Secale)’,

selected: true

}

]

}

]

Children of category nodes can also be category nodes so the tree structure can be arbi-
trarily deep. Attributes of the query that has a flat hierarchy (see table: [list]) consist of
lists with nodes without a parent. This service provides the following function:

• saveQuery() saves the current query to the database. It calls the function get-
Params() to get an object with all selected items (same structure as query.categories
object, but only with lists of selected ids) and sends them to the server. NOTE:
This function cannot be called from the user yet.

• getQuery(queryId) retrieves a pre-saved query from the database. The response
from the server only contains ids of the selected search options, so we make another
request with getParams() to get the whole tree structure menus along with names,
description etc.

10

• getParams(loadlevel, selected) retrieves new options from the database ac-
cording to the already selected options. The loadlevel indicates what we want:
0 means feed, 1 nutrient and 2 geo and time options. The selected options nor-
mally should be the current selected ones. We get them with the function getS-
elected(). With the response from the server we update the current query with
updateParams(newParams, loadlevel).

• updateParams(newParams, loadlevel) updates the the trees in query.categories.

• getSelected() gets the selected ids from the tree structure menus and returns an
object with the same structure as query.categories, but only contains lists with the
selected ids.

• validateTree() is necessary to update the tree after it has been modified auto-
matically (not from the user manually clicking). It is used to update any parent’s
checkbox state based on their children.

1.4.4 resultsData service

The resultsData service is used to request data from endpoint /api/results, format
and store it in a way that the google charts table (from angular-google-chart library)
can display the data. There are two types of data: detail data and summary data.
Detail data lists every single measurement in a row with information about date, location
etc. Summary data lists reference values about every feed/nutrient combination. The
response from the server consists of two parts: column headers (nutrient names) and
rows (measurement values). Note that a single row only includes one single measurement,
which means that multiple rows from the server have to be joined together. The service
implements the following functions:

• getResults() gets the results. It doesn’t need any parameters. It takes the
parameter directly from the query service. It fills the table by calling functions
setColumnsSummary and setRowsSummary (if summary data is selected ofr func-
tions setColumnsDetail and setRowsDetail (if detail data is selected)

• setColumnsSummary() takes the response from the server and prepares the col-
umn headers of the table with the nutrients names. First it adds a column for
the feed name. Then it loops through every selected nutrient and adds a col-
umn with their name and unit measure for each of them. After that it fills the
columnsHash[nutrientId] object with the nutrient id as the key/membername
and the column index as the value. The columnsHash object is defined outside of
this function so it does not get deleted after the function finishes. The object is
then used by setRowsSummary() to find the right column to fill in the measurement
values.

• setColumnsDetail() the same like setColumnsSummary(), but it additionally adds
some more columns like location, date, altitude etc. and if multiple analysis_id

exists for one nutrient, it adds an indicative column, which should take the value of

11

the analysis with the highest priority (lowest number). At the end it saves the index
of the any column to the columnsHash object, which setRowsDetail() will use to
find out the position of the column. The key/membername of the columnsHash

consists of the nutrient id and the analysis id separated with a ’/’ (eg. ’24/2’). The
indicative columns are stored in the columnsHash with the nutrient id and the string
’indicative’ (eg. ’24/indicative) as key/membername.

• setRowsDetail() fills the table rows with actual values. First it creates two vari-
ables: newRows list as the return value and rowsHash to find a row based on the
LIMS measurement number lims_number. Then it loops through the values from
the response of the server. If a row has not been added to rowsHash, it creates a
row with the lims_number, date, canton, postal_code and feedname and adds it
to both rowsHash with the lims_number as key and the row object as value and
newRows. It adds the measurement value to the right position of the row based on
the nutrient id and analysis number (column index from the columnsHash object
filled by setColumnsDetail()). If the current nutrient has an indicative column,
check the priority number of the measurement. if it is lower than the previous,
fill the indicative column with the current measurement value.

• setRowsSummary() does the same as setRowsDetail(), but only adds the feedname
to the first column and doesn’t have any priorities.

The final data variable of the service should look like this (summary data example):

{"cols": [

{

"id": "feed",

"label": "Feed Type",

"type": "string"

}, {

"id": 180,

"label": "DM g/kg",

"type": "number"

}, {

"id": 158,

"label":"Ash g/kg DM","type":"number"

}

], "rows": [

{

"c": [

{

"v": "Barley grains, decorticated (lat. Hordeum vulgare)"

}, {

"v": 870

}, {

"v":14.97

}

]

}, {

"c": [

{

"v": "Barley flakes (lat. Hordeum vulgare)"

}, {

"v": 870

}, {

"v":13.22

}

]

}

]}

12

1.5 components

The components are stored in /client/components/. Each component defines a view
and a corresponding controller. Each component is defined by three files. A module file
which declares the module, a view file which specifies the layout in HTML code and a
controller file. In some cases view or controller file is trivial. The components are defined
in their own module so that each can be loaded into other modules seperately.

A component is broken into three parts: a module definition, the controller and the view
(eg. searchOptions.modules.js / searchOptions.controller.js / searchOptions.template.js)

1.5.1 global

It is a controller to display the different components. It configures the different routes. For
example, if http://localhost:3000/#!/results is called, the <ng-view></ng-view>

element from the index.html file gets replaced with the results component. Anytime
else will show the top-queries component. The other component like login-form and
search-option will always be shown.

1.5.2 login-form

view

The view consists of two text inputs for username and password and one submit button.
If the submit button is clicked, the login function of the controller is called. If the loggedIn
boolean of the session service is true, the whole form gets hidden.

TODO: logout button if logged in

controller

All this controller does is call the login() function of the auth service when the submit
button is pressed. This function sends the credentals to the server and gets the response
(sucess/fail). See auth service for more detail.

1.5.3 search-options

view

The view respresents the data in the query service:

13

agrideaFeeds Selection tree
unclassFeeds Selection tree
classFeeds Selection tree
nutrients Selection tree
nutrientsDerived Selection tree
cantons Selection tree
altitudes Selection tree
years Selection tree
seasons Selection tree
radius Text input box (not implemented yet)
fresh Radio buttons
dataType Radio buttons
raw checkbox
executeQuery() Button
saveQuery() Button

The selection trees are angular-ivh-treeviews and get their data from category member
of the query service a treeview is drawn with a ’ivh-treeview’ attribute with the value set to
the data it should display (eg. <div ivh-treeview="vm.query.categories.cantons">).
Any changes to the selection gets immediately represented in the query service thanks to
the two way binding of AngularJS.

Note that the classifiedFeeds are broken into two trees/tabs: Raw Materials and Roughage

controller

The controller is responsible to bind the query service to the view. It also handles the tab
navigation and disabling options based on selected options.

The two functions executeQuery() and saveQuery() essentially calls functions in the query
service, but also does some changes to the layout (mostly AngularJS ng-hide directives
to simulate tabs). These two functions get their input directly from the query service. No
input from this controller is needed.

1.5.4 top-queries

view

The view consist of the tabs: top-queries and user-queries (only shown if logged in). The
top-queries consists of sponsored queries and queries created and made available from the
admin. The user-queries consists of queries that the user has made himself. In each of
the two tabs there is a list with clickable queries for detail data queries and another list
for summary data. At the bottom there is another container for news.

TODO: execute the query and change the url to show results after link is clicked

14

controller

The controller retrieves all the queries and the view displays them it is only executed
at the start. It refreshes the data if the component gets reloaded (eg. after login).
The 3 categories of queries are saved in the variables: sponsorQueries, topQueries and
userQueries.

The description and explanation attribute of a query is a HTML string.

The ng-sanitize dependency is needed for parsing the description and explanation of a
query and removing any harmful HTML tags.

The functionality is not wrapped in a service (like all the other functionalities of other
components) because this is the only component that uses it. If a query is clicked,
query.getQuery(queryId) is called with the respective query Id.

1.5.5 results

view

The view of the results is a google chart table. The table reflects data in the resultsData
service. This component also only gets shown if the url changes to http://localhost:

3000/#!/results.

controller

The controller only binds the resultsData service data to the view/table. Any changes to
the data variable of the resultsData service immediately gets reflected in the table.

1.6 Server end points

The end points are defined in the files in the /server/ folder. The database queries are
seperated from these files in the /server/dbQueries/ folder, where everything is saved
as functions. The server is heavily Promise based (https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise). Promises are used
to execute asynchronous tasks. The functionality is similar to callbacks, but it has a more
readable syntax and more useful functionalities.

Every file in this section are either directly in the /server/ folder, which contains end
point definitions or in the /server/dbQueries/ folder, which contain the database queries.

Every exported functions from the dbQueries folder always return a promise with the
result as response.

15

1.6.1 WhereStatement class

This class is defined in file /server/dbScripts/WhereStatement.js and it is used to con-
struct SQL WHERE conditions as a string. It takes an object with selected ids (the
object from the function getSelected() from query service) and transforms them in a
”WHEREable” string. It joins the three feed categories (agrideaFeeds, classFeeds and
unclassFeeds) and the two nutrient categories (nutrients and nutrientsDerived) into
one list each.

The function getWhere() constructs a whole where-statement with every condition joined
with ANDs, empty categories get ommited. Parts of the whole where-statement can be
retrieved by getting the member of the class and it will return a string of ids seperated
by commas (eg. WHERE feeds IN (statementInstance.feeds)), empty lists gets replaced
with a ’null’ (cannot leave parenthesis after SQL IN empty).

1.6.2 server/params.js /api/param (search options)

This POST end point accepts a body like the following, which is a JSON serialization of
the selected query.categories values created by the function getSelected() in service query.

{

params: {

agrideaFeeds: [list of ids],

unclassFeeds: [list of ids],

etc. the same as query.categories (from service query)

}

language: ’en’, ’de’ or ’fr

loadlevel: 0, 1 or 2

}

It also checks the authorisation header of the http request and tries to parse it as a JWT.
If its successful, it sets the userlevel accordingly. (see server/auth/local.js)

Then it checks the dataType option if it is a valid string (either ’td’ => detail / ’sd’
=> summary), or else it will default to detail data ’td’. The dataType string then gets
changed according to detail/summary and raw input to be easily inserted into database
queries (detail clean: ’vc’, detail raw: ’vr’, summary: ’vs’).

Based on loadlevel, selected and dataType, the promise variables get set. If a promise
variable is not replaced with an actual database query promise, it stays as an empty list
and also returns an empty list if evaluated as a promise.

Checking the selected feeds and nutrients besides the loadlevel is required if the user al-
ready chose some nutrients and goes back and changes selection for the feeds (loadlevel=1).
In that case the nutrients (LL=1) and also the geo/time (LL=2) options have to be up-
dated.

16

getFeeds.js

This file stores the queries for getting feed search options.

The query for getAgrideaFeeds(param, lang) and getUnclassFeeds(param, lang) are pretty
straightforward.

For getClassFeeds(param, lang) we need two queries. One for the actual feeds and another
for the tree structure (groups/categories).

Result attributes for vc/vr/vs classified feeds:
(name, key, feed_group_id, selected)

Result attributes for vc/vr/vs classified feeds tree:
(name, feed_group_id, parent_feed_group_id)

The function constructClassifiedTable(feeds, groups) takes those 2 query results
and constructs a tree.

The algorithm first creates a hashmap hashmap of the groups/parents, so they can be
found by their group id. We then add each of the classified feeds to their parent as
children. The same gets done for the groups. If a group doesn’t have a parent, it gets
added to a root object as its child, which then gets returned. The root object now holds
the entire tree.

While the tree shouldn’t have more than 3 levels right now, the algorithm can construct
a tree with any depth.

getNutrients.js

This files stores the queries for getting nutrient search options.

The query for detail data derived nutrients is pretty straightforward, but keep in mind
that this part still works, getting the final results with detail data and derived nutrients
doesn’t (see errors chapter)

For detail data standard nutrients, we use the table vc_cube (vr_cube for raw data), which
stores the join result of fact_table, nutrient, feed and time for every single measurement.
We select distinct nutrients where the feed_key is contained in the selected ids. This
query has been changed from the old implementation. It still does the exact same thing,
but readability has been improved significantly. Go to the ’Improved queries’ section for
more info.

For summary data standard nutrients, we also use the table d_nutrient and select all the
nutrients except for ones that don’t have a specie and group specified (only concerning 4
nutrients).

Query result attributes:
(key, description, specie_name, specie_id, group_name, z_order, selected)

17

The algorithm to create the tree for both detail and summary nutrients needs 3 attributes
from the row: group id, specie id and name of the nutrient. It then constructs a tree
with 3 levels. the first level consists of the different species. The second level of the
different groups. In the groups as leave nodes we have the actual name of the nutrient.
The algorithm uses a helper hashtable tempRoot to access previously created lists in the
tree variable, which will contain the endresult.

From these queries we get a list or tree of feed objects with the attributes: nutrient key,
name and selected.

getProperties.js

Queries for time and geo options are stored in this file.

The four queries are very similar. We look at the vc/vr cube (joined fact table) again.
Search for matching feeds and nutrients and get a list of seasons/years/cantons/altitudes.

1.6.3 queries.js /api/queries

We have 3 operations for queries:

POST /api/queries. This is where it tries to save a query. The body should be the same as
query.categories, but with a description included. It first checks the authorization header
and gives a 401 error response if the user is not allowed to save queries. It then tries to
execute the function postQuery defined in postQuery.js file.

GET /api/queries/?id=queryId. This end point gets a single query with the matching id.
The response object has the same members as query.categories.

GET /api/queries. This end point returns 3 groups of queries. Sponsored queries, queries
defined and made available from the admin and the personal queries.

postQueries.js/getQueries.js

Saving queries is pretty simple with the function saveQuery(query, username, userlevel).
We save the values given in the database if the user is authorized to do so.

For getting a single query, we have to find the row in the database. Since all the at-
tributes of the query in the database as plain text (even numerical values), we first have
to convert those strings into the fitting javascript types. This is done with the function
processStringsIntoJS(row).

Some of the queries have a description variable with a ’$’. These descriptions must be
split in two, the first part before the dollar sign set to description, the other part set to
explanation.

18

Getting sponsored, admin and user queries should be trivial.

Note: Availability numbers => 0 means everyone, 2 means all subscribers and 3 means
admin or creator of the query. 1 doesn’t exist.

1.6.4 login.js /api/login

Searches for a user with matching credentials. If successful, create a JWT with username
and userlevel as payload. JWT encoding and decoding functions in /server/auth/local.js.
It returns a success boolean, a userlevel and the token. Everytime a user successfully logs
in, another query gets executed to update the login counter and last login timestamp.

TODO: The two queries should be refactored into two functions. The password has yet
to be encrypted with md5. All the current passwords in the database are encrypted.

1.6.5 Results /api/results

Detail data

For quering the detail data we first get the columns/nutrients and then the measure-
ments/rows which are included in the selected search options, put them together and
send it back to the client. Be aware that a single row only represents one measurement/-
value. The client handles the table construction.

NOTE: Derived nutrients for detail data requires a special implementation of Postgres.
This query hasn’t been tested on its functionality at all. For more detail look at the errors
section.

Summary data

Getting the columns for summary data is almost the same. Getting the rows is a bit more
complicated.

First the formulas for calculating derived nutrients (nutrient derived from other nutri-
ents) is queried and saved in the list formulaList. Then another list gets created,
involvedNutrients, to store the ids of the nutrients needed for calculating the formulas.

After the measurements for selected nutrients AND additional nutrients for the formulas
are retrieved and saved into measurementsHash[feedkey][nutrientkey], we try to evaluate
the formulas with data from the hash and also save the new values to measurementsHash.
In the end we get the values from measurementsHash that we want and send it back to
the client.

19

getDetailResults.js

getNutrients(options, lang): The nutrients are retrieved from the fact_table_clean.
Any other tables with information needed are joined.

getNutrientsDerived(options, lang): Derived nutrients aren’t working right now.
See error section.

Columns/nutrients result attributes:
(id, an(alysis)_id, abbreviation, unit, an(alysis)_name)

Rows/measurements result attributes:

(lims_number , id, an_id , priority , avg_quantity , day ,

postal_code , origin_key , latitude , longitute , altitude ,

season , canton , feedname , feedkey)

Retrieving measurements are done with the function getRows(options, lang). The
subquery randomly selects 150 sample keys with the feeds and nutrients selected. Then
all the other information of these 150 samples are joined and aggregated.

getSummaryResults.js

The query for getting the nutrients for summary data (getNutrients(options, lang)) is
split into three parts. First it gets all the nutrient information from the ones selected,
then it removes all the nutrients which are not dry matter if fresh matter is selected (or
vice versa). At the end it adds nutrients which are selected and are not dry matter not
dry matter if fresh matter is selected (or vice versa. same as before.).

The purpose of this 3 part query is somewhat confusing, but it works. It probably can be
simplified by cutting the first two parts, but no testing has been done for this matter at
this moment.

The query for formulas formulas(options, lang) is pretty simple except for the regexp replace,
where it checks the formula for invalid characters. This is important because the code in
expanded formula eval gets executed with eval().

The query for getting the measurements is also straightforward. It joins the tables sum-
mary data, d nutrient and d feed and selects the relevant data.

Formula result attributes:

(feed_key , nutrient_key , expanded_formula_eval (actual php

code), involved_nutrients_ids , correct)

Measurement result attributes:
(nid, raw_value, feedkey, fname)

20

1.7 Additional notes

This application is programmed with the old implementation as the template. While only
the core functionality has been included in this new application, parts of the it has been
improved while trying to copy the old one.

1.7.1 Missing functionalities

Fresh/dry matter, raw, radius selection

The interface of the search-options controller is not able to set these options yet and have
to be included. However, the server should already be able to handle theses options.

These options should be fields in query.categories object with the following variable names:
”fresh” as boolean, ”raw” as boolean and ”radius” as a number.

Range search

In the old implementation, the user can specify a range for the nutrients after the query
is executed. It filters out the measurements from the results which don’t satisfy the
conditions.

It hasn’t been implemented on either server or client except in the end point for saving
queries. These conditions are named rng0 to rng4 in the database.

Saving/deleting query

While the server end point for saving queries exists, the client misses the functionality of
making a request to that end point. It should send the selected ids of the queries.categories
object along with a description string to the server.

The name of the description string should be ”description en” while the ”en” must be
replaced based on current language in session.language.

Logout / keeping login state

Currently there’s no way to log out once logged in except for reloading the page. A button
should be implemented that resets the session service and clears the http authorization
header.

On the other side, the session service and the http header shouldn’t be reset once the
page gets reloaded. These information should be saved in the local storage or in a cookie
of the browser.

21

Additionally, the server should send a 403 (or alternatively 440) http code if the JWT
token has expired. The client should prompt the user to log in again, getting a new JWT
token.

Authorization control

The response from the server endpoints should differ based on the userlevel of the user.
Right now the userlevel usually does not get checked. An example how the userlevel is
taken from the token is in the /api/param, where the functions to encode/decode JWTs
are stored int /server/auth/local.js.

It also should check the userlevel on the client, stored in the session service. Based on the
userlevel of the current user, specific parts should be shown/hidden.

Layout / Design

Almost nothing has been done to improve the asthaethics of the website.

Static elements on the home page

Static elements like info, glossary or sponsors are not included yet

Advanced visualization

The results are shown in a simple table. More Visualizations like google maps, more
google charts are missing.

1.7.2 Query error

SELECT DISTINCT

id_nutrient_fkey AS id,

id_nutrient_analyses_fkey AS an_id,

d_nutrient.abbreviation_en AS abbreviation,

d_nutrient.unit_measure_en AS unit,

d_nutrient_analyses.name_en AS an_name

FROM fact_table

JOIN d_time ON fact_table.id_time_fkey = d_time.time_key

JOIN d_origin ON fact_table.id_origin_fkey = d_origin.origin_key

JOIN d_nutrient ON fact_table.id_nutrient_fkey = d_nutrient.nutrient_key

JOIN d_nutrient_analyses ON fact_table.id_nutrient_analyses_fkey = d_nutrient_analyses.nutrient_analyses_key

WHERE

d_m_b <> true AND

((Feed id IN (selected feed ids)))

ORDER BY abbreviation, an_name

ERROR: column "id_nutrient_analyses_fkey" does not exist at character 41

22

This error occurs if a query with detail data and raw data selected is executed. For
getting the measurements from the database, the table ”fact table clean” is used when
working without raw data. This table holds a an attribute ”id nutrient analyses fkey”.
However, when working with raw data, the table ”fact table” is used, which does not have
the attribute. This causes an error while querying.

1.7.3 Improved queries

Almost every query to retrieve database information has been changed in some way. The
majority of changes are ommitting attributes which are not used. Other queries have been
changed significantly while maintaining the same functionality.

Formula query for summary data

SELECT

id_feed AS feed_key,

nutrient_fkey AS nutrient_key,

regexp_replace(expanded_formula_eval, ’coalesce\(.[^+*/()-]{1,30}’,’(’,’g’) AS expanded_formula_eval,

involved_nutrients_ids,

correct

FROM

t_formula_feed

JOIN t_formula ON t_formula_feed.id_formula = t_formula.id

JOIN d_feed ON d_feed.feed_key = t_formula_feed.id_feed

WHERE

t_formula.nutrient_fkey IN (’+conditions.nutrients+’) AND

d_feed.feed_key IN (’+conditions.feeds+’) AND

t_formula.abbr_generic_de IS NOT NULL AND

trim(t_formula.abbr_generic_de)) NOT LIKE ’%’+freshString+’]"

This query has been modified in a way that it gets all the required formulas at once
instead of executing a query for each formula. This is done with the line
t_formula.nutrient_fkey IN (’+conditions.nutrients+’),
which evaluates to true if any nutrient id of the formula matches with any of the selected
nutrients. Before, it would execute this query in a for loop for every single selected
nutrient, only getting one formula each loop.

Nutrient options for detail data

SELECT DISTINCT

nutrient_key AS key,

abbreviation_’+lang+’AS name,

description_’+lang+’ AS description,

specie_name_’+lang+’ AS specie_name,

specie_id,

group_name_’+lang+’AS group_name,

z_order AS z_order,

CASE WHEN nutrient_key IN (’+conditions.nutrients+’)

THEN true ELSE false END AS selected

FROM d_nutrient

WHERE nutrient_key IN (

SELECT distinct nutrient_key

FROM ’+options.dataType+’_cube

WHERE feed_key IN (’+conditions.feeds+’)

23

)

ORDER BY specie_id, group_name, z_order

This query is functionally identical to the one in the previous implementation, except that
it uses an DISTINCT keyword to ommit identical rows instead of grouping and aggregating.

Nutrient options for summary data

SELECT

nutrient_key AS key,

abbreviation_’+lang+’ AS name,

description_’+lang+’ AS description,

group_name_’+lang+’ AS group_name,

specie_name_’+lang+’ AS specie_name,

group_id,

specie_id,

CASE WHEN nutrient_key IN (’+conditions.nutrients+’)

THEN true ELSE false END AS selected

FROM d_nutrient

WHERE

group_name_’+lang+’ IS NOT NULL AND

specie_name_’+lang+’ IS NOT NULL

ORDER BY z_group_order, z_order

The old query joined four tables (vs_classified_nutrients, d_nutrients, vs_classified_nutrients
and vs_classified_nutrient_groups) together, when all the needed information was
already availabe in d nutrient.

1.7.4 Performance

All the testing is done with a MacBook Pro 13” 2014 8GB I5-4278U. Both server (with
the database) and client are run on the same machine natively in maxOS Sierra version
10.12.3.

Detail data

selected feed keys (cereal grains): 751, 749, 750, 1321, 799, 756, 879, 741

selected nutrient keys (ruminants): 248, 258, 256, 254, 247, 234, 235, 238, 203, 99, 237,
183, 133, 136, 126, 124, 125, 5, 6, 148, 151, 162

Old app New app
Server response 9.1s 4.33s
Table drawing 6.3s 3.5s

Note that the old implementation also has to draw the map and graph, which could affect
the table drawing time. However, the response from the server was only 4.2 MB, whereas
the new one was 10 MB.

Number of rows: 1858

24

Summary data

Selected feed ids (every roughage): 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 913,
914, 915, 916, 917, 918, 919, 920, 921, 922, 866, 938, 939, 940, 941, 942, 943, 944, 945,
946, 933, 934, 935, 936, 937, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958,
959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976,
977, 978, 979, 980, 981, 982, 983, 984, 986, 985, 989, 988, 987, 992, 990, 991, 995, 993,
994, 1322, 998, 997, 996, 999, 1000, 1001, 1003, 1004, 1005, 1002, 1007, 1006, 1008, 1009,
1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1020, 1019, 1021, 1022, 1023, 1024,
1025, 1026, 1028, 1027, 1346, 1347, 1348, 1349, 1350, 1351, 1352, 1355, 1356, 1357, 1358,
1359, 1360, 1361, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1337, 1338, 1339, 1340, 1341,
1342, 1343, 1369, 1370, 1371, 1372, 1373, 1374, 1375, 1376, 1377, 1378, 1379, 1380, 1362,
1363, 1364, 1365, 1366, 1344, 1345, 1353, 1354, 1326, 1327, 1335, 1336, 1367, 1368, 1040,
1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1029, 1030, 1031, 1032, 1033, 1034,
1035, 1036, 1038, 1039, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1050,
1051, 1052, 1053, 1054, 1065, 1066, 1067, 1037, 1068, 1069, 1070, 1071, 1072, 1073, 1074,
1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089,
1090, 1091, 1092, 1093, 1094, 1095, 1096, 1097, 1098, 1099, 1101, 1103, 1102, 1105, 1104,
1108, 1106, 1107, 1323, 1109, 1111, 1110, 1112, 1113, 1114, 1115, 1117, 1116, 1118, 1119,
1120, 1121, 1122, 1124, 1123, 1125, 1126, 1128, 1127, 1401, 1402, 1403, 1404, 1405, 1406,
1407, 1410, 1411, 1412, 1413, 1414, 1415, 1416, 1383, 1384, 1385, 1386, 1387, 1388, 1389,
1392, 1393, 1394, 1395, 1396, 1397, 1398, 1424, 1425, 1426, 1427, 1428, 1429, 1430, 1431,
1432, 1433, 1434, 1435, 1417, 1418, 1419, 1420, 1421, 1399, 1400, 1408, 1409, 1381, 1382,
1390, 1391, 1422, 1423, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152,
1153, 1129, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1159, 1160,
1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1154, 1155, 1156,
1157, 1158, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185,
1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200,
1201, 1202, 1203, 1204, 1205, 1206, 1207, 1452, 1453, 1454, 1455, 1456, 1457, 1458, 1461,
1462, 1463, 1464, 1465, 1466, 1467, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1445, 1446,
1447, 1448, 1449, 1450, 1451, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1481, 1482,
1483, 1484, 1485, 1486, 1468, 1469, 1470, 1471, 1472, 1459, 1460, 1443, 1444, 1218, 1219,
1220, 1221, 1222, 1223, 1224, 1225, 1227, 1228, 1208, 1209, 1210, 1211, 1212, 1213, 1214,
1215, 1216, 1217, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1242, 1243, 1229, 1230,
1231, 1232, 1233, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255,
1256, 1100, 1130, 1226, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1266, 1267,
1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1282, 1281, 1279, 1280,
1283, 1290, 1288, 1284, 1294, 1295, 1285, 1291, 1289, 1286, 1293, 1287, 1292, 794, 1296,
1297

Selected nutrient ids (all nutrients): 112, 180, 158, 144, 163, 160, 159, 142, 166, 174, 231,
132, 1, 2, 137, 279, 13, 100, 236, 46, 75, 76, 96, 138, 17, 78, 81, 80, 167, 79, 83, 85, 19,
21, 23, 27, 29, 33, 37, 48, 60, 72, 170, 25, 31, 35, 39, 50, 62, 74, 127, 41, 43, 45, 52, 54,
56, 58, 64, 66, 68, 70, 154, 283, 285, 284, 286, 149, 291, 116, 77, 82, 84, 18, 20, 22, 24, 26,
28, 30, 32, 34, 36, 38, 40, 42, 44, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 98,
161, 282, 171, 128, 155, 287, 290, 289, 288, 150, 293, 292, 121, 120, 123, 122, 87, 86, 177,
176, 179, 178, 115, 114, 119, 118, 147, 146, 182, 181, 190, 189, 8, 7, 111, 110, 4, 3, 11, 10,

25

105, 104, 107, 106, 153, 152, 169, 168, 9, 88, 145, 157, 129, 117, 141, 165, 91, 101, 94, 233,
130, 113, 92, 173, 131, 223, 12, 228, 229, 230, 224, 226, 227, 225, 143, 156, 102, 16, 90,
15, 232, 248, 258, 256, 254, 247, 234, 235, 238, 280, 281, 203, 99, 237, 183, 133, 136, 5,
6, 148, 151, 162, 126, 124, 125, 259, 240, 187, 205, 251, 261, 257, 255, 249, 14, 195, 188,
135, 272, 273, 268, 275, 276, 270, 271, 274, 277, 278, 267, 269, 216, 217, 212, 219, 220,
214, 215, 218, 221, 222, 211, 213, 252, 193, 184, 185, 186, 245, 246, 241, 262, 263, 243,
244, 253, 264, 265, 239, 242, 201, 202, 192, 207, 208, 198, 200, 204, 209, 210, 191, 197,
266, 196, 250, 260, 194, 206, 175, 139, 97, 89, 103, 164

Old app New app
Server response 7.8s 28.03s
Table drawing 7.5 5.5s

Number of rows: 389

The old implementation is multiple times faster than the new one. The new query can
probably optimized.

