
© 2024 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

IVESA – Visual Analysis of Time-Stamped Event Sequences

Jürgen Bernard
University of Zurich

Digital Society Initiative

Clara-Maria Barth
University of Zurich

Digital Society Initiative

Eduard Cuba
University of Zurich

Andrea Meier
University of Zurich

Yasara Peiris
University of Zurich

Ben Shneiderman
University of Maryland

Fig. 1. Overview of IVESA. On the left, the Sequence Overview and Details View primarily enable the analysis of the TSEQs content,
i.e., events, event sequences, groups of event sequences, motifs, and features. On the right, the Metadata View supports the analysis
of metadata attributes and the TSEQs contextualization, whereas the Summary View includes the entry point to auxiliary views for
filtering, motif configuration, feature analysis, and clustering.

Abstract—Time-stamped event sequences (TSEQs) are time-oriented data without value information, shifting the focus of users to the
exploration of temporal event occurrences. TSEQs exist in application domains, such as sleeping behavior, earthquake aftershocks,
and stock market crashes. Domain experts face four challenges, for which they could use interactive and visual data analysis methods.
First, TSEQs can be large with respect to both the number of sequences and events, often leading to millions of events. Second,
domain experts need validated metrics and features to identify interesting patterns. Third, after identifying interesting patterns, domain
experts contextualize the patterns to foster sensemaking. Finally, domain experts seek to reduce data complexity by data simplification
and machine learning support. We present IVESA, a visual analytics approach for TSEQs. It supports the analysis of TSEQs at the
granularities of sequences and events, supported with metrics and feature analysis tools. IVESA has multiple linked views that support
overview, sort+filter, comparison, details-on-demand, and metadata relation-seeking tasks, as well as data simplification through
feature analysis, interactive clustering, filtering, and motif detection and simplification. We evaluated IVESA with three case studies
and a user study with six domain experts working with six different datasets and applications. Results demonstrate the usability and
generalizability of IVESA across applications and cases that had up to 1,000,000 events.

Index Terms—Time-Stamped Event Sequences, Time-Oriented Data, Visual Analytics, Data-First Design Study, Iterative Design,
Visual Interfaces, User Evaluation
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Time-oriented data is among the most frequently analyzed data types.
Many representations of time-oriented information contain both a times-
tamp and a value, leading to time-value pair relations [4, 5]. If values
are of categorical type, researchers often refer to this data as event
sequences, such as different types of treatments given to patients over
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time. For numerical values (univariate or multivariate), the term time
series is most often used, e.g., to track stock prices or sensor data over
time. In contrast, this paper focuses on a sequential data type that has
received surprisingly little attention so far: event data with only time
information available but no values, i.e., the exploration of temporal
occurrences of events is the primary analysis goal. We refer to this type
as time-stamped event sequences, hereafter, in short: TSEQs. TSEQs
exist in many application domains, such as the commit behavior in
code repositories, heartbeats in healthcare, exercise times for personal
workouts, communication events on the Internet of Things, tweets in
social media, or Email communication.

One distinction between TSEQs and time series lies in the spacing
of time stamps. Time series data are typically evenly spaced or prepro-
cessed towards regular spacing to enhance comparability, with central
analytical questions on changes in values. In contrast, for TSEQs cen-
tral questions revolve around changes to spacing over time, opening up
an interesting space of temporal analyses in ways that evenly spaced
time series cannot. Another difference is the volume of data, which
for TSEQs often significantly exceeds that of traditional time series,
encompassing longer sequences with millions of events and possibly
extending to thousands of TSEQs. The vast volume introduces com-
plex analytical challenges, particularly in ranking TSEQs, according to
developed metrics like changes in event frequency. For instance, one
might seek to identify earthquakes by analyzing the rapid deceleration
in aftershocks, ranking these natural events by the urgency or decline
of their occurrences. Such analyses require sophisticated methods to
manage and interpret large volumes of data, underscoring the unique
challenges and opportunities presented by TSEQs.

One commonality of interest to domain experts is the temporal
patterns of temporal event occurrences, which we call motifs, bor-
rowed from motif discovery for time series [67] and classical event
sequences [6]. Making sense of motifs for TSEQs is rooted in the
application context. For that purpose, domain experts use environment
parameters, sensor information, and other contextual attributes, which
we call metadata attributes, inspired by the principle of separating
time-oriented data content and auxiliary metadata [10]. Since metadata
attributes co-exist with the TSEQs content, they can be used to charac-
terize, explain, and contextualize motifs to draw conclusions. A simple
example would be one’s particularly healthy sleeping motif that may
only be observed in the context of weekends and vacations. Given the
plethora of real-world applications and cases, decisions made based on
TSEQs can benefit our everyday life. Metadata contextualization of
motifs can facilitate knowledge generation.

However, domain experts working with TSEQs are confronted with
challenges. First, the data can be complex, both in the size of the dataset
(sequences) and the size of individual sequences (events per sequence).
Given these two problem dimensions, data collections can easily have
millions of events, exceeding the human capabilities for manual process-
ing. Also, existing tools for the exploratory analysis of time-oriented
data do not typically enable users to respond to questions arising from
these magnitudes of temporal event occurrences and motif patterns, but
rather support the analysis of changing values, which do not exist for
TSEQs. A second challenge comes with the data characteristics and
features of TSEQs. Statistical metrics for time series exist from the data
mining domain and would allow ranking TSEQs to ease their analysis,
but have not been studied in the context of the interactive analysis of
TSEQs. When domain experts combine visual exploration with metrics
designed not for the assessment of value changes but temporal charac-
teristics only, they are more likely to discover important features such
as regularity, density, acceleration, or entropy of event occurrences.
Third, since TSEQs have no values, domain experts can use metadata
attributes to relate data findings to the contextual information, which
would allow them to explain interesting patterns. However, solutions
for relation-discovery would require including and combining with
both solutions for TSEQs pattern exploration and interactive metadata
analysis. Fourth, since the simplification of TSEQs through appropriate
aggregation and data reduction methods makes the analysis more ef-
fective, domain experts must use the rich portfolio of machine learning
methods to find meaningful simplification strategies. For TSEQs, this

is beyond what related interactive machine learning solutions offer.
This work combines technique-driven (with general problems) and

data-first visualization design study (with case-specific problems) meth-
ods to systematically investigate TSEQs. Through the in-depth study
of problems remaining in related works, as well as six real-world cases
and datasets, we systematically learned about data complexity and
challenges with respect to underlying data characteristics. Through
the observation of the domain experts, we abstracted 12 analysis tasks
and 22 metrics for TSEQs, common across the six real-world cases. In
an iterative and collaborative process, we designed and implemented
IVESA, a visual analytics (VA) approach that can support the analysis
of TSEQs of all six heterogeneous real-world cases and associated tasks.
The VA tool consists of linked views, showing TSEQs from different
perspectives, including an overview of up to 1,000,000 events and
corresponding sequences, sorting and filtering interfaces, details-on-
demand support, as well as visualizations of sequences in the context
of metadata either as a large single or small-multiples visualization.
In addition, we present views to support data analysis workflows that
simplify TSEQs, either at the granularity supported through interactive
clustering and filtering methods for sequences, or at the event granu-
larity facilitated by motif detection and substitution. We validate our
approach through three case studies and a user study, conducted again
with the same domain experts. Results show that our approach sup-
ports experts across cases and application domains to analyze TSEQs
in an interactive visual way. IVESA is generalizable with respect to
the underlying datasets with heterogeneous characteristics, analysis
tasks, and metrics that are common across cases and applications. Our
evaluations laid the basis for reflections on the design process, a critical
discussion of limitations, and the outline of future work.

2 RELATED WORK

We review interactive visual analysis approaches for time-oriented data,
separated by dataset type into time series and classical event sequences
data. We discuss related VA approaches for data simplification with
respect to grouping, filtering, and motif detection.

2.1 Interactive Visual Approaches for Time Series Data

We draw connections between TSEQs and time-oriented data with
numerical values (time series), which can be univariate (such as a
temperature measurement) or multivariate (such as the measurement
of temperature, precipitation, humidity, etc.). Time series analysis
typically focuses on the temporal change of values, which is fun-
damentally different to analyses conducted with TSEQs, where no
value information exists. Consequently, most visualization techniques
for time series explicitly encode these values, and are thus not di-
rectly usable for TSEQs. In fact, commonalities and inspiration can
be found for the aspects of application domains, analysis tasks, and
interaction techniques. Visual time series analysis approaches [4, 5]
can be found in diverse application domains, e.g., in employee as-
sessments [104], stock prices [50, 121], electronic signals [56], work
behavior [57], geosciences [3], network device management [71], or
anomaly detection in sensor networks [94]. Task taxonomies for time
series are available in visualization [4, 5, 8] and time series data min-
ing [38, 55, 74]. Some tasks, such as the identification of trends, are
special and cannot be easily transferred to TSEQs. However, with a
certain degree of abstraction, some user goals and tasks for time series
analysis can also be adopted for the analysis of TSEQs [82]. Examples
include preprocessing [13, 14, 21] (segmentation and alignment in the
TSEQs case), the representation of data with features through descrip-
tors [38, 55, 121] (through metrics in the TSEQs case), the discovery of
patterns/motifs/subsequences [64], content-based similarity, search, and
retrieval [76, 86], segmentation [12], prediction [74], exploratory analy-
sis [119], and clustering [35, 62]. From these tasks, we support cluster-
ing based on features derived from metrics, as well as the discovery of
motifs based on an interactive query-by-example [110] search strategy.
A particularly relevant task for TSEQs is to relate [91] the data content
with other attributes or metadata [16] or vice versa [15], sometimes also
referred to as relation seeking [8, 100], i.e., the search for occurrences
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of relations between data characteristics and references [4]. A ground-
breaking relation-seeking example is the inspiring calendar view by van
Wijk and van Selow [104] and its extensions [94], nicely demonstrating
how patterns in the time-series content can be contextualized through
auxiliary metadata attributes (such as days within a week or a year).
Finally, we were inspired by interaction techniques for time series
analysis, such as browsing [60, 63], zooming and/or panning [71, 118],
dynamic queries [2], timebox-widgets [50], filtering [95], (feature)
selection [30], query-by-example [11, 29], and focus+context [56].

2.2 Interactive Visual Approaches for Event Sequences
Classical event sequences [48, 103] include sequences of time-category
pairs. We follow the survey by Guo, et al. [48], and structure the work
by application domain, analysis task, and design space. Classical event
sequences are strongly present in the medical domain, particularly
in electronic health records (EHR). Here, prevalent analysis tasks
include sequential pattern mining [47, 83, 96], clustering sequences
based on similarity characteristics [43, 85], comparing individual event
sequences [45,51,108], and comparing cohorts of patients [17,69]. Ap-
proaches scalable to tens of thousands of events with hundreds of event
categories [61] and techniques to reduce the data load using progressive
analytics [96] were proposed. However, this does not translate well
to TSEQs, as the data volume of TSEQs grows along the dimension
of the number sequences and their length (up to millions of events), not
through the cardinality of categories. In the domain of web data explo-
ration, a substantial part of the related work is dealing with clickstreams.
Clickstream data can be characterized by the high cardinality of the
event set, long sequences, and multivariate events [66]. The abstracted
analysis tasks often comprise pattern mining [65, 105], aggrega-
tion/clustering [106, 109], comparison of multivariate sequences [120],
and detecting anomalies [114]. Other application domains include the
analysis of user behavior using internet data [27, 79, 117], detecting
anomalies in manufacturing [115], and using event sequences for
predictive analysis and recommendations [32, 33, 46].

Classical event sequences in are often large-scale, high-dimensional,
irregular, and heterogeneous, with diverse event types and multiple at-
tributes. The presence of categories in the event sequences enables the
utilization of color and branching in visual techniques based on Sankey
diagrams [47,51,83] or matrix [33,120] encodings. A stronger focus on
the temporal information of events comes with timeline-based visualiza-
tions, such as EventFlow [73], LifeFlow [111], or LifeLines2 [107]. We
compare to these approaches by introducing an overview for a higher-
level summary of event sequences aligned by sentinel events. We also
shared the challenge of visualizing thousands of events side-by-side
while preserving the ability to identify motifs of interest. This chal-
lenge guided us to revisit pixel-based encodings [54] in combination
with zooming and panning interaction, to enable users to explore larger
datasets with up to 1,000,000 events in a Web-based environment.

2.3 Visual Analysis for Data Simplification
We review interactive data aggregation and simplification approaches
along the three aspects of grouping, filtering, and motif simplifica-
tion [34], as provided with IVESA. Grouping and filtering help to
aggregate and reduce sequences, whereas motif detection and substitu-
tion reduce the number of events. IVESA allows users to interactively
steer a deglomerative hierarchical clustering algorithm. According to
the taxonomy by Elmqvist and Fekete [37], our visual representation
uses points to show visual aggregates in a below-traversal rendering
strategy and show averages about cluster characteristics on demand.
Interactive drill-down and tree exploration is achieved by a global ag-
gregation slider by default [18] (to keep the tree balanced), as opposed
to local interactive split criteria [1,9], or focus+context interactions [20].
Other interactive hierarchical clustering approaches distribute across
the domains of genome analysis [36], human motion analysis [18],
spatio-temporal data [44], biological processes [101], healthcare [26],
topic evolution [31], and clickstreams [116]. Other types of clustering
algorithms have been used for sequential data [62], including
agglomerative hierarchical clustering [104], Markov chain models [25],
self-organizing maps [109], KMeans [3], and DBSCAN [19], yet only

some of them are user-steerable. Our interactive clustering solution
is based on a user-defined feature set, by allowing interactive feature
selection and refinement. Exploratory analysis of multidimensional
data based on the rank-by-feature framework, taking advantage of inter-
active hierarchical clustering, was demonstrated in [90]. Similar to our
approach, Wang et al. [106] explored iterative feature pruning to build
similarity graphs for interpretable user clusters. With INFUSE [58],
users can also apply interactive feature selection tasks, here to support
prediction modeling. Finding features to characterize TSEQs can often
be based on work in extracting temporal features from time-series
data [78], on applying metrics [92], or both. However, our task to ex-
tract features through metrics was considerably impeded by the fact that
most inspiring work for time series and classical event sequences takes
the value information into account, which does not exist for TSEQs.

Further simplifications on the sequence granularity can be achieved
by selection filtering, category filtering, time filtering, and attribute
filtering, e.g., proposed by Monroe et al. in EventFlow [73]. Our feature
filtering technique has its root in the rank-by-feature framework [90],
in our case applied to TSEQs. The incorporated metadata filtering
technique was inspired by faceted search and browsing techniques [11,
93, 112], whereas our clustering-based filtering approach is inspired by
exploratory search approaches [18]. In contrast, domain experts did not
offer strong demand for event-based filtering [113].

Simplifying the data on the event granularity has been addressed
using a) temporal segmentation to split the sequence into sub-sequences
[17], b) motif substitution based on event motif matching [49], c) sub-
stitution based on rules and regular expressions [28], or d) algorithmic
recurring pattern detection [68]. Using motifs is powerful not only for
reducing the size of sequences, but also for discovering higher-level
patterns across motifs. Motifs reduce the visual clutter when focusing
on remaining events, ultimately leading domain experts towards anoma-
lies after most generalizable motif substitutions have been made. Our
motif simplification strategy thus includes an interactive interface for
the motif definition [24], matching [49], and substitution.

3 ABSTRACTIONS

We describe our methodological process, characterize TSEQs, and
outline the six real-world cases studied. Next, we describe abstractions
of tasks and metrics and discuss routines for preprocessing.

3.1 Methodological Process

We identify a gap in existing literature studying the special character-
istics of TSEQs, and how this type of data would be used by domain
experts. To overcome the lack of methodological support and practi-
cal guidance for TSEQs, we adopted two complementary sources of
information for the abstraction of analysis tasks and metrics.

First, we followed the technique-driven research principle, aiming at
addressing general remaining problems [89]. The in-depth study of the
dataset type at hand and corresponding related work revealed remaining
challenges concerning the dataset complexity, its characteristics, and
its usage. Reflecting on the related work, we identify the need for
algorithmic support to compute features through metrics for TSEQs, to
identify interesting patterns, and to simplify the data by reducing the
number of sequences and events. Also, analytical support is needed
to relate the content of TSEQs to contextual attributes and to facilitate
pattern contextualization, insight generation, and decision-making.

As a second source for abstractions, we took inspiration from the
data-first visualization design study principle [80]. This led us to
first acquire real-world data, instead of a specific stakeholder. Our
abstraction method differs from data-first design study principle in
one crucial aspect: our main study subject is an abstract dataset type,
instead of a concrete dataset instance. Based on the characterization of
TSEQs (see Section 3.2), we made an informed selection of six real-
world datasets. In five of the six cases, we were also able to identify
one domain expert per dataset (see Section 3.3) from the start of the
abstractions process. Only for the host behavior case, we initially re-
used a dataset (and tasks) of a scientific publication [52], and conducted
the expert cast and winnow stages [89] later.
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Fig. 2. IVESA’s overview visualization for the six datasets and cases used throughout this data-first design study, representing six different application
domains and involved experts (pseudonyms) with data of considerable heterogeneity. From top left to bottom right, the cases we studied are 1) Digital
Photography (Nathan), 2) Host Behavior in a Computer Network (Andreas), 3) Permafrost Observations (Esmeralda), 4) Radiological Examinations
(Reto), 5) Stock Market Tweets (Wenuka), and 6) Waste Water Treatment Activity (Olivia). The time-stamped event sequences span across the
horizontal time axis, sorting by different metrics eases the visual comparison of hundreds or possibly thousands of sequences with up to 1,000,000
events.

To design a data-centric but domain-agnostic visualization tool that
helps to solve problems encountered by experts across different do-
mains, we engaged with the experts early in the process to learn more
about their domain context, usage of the data, current tool usage, prob-
lems, and challenges, to identify design targets and determine appro-
priate validation strategies [77]. The involvement of the six domain
experts in the abstraction process of both tasks and metrics helped us to
understand priority levels and relevance across cases, and to develop a
more holistic understanding of tasks and metrics for TSEQs. The results
of these two parallel processes are presented in Sections 3.4 (tasks) and
3.5 (metrics), with a rich set of figures and tables, additionally provided
with the supplemental materials for both tasks and metrics. During
the design and development of IVESA, we kept the experts of the six
datasets/cases in the loop, to gather feedback for further refinements.
In addition, for more general problems of dealing with TSEQs, we
reached out to visualization experts, to receive informed feedback from
an informed outside perspective. In the validation phase of IVESA,
we conducted a user study with all six datasets (again with the experts
per dataset), to receive a broad spectrum of usage feedback, on task
success, tool usage, and conducted workflows, as a basis for reflection,
discussion, and future work (see Section 6). Three instances of these
think-aloud observational runs are also presented as case studies in
Section 5, to demonstrate IVESA’s usefulness.

3.2 Time-Stamped Event Sequences

TSEQs contain events with time information only, without value infor-
mation; a fresh direction in the analysis of time-oriented data [4, 5].
The absence of values per timestamp is the main difference compared
to time-oriented (time-dependent) data such as time series (numerical
values) and classical event sequences (categorical values). The insights
users gain from TSEQs are derived only from the event occurrences
within sequences, i.e., the temporal characteristics, event behaviors
and motif patterns are at the center of the analytical focus. Conversely,
when dealing with other types of time-oriented data, the focus is placed
on analyzing data values and the changes in these values over time.

TSEQs can be quite long and contain hundreds or thousands of
events, which is why segmentation can be useful to separate complex
TSEQs into more manageable units and make the sequences compara-
ble. Due to the large number of TSEQs, a central question is how to
rank them, according to what users deem interesting. To support this
process, metrics for TSEQs exist, allowing the assessment of TSEQs
by their regularity, speed, rate of acceleration/deceleration, etc. Users
typically relate TSEQs to external attributes (metadata) such as loca-
tion, cohort, or other environmental parameters. While TSEQs form the
data content, metadata attributes form the application context, which
is useful to explain patterns found in the sequences and to make sense
of them. We limit the scope of external attributes to mixed sets of nu-
merical, ordinal, categorical, or binary types, syntactically represented
by string, integer, boolean, or float primitives. Due to their useful-
ness across applications and cases, we support temporal metadata, e.g.,
directly derived from the temporal information of the sequences. Exam-
ples include year, month, day of the week, or hour of the day. Finally,
TSEQs may relate to multiple external attributes with values changing
over time. Naturally, these time-varying attributes relate to the events
of a TSEQs, and may even form dependencies.

3.3 Six Real-World Datasets and Cases
In our work, we studied six datasets from six application domains
(see overview in Figure 2) with considerable heterogeneity in event
semantics, number of sequences, and number of events per sequence:
1) Digital Photography, 2) Host Behavior in a Computer Network, 3)
Permafrost Observations, 4) Radiological Examinations, 5) Stock Mar-
ket Tweets, and 6) Waste Water Treatment Activity. We always refer to
the expert involved in a case with a pseudonym, for anonymity reasons.
Data characterization, task abstraction, user goals, and screenshots of
each case are available in the Supplemental Material.

3.3.1 Digital Photography
Nathan is a photographer interested in analyzing his personal photogra-
phy collection of 144,436 images taken with various devices from 1999
to 2022. Each captured image is described by a timestamp representing
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Fig. 3. Task abstraction using the target-criteria crosscut method [82]. Overall, the domain experts are mainly interested in 12 task actions, applied to
different data targets and based on different data criteria. Types of targets and criteria are Events, Event Sequences (ES), groups of event sequences
Gr(ES), Metadata, and Features. Example: experts were interested in segmentation (T s) actions of event sequences (targets), based on different
criteria: events, event sequences, and metadata. The target-criteria crosscut served as a fine-grained recipe for design targets.

an event, and each year is considered to be a TSEQ, resulting in a
total of 24 sequences. Events additionally contain metadata such as the
capture device, image orientation, and Exif attributes.

3.3.2 Host Behavior in a Computer Network
In the Host Behavior case, we analyzed a publicly available dataset of
network flows collected by Jirsik and Velan in their 2021 host behavior
study [52]. The dataset on the communications flow of a university net-
work consists of 348,574 time-stamped ingress (incoming) and egress
(outgoing) communication events. Every event reflects the activity
of a workstation within an hourly interval, which is what Andreas, a
cybersecurity expert, is most interested in. A workstation is considered
to be a TSEQ, with a total of 384 workstations. The data was gathered
between January and December 2019, with a total of 5,064 hours per
workstation. Most relevant metadata attributes are the workstation
names, communication flow (ingress or egress), and their device cate-
gory in the network (administration, international services, students).
In the evaluation process, we involved Andreas, a researcher with six
years of experience in the field of cybersecurity threats.

3.3.3 Permafrost Observations
Esmeralda is an Earth observation researcher interested in analyzing
the permafrost in Switzerland. The dataset was obtained from the
PERMOS network [98] and is publicly available. The measurements
originate from 613 temperature sensors placed in 29 boreholes with
multiple measurement depths per borehole, situated in different per-
mafrost regions of Switzerland. Depending on their varying installation
dates, the longest TSEQ are spanning over 30 years of daily measure-
ments. Following the recommendation from Esmeralda, the dataset was
reduced to days (events) where melting occurred (temperature above
zero), producing a total of 744,633 events. Events contain metadata
about borehole location, depth, and temperature.

3.3.4 Radiological Examinations
Reto is a radiologist interested in analyzing radiological equipment op-
eration records of a Swiss hospital. The dataset consists of examination
timestamps (events) collected over 46 months across 74 devices and
includes 538,763 of individual examinations. The device occupancy
is given in 15-minute intervals, and each device represents one TSEQ,
leading to 74 TSEQs. Events contain metadata about the device and
examination type.

3.3.5 Stock Market Tweets
Wenuka, a data scientist with a passion for the stock market and plenty
of industry experience was the subject of the first case study. His dataset
consists of 120,093 timestamped tweets (events) including #apple or

#csco, each with more than 100 likes, between January 1, 2017, and
August 20, 2021. One day of tweets was considered an TSEQ, to
support between-day comparison, i.e., we segmented by days. The
segmentation resulted in 3,158 TSEQs, which we aligned globally.
The metadata included the hashtag of tweets for the differentiation of
stocks and information about temporal seasonality. Before the session,
the dataset was extracted from the Twitter API 1, preprocessed, and
segmented into days according to UTC.

3.3.6 Waste Water Treatment Activity

Olivia, the operations manager at a wastewater treatment plant (WWTP)
with 25 years of experience, was the frontline analyst of the second
case study. Olivia’s goal was to analyze events of three pumps, to
identify expected and unexpected behavior, as well as compare pumps
by their event characteristics. The dataset with the three pumps consists
of 1,101,703 events, each representing minute-wise sensor readings
showing when a pump is active. The data was collected from 2012 to
2021, and we chose a monthly segmentation with a left alignment, to
make the analysis more manageable. The wastewater level in cm and
discharge in liters/second are the temporal metadata attributes. The
pump name, month, and year are the available static metadata.

3.4 Task Abstraction and Higher-Level Categorization

For the task abstraction, we used the typology of analysis tasks pro-
posed by Peiris et al. [82]. The typology guided our abstraction process
by offering a long list of 23 tasks at a comparable abstraction level,
that the authors derived from 65 interviews with non-experts and 16
design studies related to TSEQs. From this encompassing task list,
our technique-driven data-first abstraction method finally revealed 12
abstract tasks to support the analysis of TSEQs across six real-world
cases. Two tasks relate to upstream data processing (TA,S), six tasks pri-
marily focus on insight generation and decision-making (T1-6), whereas
the four remaining tasks allow data-simplification (T7-10). This catego-
rization is in line with Brehmer and Munzner’s typology of abstract
visualization tasks [23] and separates tasks into consume (T1-6) and
produce (T7-10) categories. This categorization was useful in three
ways: to get a better understanding of how to support users in their
goals, to design the VA tool appropriately, and to validate the approach.
This high-level perspective on tasks also forms the principal workflow
that the IVESA approach supports, shown in Figure 4, and reflects
observations made about the experts in the six real-world cases.

In Figure 3, we present task abstraction results using the target-
criteria crosscut method [82]. With the triples consisting of actions,
targets, and criteria, we arrived at a fine-grained level of task description,

1https://developer.twitter.com/en/products/twitter-api
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Fig. 4. Higher-level task categorization and workflow, supported with the
IVESA approach, reflecting all six real-world cases studied.

to be leveraged in the iterative design phase of IVESA. Examples of
tasks include rank event sequences by feature, group event sequences
by metadata attribute, or group event sequences by features.

TA Align: The alignment of TSEQs eases the sequence compari-
son. Dominating criteria are based on the granularity of events and
associated timestamps or the start/end of (sub-) sequences.

TS Segment: Many domain experts prefer segmenting extra-long
TSEQs into sub-sequences, prior to their in-depth analysis. Naturally,
the only data target of segmentation actions is TSEQs, whereas dom-
inating criteria are either patterns in TSEQs, or seasonal phenomena
represented through event criteria or temporal metadata.

T1 Overview: Users need an overview of the underlying data collec-
tion. Especially if parts of the TSEQs are undiscovered, understanding
principal structural characteristics of both TSEQs and events is crucial.
Another target for overview actions is associated metadata attributes.

T2 Sort/Rank:Changing their order enables users to analyze targeted
TSEQs from different perspectives. Criteria for sorting TSEQs include
features, metadata, and clusters of TSEQs.

T3 Compare: The comparison of individual TSEQs enables users to
identify commonalities and differences, including fine-grained events,
metadata attributes, and features.

T4 Details: Users need support for detailed analysis of individual
TSEQs and included events. Relevant criteria include events, metadata,
and temporal features.

T5 Relate: The dominant task is to relate a subset of TSEQs with
metadata attributes, aiming at identifying interesting means to contextu-
alize findings. Special cases that we identified are the need for relating
single TSEQs clusters to metadata or feature criteria.

T6 Detect Outlier/Anomaly: Many experts require support for
the identification of outliers or anomalies. The predominant target
of outlier/anomaly detection is for TSEQs, often assessed through
fine-grained event-based or sequence-based criteria.

T7 Analyze Features: Features are the entry point to algorithmic
support, such as clustering, dimensionality reduction, or motif detection
methods. Feature sets are required at both the coarse TSEQs granularity
and the fine-grained event granularity. Interested users also need a
means to assess, manipulate, and (un-)select features. Criteria for
metrics to reveal features are based on events, TSEQs, or metadata.

T8 Group: Assigning TSEQs to groups is useful to reduce the
number of items at the sequence granularity, from multiples to a few
groups. Criteria to facilitate this aggregation can be based on content-
based clustering or metadata-based data partitioning.

T9 Filter: Filtering enables users to reduce the number of TSEQs
from many to a few most relevant. Relevant criteria may be filtering by
clusters, filtering by features, or by individual metadata attributes.

T10 Substitute Events Motif: With motifs, we refer to TSEQs sub-
sequence ”patterns” of interest. Motifs may be revealed by algorithmic
support, or be identified by users directly. Motifs form the basis for
event-based simplification: when a motif of events is identified multiple
times, it can be simplified through substitution, e.g., by a symbol.

3.5 Metrics
Based on related work, the observation of the six experts, and meetings
and interviews, we developed 22 metrics for TSEQs. With metrics,
users can characterize TSEQs, leading to a compact set of features (T7)
that can faithfully represent the data. With IVESA, users can visualize,
select, normalize, sort, rank, and filter by these features. In general,
we differentiate between two types of metrics: Event-based metrics

Velocity Acceleration

Density Entropy

Fig. 5. Examples of temporal features that can be identified through the
use of metrics. The space of characteristics includes velocity, accelera-
tion (and slowdown), density, or entropy [92].

compute exactly one numeric feature value per event, i.e., they have
changing values over time (temporal/dynamic features). In contrast,
TSEQs-based metrics compute a single numeric feature value per TSEQ,
i.e., the features are global/static.

Expert interviews emphasized the relevance of a series of metrics
and how vital they are to achieving their goals. For example, ”changes
in TSEQ frequency”, ”analyze regularity to detect anomalies” are some
important metrics observed. Experts also pointed out gaps, outliers,
periodicity, subsequence length, and dense regions as important. The
awareness of their relevance also helped us to prioritize metrics identi-
fied in the literature: Related works come from the domain of statistical
metrics for time-series [78], where we identified a subset of metrics,
applicable for TSEQs. Summary metrics such as the number of events
or minimum, maximum, and mean length of sequences form a source
for features at the TSEQs granularity. Finally, time-based metrics such
as duration between events, regularity, or slowdowns [70, 92] can be
applied to TSEQs. Examples further include peak detection [39], out-
lier score within a sequence [99], density [59] or similarity metrics
(between two or more sequences) [42]. We present four of the metrics
at the event-based granularity in Figure 5, a complete presentation of
all metrics at both granularities (event-based and TSEQs) is presented
in the supplemental material in detail. This overview includes tables
with metric names, formal descriptions, as well as visual examples, like
the examples shown in Figure 5. Overall, our portfolio of metrics in
IVESA contains 8 temporal and 14 static features.

Event-Based Metrics: all temporal metrics put a single event at the
center of computation. Our strategies to compute features at this fine-
grained granularity are mainly based on three approaches. Differential
metrics at the event granularity use a focused timestamp and direct
neighbors, i.e., the gap size to neighboring events. The velocity (the
average of the gap size before and after the event) is one important
metric and yet forms the basis for several more complex metrics, such as
the acceleration (change of the velocity). An alternative type of metrics
is based on the sliding window principle, with examples like density or
entropy. Finally, we exploit date-time characteristics for some metrics,
such as year, quarter, month, week, weekday, hour, minute, and second
of the event.

TSEQs-based Metrics: two strategies for the computation of static
features exist. Some metrics directly use all the time information of
all events, and compute statistical aggregates to arrive at the coarse
TSEQs granularity. Examples include statistical metrics, such as the
mean and variance of the timestamps. The second type of these metrics
uses already calculated event-based features to calculate statistical
aggregations. Examples include skewness, entropy, or regularity period.

3.6 Preprocessing
Segmentation (TS): In all six cases, domain experts required exactly
one persistent segmentation criterion, often dictated by the natural
periodicity or seasonality of the data, such as years when observing
and comparing snow melting events. In general, segmentation cri-
teria can be a) semantics-driven, such as natural periodicity like the
solar-dependent intraday awareness, b) domain-specific requirements
expressed by experts, or c) based on data characteristics such as gaps. In
the six cases, we did the segmentation of TSEQs (TS) as a pre-process,
based on the observation that we could determine dominating segmenta-
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Overview Sorted Overview

Fig. 6. Effect of a sorting action applied by the user. On the left, TSEQs
were ordered by the device type, on the right the user changed the order
to a content-based criterion: the longest common subsequence feature.
All user-selected sorting criteria are always shown as columns on the
right of the TSEQs display, obviously the values of the sorted criterion
perfectly correlate with the new TSEQs order.

tion criteria already in the data abstraction and design phase. A striking
benefit of segmenting the data in a pre-process is a significant increase
in computational scalability at runtime, as many pre-computation and
database management steps could already be scheduled upstream.

Alignment (TA): Similarly, we identified that the dominating se-
quence alignment (TA) strategies can often be determined in the design
phase. Based on the observed real-world cases, three sequence align-
ment strategies [84] are necessary to support comparison.
• Left alignment aligns every TSEQ with respect to its first event, to

align for a common starting point, e.g., for yearly segments.
• Absolute time alignment defines a global time interval in absolute

time, and arranges every TSEQ on that interval, respectively.
• Relative alignment scales each TSEQ so that all TSEQ have the same

relative length, allowing their comparison by event motifs.
In summary, we observed that segmentations of extra-long sequences

into more manageable sub-sequences in combination with a meaningful
alignment strategy often helped to ease visual comparisons considerably.

4 THE IVESA VISUAL ANALYTICS APPROACH

We present IVESA, a VA approach for interactive and exploratory
analysis of TSEQs. We describe the views, visual encodings, interaction
techniques, and algorithmic support, based on the abstractions made.

4.1 System Overview

Figure 1 shows an overview of IVESA, structured into four regions: the
Sequence Overview (top left), the Metadata View (top right), the Details
View (bottom left), and the auxiliary Summary View (bottom right). Our
design rationale was to have visual support for all consume tasks (T1-6,
see Section 3.4) always visible and active in the first three regions. In
turn, with the fourth region, IVESA supports produce tasks (T7-10) with
auxiliary views that pop up on demand through the Summary View.
These on-demand views include the extended display of features in the
Details View (T7), the Clustering View (T8), the Filtering View (T9),
and the Motif View (T10).

In general, IVESA implements linking techniques where appropriate.
Brushing leads to selections of TSEQs, which are always highlighted
across views, with blue being the global selection color. Also, interac-
tive clustering results are propagated across views, using categorical
colors. Finally, if users have simplified TSEQs with motif shapes, these
motifs are visible through a shape-based linking strategy.

Fig. 7. Small-multiples support of the Metadata View as an alternative to
large singles. A user control allows the selection of a partitioning criterion.
The calibration of the criterion leads to the partition recipe into (small)
multiples. In the example, a user leverages the small-multiples technique
to compare the events of four boreholes, by yearly and weekly criteria.

4.2 Sequence Overview
The Sequence Overview in Figure 1 shows an overview of all events and
sequences of the TSEQs dataset. Design targets have been to enable
users overviewing structural characteristics of TSEQs (T1), sort TSEQs
according to metrics and features of interest (T2), relate TSEQs with
metadata (T5), identify motifs (T10), and detect outliers and anomalies
(T6). A design requirement was to scale for up to 1,000 sequences,
each with more than 1,000 events, i.e., to scale for at least 1,000,000
atomic events in a web-based display. In the example in Figure 1, the
Sequence Overview shows daily measurements of snow melting events
in 29 permafrost regions, measured with 613 sensors for up to 30 years,
a scenario that spans a resolution of 6,700,000 possible melting events.

The Sequence Overview utilizes the strength of the double-position
encodings of scatter plots with thin black vertical line marks encoding
individual events. Events of all TSEQs are positioned horizontally,
according to a global unifying time axis. This time axis is the result of
a user-defined segmentation (TS) and alignment (TA) strategy, to allow
meaningful visual comparisons (see Section 3.6). All TSEQs are listed
along the vertical display axis, the (rank) order automatically responds
to users’ sort actions (T2) on features, clustering results, or metadata. In
the Sequence Overview, we further encode motifs, using horizontal line
marks, the algorithmic support for motif computation is described in
Section 4.5.2. A color coding helps users distinguish different motifs,
due to the categorical nature of the hue channel. Additionally, we
allow semantic zooming and panning interactions for closer inspection,
as well as the selection of interesting TSEQ that can subsequently
be analyzed in the Details View for further comparison, described in
Section 4.4. Finally, tooltips provide details on events, TSEQs, and
associated metadata.

Users can sort/rank (T2) all TSEQs, using the sorting criteria on the
right of the Sequence Overview, as depicted in Figure 1. Clicking on one
of the criteria automatically executes the sort operation, and positions of
TSEQs change, accordingly. Figure 6 demonstrates the effectiveness of
a simple sort operation, to support different information needs of users.
In the Sequence Overview, each sorting criterion is displayed as a col-
umn with grayscale luminance for numerical values and hue colors for
categorical values. Criteria can be based on features, clustering results,
or global (non-temporal) metadata. With the encodings of sorting crite-
ria, users can easily relate (T5) sorted TSEQs with the different sorting
criteria displayed, e.g., for value correlations. In IVESA, users are in
control of the set of displayed sort/rank criteria: by using the edit icon
on the lower right of the Sequence Overview, a config menu pops up
and allows adding/removing sorting criteria. This design decision was
made in favor of simplicity, to only show the small user-specified subset
of criteria, from possibly hundreds of provided features and metadata.
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Fig. 8. Details View of IVESA, showing three selected TSEQs. Any TSEQ of interest can be selected from the Overview and analyzed in more detail.
A global timeline at the bottom enables the temporal drill-down. Events are shown as vertical lines. Users can also select a temporal feature (line
chart) for in-depth analysis: in this case, the Outliers feature is active, with high values coinciding gaps between events occur. Furthermore, the
Details View is capable of showing motifs: in the example, a user has already defined three motifs (represented pink, red, and yellow line segments),
that recur with some regularity in the analyzed TSEQ.

4.3 Metadata View

The Metadata View in Figure 1 (upper right) provides an overview
(T1) of events (target), structured by metadata, features, and clusters
(criteria). The view is designed in a way that users are in full con-
trol of the event-grouping strategy (T8), as a means to compare (T3)
resulting event distributions. The Metadata View also helps to relate
content-based findings to supplemental metadata, features, or clusters
(T5). Finally, the view is useful to analyze features (T7), or to identify
temporal trends, outliers, and anomalies (T6).

The Metadata View uses the heatmap idiom and allows users to
systematically cross-cut event distributions by two criteria from a pool
of metadata attributes, features, or clustering results. Every cell of the
2D matrix represents a particular number of events, encoded with the
saturation channel of a dark blue basic color. Controls at the top enable
the selection of criteria, leading to the re-creation of the heatmap. The
discrete nature of the 2D matrix representation uses binned value distri-
butions of criteria, for the unified analysis of both numerical and cate-
gorical attributes. With IVESA, users can apply three binning strategies:
• Discrete Numerical: to account for discrete values such as integer

attributes. We apply a domain-preserving [75] binning approach to
keep the span of every bin equal if possible. Years between 2008 and
2016 with 2 bins would be binned to 2008-2012 and 2013-2016.

• Continuous Numerical: The default binning strategy for float values
is also domain-preserving [75], meaning that the span of every bin
has the very same range. Binning of the floats 0.7, 0.998, 2.1 into 2
bins: (0.7, 1.4], (1.4, 2.1]

• Categorical: we use the individual levels of categorical attributes.
If the number of levels exceeds a user-definable threshold (default:
20), we focus on the n-1 most frequent levels and add one more bin
for all remaining levels. Binning of the strings A, B, C, D (sorted by
cardinality) into 3 bins would be A, B, and ”other: 2”
Users can interactively select criteria, and adjust the binning strategy,

accordingly. By clicking the binning button on the upper right, a
popup menu provides all necessary controls to steer and refine the
binning process, including the number of bins. Our justification of the
default number of bins (where appropriate) follows Sahann et al. [87],
who studied the trade-off between the bin count in histograms and the
user error rate. The authors found out that more than 20 bins do not

contribute to a considerable improvement in perception anymore.
To better support the exploratory nature of experts’ information

needs, we gained inspiration from large singles and small multi-
ples [102] concepts. As an alternative to the large-single display, users
can also create small-multiples arrangements, by interactively defining
a partition criterion (T8). All events are partitioned by this criterion,
leading to a small-multiples display of heatmaps. The popup menu al-
lows users to create small-multiple arrangements based on a) selecting a
metadata attribute (see Figure 7), b) defining ranges of relevant feature
values, c) using the currently selected TSEQs (supplemental materials),
or created clustering results (see Figure 17). According to the standards
for displaying juxtaposed information [41], we arrange small multiples
panels in a grid display side-by-side to ease the comparison (T3) of
partitioned (T8) data.

4.4 Details View
The Details View on the lower left of the IVESA interface (see Figure 1)
visualizes selected TSEQs, events, temporal features, and motifs. This
visualization allows users to compare (T3) and analyze details (T4) of
selected TSEQs. Tooltips allow the contextualization of TSEQs by
showing metadata on demand (T5). Ultimately, the Details View is
designed to let users identify interesting event patterns and thus forms
the basis for motif identification and substitution (T10).

To start with the most atomic visual element, every event timestamp
is encoded with a vertical line (blue, according to the global selection
color). Tool-tipping helps users to relate static and temporal metadata
attributes to hovered events (T5). As for the Sequence Overview, the
x-axis shows the temporal progression of TSEQs. The Details View
consists of a global static timeline component at the bottom and a com-
ponent with a scalable timeline at the center, showing all displayed
TSEQs in large detail. The two timelines are coupled through brush-
ing and linking. The global timeline also allows users to zoom into
a temporal subset of events by brushing over the desired events, as
demonstrated in Figure 8. The scalable timeline at the center auto-
matically responds to the brushing event to always correspond to the
brushed time interval. Both components of the Details View always
show the currently selected set of TSEQs, with considerably more
visual (y-axis) resolution reserved for the scalable timeline component.

To further support the comparison of TSEQs (T3), the Details View
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Fig. 9. Filtering View for a numerical metadata attribute in a filtering operation. The Sequence Overview on the left contains many hundreds of
TSEQs, reduced by the filter to several dozens. Users can assess the filter strength already before its application, by using the preview shown at
the bottom of the Filtering View (horizontal bar chart). In the example a user was interested in sensors located at low and medium depths of four
boreholes, filtering other boreholes and sensors localized at higher depths. 70 TSEQs remained after filtering, for a more fine-grained inspection.

allows the visualization and analysis of temporal features (T7). We use
line charts to show user-selected features of interest. As depicted in
Figure 8, a combo box allows users to switch between features, here
using an outlier metric as an example. In addition, users have a control
to apply feature normalization to support identifying patterns within
sequence and comparing across event sequences. Temporal features
can be normalized sequence-wise or with respect to the whole dataset.
To account for the variety of comparison scenarios, we provide five
normalization techniques: L1-norm, L2-norm, max-norm, logmax, and
z-score, adapted from scikit-learn [81].

Another interactive functionality of IVESA is partitioning the events
of selected TSEQs into small-multiples arrangement, to provide another
perspective that eases the effective TSEQs comparison (T3). This func-
tionality is often triggered by experts right after the detailed temporal
analysis of selected TSEQs in the Details View and thus builds a natural
transition in the users’ workflow from the Details View to the Metadata
View. Finally, the Details View is useful to identify and define motifs,
as Section 4.5.2 will describe.

4.5 Summary View
The Summary View on the lower right of the IVESA interface (see
Figure 1) serves two main purposes. First, it summarizes all data
simplification results achieved through clustering (T8), filtering (T9),
motif definition (T10). Second, it defines the entry point for users
aiming at simplifying the data further. In the following, we introduce
the three data simplification processes in detail, enabled through the
Filtering View in Section 4.5.1, the Motif View in Section 4.5.2, and the
Clustering View in Section 4.5.3.

4.5.1 Filtering View
Users can reduce the number of TSEQs by applying filters (T9), based
on event sequence and metadata criteria. Using the overview of active
filters in the Summary View, users can make adaptions by opening the

Filtering View, shown in Figure 9. The Filtering View is composed of
three functionalities: a) selection of a criterion, b) specifying the filter,
and c) assessing the effect of the filter on the dataset population even
before filter application.

For the criteria selection (a), users can select from a straightforward
combo box control. The filter specification (b) differs for numerical and
categorical data. For numerical attributes, a range slider control allows
users to specify a range of values, in the notion of a dynamic query [2].
Users can also filter by categorical metadata using an auto-complete
drop-down list. The assessment of the filter effect (c) is realized through
a horizontal bar chart, showing the ratio of data included in the analysis
before and after the application of a filter. The x-axis legend also
encodes the absolute number of TSEQs, to assess relative and absolute
change. All views respond to changes of the filter state: Figure 9
demonstrates the effect of a filter on the Sequence Overview.

4.5.2 Motif View

The selection and detailed analysis of individual TSEQs allows users
to identify recurring event patterns. We refer to patterns, i.e., non-
randomly occurring distributions of consecutive events, as motifs. Mo-
tifs form a valuable source for event-based data simplification. Here, the
line of approach of IVESA is to substitute the multitude of events form-
ing a pattern by a (visual) motif representation. To define a motif, users
can brush events in the scalable timeline in the Details View, as demon-
strated in Figure 10. A click on the ”add motif” button (on the upper left)
triggers the Motif View to pop up. As an alternative, users can modify
existing motifs by entering the Motif View through the Summary View.

The Motif View then allows users to specify the motif search and to
execute the motif query (T10), Figure 10 shows an example. The view
mainly consists of four functionalities: a) the visualization of the event
pattern of the motif, b) the motif parameter configuration, c) guidance
on the choice of motif-match parameters, and d) the coverage of motifs
with respect to the underlying dataset.
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Fig. 10. The Motif View allows the guided definition of motifs, with a user-defined event subsequence as input. A black histogram guides users in the
definition of the three motif configuration parameters. A colored bar chart at the bottom shows the percentage to which events of the dataset are
covered by the different motifs, four in this case. In this example, the user was interested in this sequence of two brief melting periods, two extended
melting periods, and again two shorter melting periods. They selected the pattern as a motif in the details view and searches for similar patterns
withing the dataset using the index-based euclidian algorithm and a similarity threshold of 0.984.

The event signature (a) shows the distribution of events within the
user-selected motif pattern, with visual encodings as in the Details View.
IVESA provides configuration elements for all three parameter types
of the motion retrieval algorithm (b). First, to account for different
notions of similarity in the retrieval process, users can switch between
two distance/similarity measures: Euclidean distance and dynamic time
warping (implementation by Meert et al. [72]). Second, a parameter
to steer the kernel of the retrieval algorithm, i.e., the type of sliding
windowing strategy applied to retrieve motifs. The index-based variant
preserves the number of events and is flexible in temporal comparison.
In turn, with the time-based kernel the time interval of the query is
fixed, possibly leading to results of different event counts. The time-
based window works well with dynamic time warping. The Euclidean
distance, however, is a bin-to-bin comparison method and thus can only
be applied to the index-based variant [16]. In contrast, dynamic time
warping finds a warping path even for uneven numbers of events for
two given subsequences. Third, to control the number of search results,
users can adjust a similarity threshold, i.e., a maximum distance that
determines if a retrieved motif should be a part of the retrieved result set
or not. Possible values are between 0.0 and 1.0 – 1.0 would be an exact
match between motif query and retrieved event sequence. To guide
users in their choices (c), the Motif View shows a histogram that puts
the threshold in relation to the number of motifs that would be retrieved.
Figure 10) shows an example where a considerable number of patterns
are retrieved if the threshold is set lower than 0.95. At the bottom of the
Motif View, the coverage of all motifs (d) is shown. A horizontal bar
chart shows the number of sequences found for each motif that has been
defined by users so far; four in the example shown in Figure 10. The
numerical axis of the histogram shows a percentage scale, representing
the proportion of events already assigned to motifs. A categorical
colormap allows linking of defined motifs across views and eases their
visual comparison (T3). Once a motif search configuration has been
applied, the motif is added to the motif set. The data simplification
through motifs is automatically shown in the Sequence Overview and
the Details View (see Figure 1). The motif shape includes a line mark

with two ticks indicating the start and the end of each motif occurrence.

4.5.3 Clustering View

The main purposes of the Clustering View are to enable the grouping of
TSEQs (T8) through feature-based clustering, overviewing TSEQs (T1)
by providing another perspective TSEQs through features, supporting
the analysis and calibration of features (T7), and filtering TSEQs (T9)
by content-based criteria. The clusters are formed using a hierarchical
clustering algorithm, for two reasons: First, cluster hierarchies can
intuitively be displayed in dendrograms, with the positive side effect
of showing similarity relations across clusters and subtrees. Second,
cluster hierarchies form a solid basis for interactive level-of-detail
operations. Figure 11 illustrates a typical clustering workflow. The
interactive hierarchical clustering is based on non-temporal TSEQ fea-
tures. A dendrogram visualization shows resulting clustering trees,
where each point mark encodes a subset of TSEQs in the individual
branches. Categorical colors discriminate between clusters and ease
linking and comparison across views. The size of clusters in subtrees
is encoded with the size of corresponding point marks. Users can in-
teractively adjust the aggregation level of the clustering [18] to control
the level of detail, i.e., the number of clusters. As a result, domain
experts are always provided with a clustering result at a user-steerable
aggregation level. Here, we follow the ”below traversal” rendering
strategy, as described in the design guidelines for hierarchical aggrega-
tions by Elmqvist and Fekete [37]. Interactive changes to the clustering
are automatically represented in the dendrogram and in linked views
showing clustering information, as the example in Figure 11 shows.

Interactive hierarchical clustering comes with the downside of scala-
bility issues, which we address in three ways. First, we pre-compute
clustering results whenever possible; a database API helps to persist
computed results across run times. Second, we use a dimensionality
reduction method as a pre-process to project the data into 2D, leading
to a significant reduction in compute time (by default: the linear PCA
method [53]). Third, in line with T7, we enable users to interactively
define the feature (sub-)set that goes into the clustering pipeline.
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Fig. 11. Cluster linking workflow of IVESA. Based on a user-selected feature set (left view), the user creates a clustering result, here with four clusters
(center view). The clustering result is automatically linked to the Sequence Overview (sorted by clusters) and the Metadata View (views on the right)

On the right of the Clustering View, we show the result of the dimen-
sionality reduction method. In this way, users can gain an overview of
TSEQs (T1) and structural characteristics of the global feature space
(T7). In the scatter plot, point marks encode individual TSEQs, colored
by the cluster colors. Both clustering visualizations support TSEQ
selection, to be displayed and compared (T3) in the Details View. Fur-
thermore, users can filter out TSEQs (T9) by right-clicking point marks,
with implications on the global filter model and thus all linked views
(Sequence Overview, Details View, Metadata View, and Summary View).

When users click on the ”edit features” button, an auxiliary view
appears, to modify the active feature set (left part of Figure 11). This
list-based interface allows a) the selection of non-temporal features and
b) the interactive customization of each feature through normalization
methods. Histograms of the distributions of global feature values help
users to make informed decisions. To foster algorithmic comparison
across features of different scales, users can choose to normalize the
global features with respect to the dataset using the max-norm and
log-max norm. Changes made to the feature set automatically trigger
the recalculation of the clustering and dimensionality reduction.

4.6 Implementation
IVESA is a React.js-based web application written in Typescript
and powered by a Python backend. The user interfaces are based
on Material-UI, while the interactive visualizations are built using
D3.js [22] and D3FC for the data-intensive Overview. Frontend ren-
dering is accelerated using WebGL and Web Workers. The IVESA
VA approach runs as an ensemble of three Docker containers, de-
ployed via Docker-Compose: NodeJS frontend, FastAPI-based Python
backend running on a Uvicorn web server, and a MongoDB database.
Frontend-backend interactions are facilitated by FastAPI endpoints
using JSON-RPC format, except for the Overview endpoint which is
using a TSV format optimized for frontend rendering. Data operations
in the backend are performed using standard Python scientific libraries
as Numpy, SciPy, Pandas, and scikit-learn [81].

5 CASE STUDIES

We demonstrate the usefulness of IVESA in three case studies: (1) with
TSEQs data about tweets on stocks in Section 5.1, (2) with TSEQs
for pump activity in waste-water treatment in Section 5.2, and (3) on
host behavior in a computer network in Section 5.3. The case studies
describe three detailed workflows as observed from the user study
presented in Section 6, with six experts for the six real-world cases.
The selection of the three case studies was for most representative
examples that showcase all main features of the system. In each case
study, an expert was asked to freely explore the dataset, while thinking
aloud. We introduce each case by briefly characterizing the dataset
(detailed description in the supplemental material), the goals of the
involved experts, and the main upstream preprocessing steps.

5.1 Apple & Cisco Stock Tweets
Wenuka is a data scientist with a passion for the analysis of the stock
market involving tweet messages, as described in Section 3.3.5. With
IVESA, Wenuka first focused on getting an overview of tweets, to
assess whether the data distribution matched his expectations. Also,

he was interested in the detection of outliers of the Apple stock from
the beginning. For that purpose, Wenuka filtered TSEQs for #apple,
and started using the Metadata View, to distribute tweet events by year
(x-axis) and weekdays (y-axis), depicted in Figure 12. This enabled
him to detect the expected: there are fewer tweets on weekends, as the
stock market is closed. Wenuka further observed more tweets in 2020,
which can be explained by the stock market crises due to the Covid-19
outbreak.

Next, Wenuka switched to the Sequence Overview. He sorted the
TSEQs by the stock name and date (both are metadata attributes) such
that he was able to infer a temporal trend on the y-axis for the tweets
of each stock. In doing so, he noticed that there were some days when
many Apple tweets were sent, with an interesting event pattern through-
out the day with three dense phases standing out. He decided to mark
this pattern and create a motif, to highlight these types of event signa-
tures across the entire dataset: “My ultimate goal would be to find stock
tweet movements similar to today’s movements.”. To find meaningful
motifs with some degree of variety of the targeted pattern, Wenuka
chose dynamic time warping in combination with a time window kernel,
as parameters for motif search. However, with the default threshold,
no similar patterns were found. This is not surprising to Wenuka: he
explained this result through the heterogeneity of patterns that may
exist across daily tweet signatures. Wenuka therefore iteratively refined
motif-creation parameters using the subject distribution histogram as
a guide, as it can be seen in the upper left part of Figure 13, to arrive
at a meaningful subset of the dataset matching the motif search. The
application of the motif-simplification routine highlights the motifs in
the Sequences Overview (motif with pink color). To study the identified
motif patterns in detail, he subsequently added these TSEQs to the
Details View for closer inspection, depicted in the lower part of the
figure.

To further analyze the days marked as motifs in the context of
features, he selected the temporal entropy feature in the Detail View, to
evaluate the unpredictability of tweets on social media data referring to
the stock market. This entropy feature is also shown in Figure 13. He
remarked that the resulting entropy per studied sequence was surprising,
since the values did not meet his expectations for entropy outside of
trading hours. After a double check with entropy values for other
TSEQs, he came to the conclusion that his targeted motif was indeed
special, if not unique.

To summarize, Wenuka used IVESA to (1) gain an overview of the
tweets, (2) relate observed patterns to stock market events, (3) discover

Fig. 12. Tweets featuring #apple or #csco across years (x-axis) and by
weekdays (y-axis). During the weekend, activity diminishes.
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Fig. 13. Motif defined by the domain expert, with three dense phases
of events (tweets) throughout a day. With the definition of this motif,
IVESA automatically highlights event sequences matching this motif in
the Sequence Overview and the Detail View, in this case with pink color.

stock-price-related tweeting behaviors, (4) find similar daily tweeting
motifs, and (5) compare tweeting behavior between different days.

5.2 Pump Activity in a Waste Water Treatment Plant
Olivia, the frontline analyst interested in three pumps for wastewa-
ter, is interested in expected and unexpected behavior for the dataset
characterized in Section 3.3.6. Looking at the Sequence Overview at
the start of the session, Olivia identified a pattern of considerably low
pump activity at nighttime, depicted in Figure 14. This was in line
with his prior knowledge: ”This is because people use their toilets less
frequently at night, and hence we have less wastewater.” Next, Olivia
sorted the Sequence Overview by the pump name attribute, to detect
trends for each of the three pumps separately. By leveraging the tooltip
functionality in the overview, he compared several TSEQs with a focus
on high event frequency. In this phase, he also selected TSEQs of
interest, for a more detailed analysis in the Detail View. An interesting
question would be if all interesting TSEQs stem from the same pump.

Olivia zoomed into the Detail View and looked at the nighttime
measurements, depicted in Figure 15. He focused on one night, where
one of the pumps was turned on much earlier than the other two pumps,
which was quite surprising for him. In general, pump activity at night
should be alternating, i.e., he identified a behavior that was atypical
and not to explain semantically.

Finally, Olivia studied the metadata visualization. He was interested
in seasonal effects, so he analyzed event distributions using year as
the x-axis and months as the y-axis attribute. He identifies more pump
events during the summer and explains that this is to be expected, as
currently the WWTP lacks a separate wastewater system: normally,
there is a sewage system for rainwater and one for household wastew-
ater, but in his canton this is not the case. As it rains more frequently
and for longer periods in the summer, it is natural that the pumps are
activated more frequently and for longer periods of time.

In summary, Olivia used IVESA to (1) find and confirm daily patterns
in the overview, (2) compare pumps to detect anomalies in pumping
behavior, and (3) detect and confirm seasonal trends in the overview.

5.3 Host Behavior in a Computer Network
Andreas, the frontline analyst in our case on cybersecurity threats,
works with TSEQs as described in Section 3.3.2. To identify the most
noticeable patterns in the dataset, Andreas began by inspecting the
overview in the Sequence Overview, as shown in Figure 16. What
stood out in Andreas’s perception were the variations of behaviors of
workstations during the year, with several seasonal effects. For the
yearly patterns, he noticed: ”You can see some kind of gradients here,
that are presumably related to the semester breaks”. With this, Andreas

Fig. 14. Sequence Overview, Metadata View, and Details View showing
the decreasing activity of pumps during the night.

was referring to the summer break, when there are no classes for the
students and thus less activity at the workstations is being recorded. An-
dreas proceeded with the analysis and made an interesting assumption:
”Workstations should be separable into three categories, depending on
different usage behaviors – (i) administration, (ii) international services,
and (iii) students”. Andreas further formalized these three categories
by the frequency and the regularity of communication. The administra-
tion communicates frequently but irregularly, the international services
infrequently and irregularly, whereas the students’ workstations com-
municate frequently and consistently. Figure 16 is sorted by these three
device types and clearly reflects this tripartite separation. By looking
more closely at the students’ workstations, Andreas again confirmed
the strong dependency of event counts with typical on/off semester
semantics, especially for the summer break.

Andreas continued by looking deeper into the students’ local tem-
poral behaviors, the dominant group at the bottom in Figure 16. He
identified a dominant pattern with a weekly duration: in many cases,
workstations are highly active five days with a high productivity, fol-
lowed by two days of idle, obviously on the weekend. Despite the fact
that this weekly student pattern changes along the season (as described
earlier), Andreas is surprised by the high within-group similarity: liter-
ally all students’ workstations have the same behavior almost always.

Andreas continued the analysis by zooming into the workstations for
international services. He discovered an unexpected anomaly: a vertical
pattern where the workstations always communicate at the same time,
marked with a red shape in Figure 16. For this reason, he compared a
selected sequence of this category with two sequences selected from the
student and administration categories. IVESA automatically adds all
three selected sequences to the Detail View. In contrast to the anomaly
sequence, he discovered that the administrative and student sequences
are relatively similar in terms of their outliers.

Having the dominating patterns within the year and within weeks
in mind, Andreas next used the Metadata View, and maps the year and
day of the week attributes to the two chart axes. He chose the small
multiples approach, to compare the three selected sequences by their
metadata. He learned that the sequence from the international services
communicates more frequently on the weekends, in contrast to the
other two groups. This is a striking discovery, and he stated: ”These
workstations appear to be rather odd, and workstation administrators,
should definitely take a closer look”.

To contextualize and confirm the presence of the three categories of
workstations, Andreas moved to the Clustering View provided as one
of the auxiliary views in the Summary View in the lower right part of
IVESA. Andreas selected six of the global features that he believed
to be the most descriptive of the three categories of workstations. He
subsequently defined the aggregation level in the cluster dendrogram
in the Clustering View to 3, to assess the correspondence of the three
resulting clusters with the three device types of the workstations, as
depicted in Figure 17. He returned to the Sequence Overview, now
ordered and color-coded by the three clusters, and noted that in fact
the three clusters nicely reflect the three categories of devices. There is
however some overlap between student and administrative categories.
He considered this to suggest that either some administrative services
have comparable communication habits to students, or the set of six
selected features would require some refinement to make this classi-
fication entirely crisp. To confirm that clustering has indeed created
distinct groups, Andreas utilized the small multiples functionality and
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Fig. 15. Irregular pumping activity of three pumps of the WWTP that
usually pump in an alternating manner.

created one small multiple per cluster, as shown in Figure 17. Here, An-
dreas chose hours and months on the x and y axes, respectively. Here,
he made another finding: while most of the student activity occurs
within working hours, the administrative services also communicate in
the early morning, and the international services communicate quite
independently of the time of day, except for a peak in June at 16:00.
This is a very striking observation that he would like to pursue.

In summary, Andreas used IVESA to (1) identify weekly, yearly and
seasonal patterns in the overview and contextualize them, (2) identify
potential categories based on TSEQs similarity in the overview, (3)
formalize identified categories by looking at the distribution of features
on the TSEQs granularity, (4) confirm the categorization by using the
clustering view, (5) compare clusters in the metadata view to confirm
their dis-similarity, and (6) compare unexpected patterns using temporal
features in the metadata view.

6 USER STUDY

We evaluated IVESA by a summative user study with our six domain
experts on the six different datasets and real-world cases, outlined
in Section 3.1 and three of them exemplified in the case studies in
Section 5. We briefly describe the experiment design, then present and
discuss the results.

6.1 Methodology

To assess the utility and task usage of IVESA, we conducted a think-
aloud observational user study that included qualitative coding of user
feedback, a description of findings, and a reflection on the users’ task
usage and workflows. The user study lasted between 45 and 90 minutes,
depending on the experts.
Participants: The user study was carried out with the previously
introduced six domain experts using six datasets (overview in Figure 2):
• Nathan, the photographer who analyzed his personal photography

collection
• Andreas, the cybersecurity expert with an interest in the analysis of

host activity behavior
• Esmeralda, the Earth observation researcher interested in analyzing

permafrost
• Reto, the radiologist focusing on radiological examinations and de-

vices
• Wenuka, the data scientist interested in analyzing tweets about the

stock market
• Olivia, the operations manager interested in analyzing waste water

treatment.
Participants age ranged from 28 to 58 years (M=42, median=43,

STD=9.5). Most participants were male (N=5). Participants had an
average of 15 years of experience of working in their fields (M=15,
median=20, STD=7.8).
Procedure: First we introduced IVESA to explain all its features and
aggregation methods. The experts were asked to use IVESA to analyze
their dataset while thinking aloud. Two evaluators were always present,
one taking notes and the other answering questions. We analyzed the
think-aloud notes using open coding [97]. We summarize the findings,
with an affinity diagram that was iteratively created by two evaluators.

Feb Mar Apr May Jun Jul Aug Sept Oct Nov DecJan

students

international 
services

administration

(partially shown)

Fig. 16. Overview of incoming and outgoing communications of 384
workstations, grouped by the device category (see marks on the left). The
three device categories show strong individual behaviors, as expected
by the domain expert. In addition, he identified an unexpected vertical
behavior of all international service devices (red mark).

6.2 User Study Results
Observation of Experts Most domain experts began by gaining

an understanding of the data distribution. Three experts used the Se-
quence Overview for this purpose, one used the Metadata View (x-axis:
year, y-axis: month). ”I want to get an overview over my data, therefore
I am using years on the y-axis”. After a familiarization phase, three
branches in the experts’ workflows could be identified: (1) compar-
isons between subsets, (2) identification of TSEQs patterns, and (3)
confirmation of identified findings.

Comparisons: Some domain experts aimed at comparing subsets to
a) detect differences in TSEQs or metadata, or b) to detect anomalies
between the two subsets. Three approaches were used to compare
subsets: a) looking for differences between two or more TSEQs, b)
referring to metadata for comparison between subsets, and c) looking
for similar subsets to compare to non-similar subsets. For comparisons
between more than two TSEQs, the Detail View appeared to be useful:
“Being able to compare different pumps is important for us to recognize
irregularities“. To compare and understand the distribution of metadata-
based subsets, two domain experts sorted the Sequence Overview by
metadata attributes. One domain expert compared metadata attributes
using the small-multiple visualization in the Metadata View. Finally,
one domain expert decided to use motifs to locate similar subsets, and
to conduct similarity-based comparisons.

Pattern Identification: Using the Sequence Overview, Details View,
and Metadata View, all experts discovered expected or unexpected
patterns in their data. A primary focus of many experts was on tem-
poral changes of event patterns. For that purpose, experts sorted the
Sequence Overview, to find day-night, month, weekday, holiday, and
metadata-related patterns in their data. ”In the overview you can see
that there is a gap in December and April. This is due to Christmas
and Easter holidays”. Two domain experts used the Metadata View
axes to discover daily, weekday, monthly, seasonal, or yearly patterns.
“There is something interesting on Wednesday in 2017 as it has double
the events compared to the other weekdays”. With the Detail View,
the domain experts discovered event, hour, night-day, and seasonal
patterns.

Pattern Confirmation: We observed that all domain experts wanted
to leverage their previous knowledge to confirm patterns, possibly
to assess the trustworthiness of IVESA. A prominent example was
the stock market crisis in 2020. Most experts were able to confirm
expectations. Beyond the confirmation of the expected, we identified a
strong interest of several experts to find out why expectations were not
met, or how an unexpected pattern can be explained.

6.3 Reflection on User Workflows
To better understand the workflow of the domain experts, we created
state diagrams of the tool usage for each of the cases. The six state
diagrams are shown in Figure 18. Each diagram is structured by the
ten interactive tasks from left to right, arrows above nodes represent
right-ward task transitions, arrows below left-ward task transitions.
We compare commonalities and differences across the six workflows
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Fig. 17. Clustering result of the incoming and outgoing connections of
384 workstations (TSEQ). The separation into three groups shows that
activity nicely aligns with the three device types, shown in Figure 16.

using four analysis strategies: 1) Task Coverage by expert and case,
2) Number of Task Transitions, 3) Start and End Points of the experts’
workflows, and 4) Most Common Task Transition between tasks.

Task Coverage: In the six cases, the domain experts covered 7.67
tasks on average. The lowest number of tasks was covered by the
photography domain expert (N=5). Here, the expert was able to achieve
his goals solely with overview (T1), detail (T4), and relate (T5) tasks
(consume tasks), in combination with group (T8) and motif (T10) actions
(produce tasks). In contrast, the stock market expert leveraged the
most tasks to achieve his goal (N=10), followed by the host behavior
expert (N=9). The coverage of tasks differs considerably across cases.
Four tasks have always been utilized in every case: overview (T1),
details (T4), relate (T5), and group (T8). Also, feature analysis (T7)
based on metrics was relevant for 5/6 domain experts. Contrary to our
expectations, the least observed task was outlier/anomaly detection (T6,
2x), followed by filtering (T9, 3x).

Number of Task Transitions: The number of task transitions reflects
the complexity of a domain expert’s workflow. In the user study, domain
experts transitioned between tasks 14 times on average. Overall, the
domain experts for stock market exchange (N=23) and host behavior
(N=20) conducted the most complex workflow, with almost twice as
many task transitions than other domain experts. The other workflows
consisted of 9–11 transitions, with the least number performed by the
domain expert for permafrost observations (N=9).

Start and End Points: We observe a dominating pattern for the
preferred start of analysis: the overview of TSEQs (T1), conducted by
four of the six experts. Interestingly, the other two experts decided for
a grouping (T8) task to start with. In contrast, we cannot identify a
dominating endpoint: five of the experts finished their analysis with
different tasks.

Most Common Task Transition: It was particularly interesting to
analyze which task tuples have been used most often in the same order,
back to back. This will be a strong indicator for guidelines on effective
interface and interaction design, with more awareness of frequently
applied higher-order transitions. The most common transitions between
tasks were:

• (N=5): TSEQs details (T4) to feature analysis (T7), possibly to assess
if metrics are able to reflect important local characteristics found in
TSEQs of interest

• (N=5): grouping TSEQs (T8) to relate (T5), possibly to contextualize
groups of TSEQs with explanatory criteria such as metadata attributes

• (N=4): overviewing TSEQs (T1) to details (T4), possibly in line with
the common principle of analyzing details on demand

• (N=4): details of TSEQs (T4) to event motif substitution (T10), possi-
bly to transform an interesting sub-sequence pattern into a motif

• (N=4): substituting event motifs (T10) to overview (T1), possibly to
analyze the effect of a changed motif set on the entire dataset

• (N=4): analyzing features (T7) to grouping (T8), possibly to inspect
and refine the feature space to make the clustering more useful
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Fig. 18. State transition diagrams depicting the workflow of experts in the
six real-world cases. To ease comparison, the ten interactive tasks T1-10

are aligned from left to right, orange, and purple labels mark the start
and end of the experts’ workflows. Arrows at the top represent right-ward
transitions, arrows at the bottom indicate left-ward transitions, and arrow
labels are the index of transition.
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7 DISCUSSION AND FUTURE WORK

We reflect on the design process of IVESA, discuss limitations, and
outline future work possibilities.

7.1 Algorithmic Scalability

We have identified four issues that can lead to algorithmic scalability
problems. The first is motif detection, as user-defined queries need
to be executed at runtime. While the index-based variant in combina-
tion with Euclidean distance is quite scalable, the time-based kernel
in combination with DTW is considerably slower, possibly due to
known scalability issues of DTW. Future work includes a more in-
depth study of implementation alternatives for dynamic time warping,
such as fastdtw [88] or dtw-python [40]. Second, some metrics are
computationally intensive. Specifically, temporal feature computation
is time-expensive, especially if large sliding window sizes are requested
by the user. As an example, computing the Connectivity-based Outlier
Factor has quadratic computational complexity in terms of the event
size (neighborhood) [7]. Our current strategy is to pre-compute all
features, which is feasible as the input TSEQs are not changed at run-
time. Third, we have decided on the benefits of a hierarchical clustering
approach. To address the downside of a quadratic runtime, k-means or
DBSCAN [19] would form more scalable clustering alternatives.

The final issue is the length of TSEQs in general. While IVESA
scales well for 1,000 TSEQs with 1,000 events, the system perfor-
mance might decrease for considerably more events, due to database
communication and API call payloads.

7.2 Visual Scalability

We started with visualizing a few thousand events and applied a highly
iterative design process including several technology changes to reach
the design target of visualizing up to 1,000,000 events in a Web frontend.
The Sequence Overview can take up to one second for both transporting
and rendering the data points. Using GPU-accelerated graphics, re-
rendering of the data can be done at 60fps while users interact with
the data. With zooming applied, the approach is capable of interactive
frame rates below 100ms refresh time. However, currently, only the
Sequence Overview uses the GPU-accelerated graphics, leading to some
delay regarding the other views, e.g., for single TSEQs with more than
100,000 events being displayed in the Details View.

7.3 Metrics and Feature Engineering

The user study with domain experts, each working on a different dataset
and analysis problem, revealed insights into metrics that are applicable
across applications and cases. However, we also observed that most
cases would call for more domain-specific metrics, to better capture
domain semantics through metrics and corresponding features. Future
work in this direction is three-fold. First, we plan a more encompassing
observation of users, possibly across dozens of real-world cases and
datasets to collect more evidence about the relevance and generaliz-
ability of metrics. Second, it is our goal to conduct design studies for
individual applications to investigate the support of domain-specific
features. Finally, it would be interesting to investigate derived features
more thoroughly, possibly in combination with the interactive feature
selection procedures of IVESA.

7.4 User Studies

Our validation approach includes a) a generalizability strategy through
the use of multiple datasets, b) intuitiveness and usability through an
iterative design and refinement process, by leveraging expert feedback,
and by conducting summative studies with the six domain experts, and
c) usefulness through the presentation of three case studies. Future
work includes more extensive user studies, to assess whether other
domain experts can achieve their goals equally well. Also, working
with non-experts will be an interesting avenue to assess their ability to
use IVESA.

7.5 Dataset-Type-First Design Study
Our main abstraction method was applying the data-first design study
principle by Oppermann and Munzner [80]. The principal idea is to
acquire real-world data first and then select promising stakeholders,
in contrast to classical design studies where stakeholders are identi-
fied first and datasets are subsequently provided by stakeholders [89].
Methodologically, we extend Oppermann’s data-first principles in one
particular aspect:
• First, we determined a dataset type to work on (uncovered by the

methodologies)
• Second, we determined a heterogeneous set of (six) datasets for the

dataset type
• Third, we selected promising stakeholders to work with these (six)

datasets
While our abstraction results in Section 3 have been useful for de-
signing a tool that supports domain experts in all six real-world cases,
we feel that for TSEQs, our dataset-type-first approach would ben-
efit from a field study with a larger number of observed real-world
cases to further assess the relevance of the analysis tasks. To comple-
ment the dataset-type-first methodology, further research will include
observational studies to characterize analytic strategies to cope with
dataset complexities, such as conducted by Du et al. for classical event
sequences [34]

8 CONCLUSION

We have presented a VA approach to support users with the analysis of
TSEQs. Studying this data type with six datasets and domain experts
enabled us to identify 12 tasks and sets of 8 temporal and 14 static met-
rics. The iteratively designed VA tool IVESA includes multiple linked
views that enable users to explore TSEQs, relate the sequence content
to metadata attributes, and produce data simplifications that help them
cope with large and complex datasets. We validated IVESA through
three case studies and a user study with six domain experts with six
real-world cases. Results demonstrate the usability of the approach and
its generalizability across cases and applications. We were pleased that
the domain experts were able to interactively analyze TSEQs with up to
1,000,000 events. While the supported tasks and provided metrics were
deemed useful, there are indications of the need for more individualized
and domain-specific solutions. Promising directions of future work
include VA support for the identification of domain-specific metrics, the
synthesis of features, and the domain-specific identification of motifs.
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