
Lukas Yu 14-720-866

Vertiefung: Integration of Ongoing Time

Points into PostgreSQL

Application Scenario
A lot of work has gone into making a now timestamp that is dependent on the current time possible,

but what are the use cases for such a timestamp? What are the advantages to use such a special

variable compared to just sticking to traditional static timestamps?

Let’s think of an example: We want to track the time interval of an employee named Jane, who starts

working on January 1st. The interval is denoted by two timestamps, the start timestamp and the end

timestamp. It describes the interval for which the fact that Jane is an employee is true. The tuple in the

database would look like this on the February 2nd:

Employment

Employee Start End

Jane 01.01.2017 02.01.2017

However, keeping the tuples updated every day is not optimal, especially with growing numbers. It

also does not tell the user if the employee is still employed or stopped working on the same day,

making it more difficult to decide which tuples to update. It would be nice to have the ability to save a

variable now, which then gets replaced with the current time when the tuple gets queried. The table

would look like this:

Employee Start End

Jane 01.01.2017 now

The now variable as the end timestamp means that Jane is still employed. If a user now wants to know

the employment time of Jane on January 3rd, the now variable gets replaced with the current

timestamp (01.01.2017 – 03.01.2017), which is the correct interval. If Jane stops working one day, the

end timestamp gets replaced with a fixed timestamp which then will not be replaced with the current

timestamp when queried.

With the now timestamp it is now possible to store timestamps that are dependent on the current

time, the time it is queried.

Several extensions to this idea can be made:

- Now-relative timestamps. E.g. now + 3 days

- Additional to valid time interval (valid in real world), transaction time (valid in database) is

added to represent internal database changes

- Reference time. For many applications, it is insufficient just to replace now with the current

time when the query is executed. With reference time, any time can be queried as now.

Lukas Yu 14-720-866

Implementation approaches
The concept of the now timestamp is simple, but the actual implementation into a DBMS is no trivial.

Several approaches have been proposed, but all of them have some trade-offs.

MIN, MAX or NULL value
One approach to represent the now value is to take the minimal or maximal possible value of the date

type. These values usually are not used in a real world application, so its semantics can be replaced

with now.

The problem of the MIN and MAX approach is that it can’t be efficiently indexed. In a B-Tree, all the

now values are either on the extreme left (MIN value) or on the extreme right (MAX value), lowering

the performance (index range problem). Another problem is that all these values are indexed to the

same special value, causing the index to sequentially search through each value (index redundancy

problem).

Another approach is to use null value to represent now. It has the advantage that it does not require

as much space than a regular timestamp, but a null value cannot be indexed by conventional DBMS at

all, leading to unacceptable access times.

A problem for all three approaches is that it gives special values a new meaning, potentially leading to

overloading. Despite its advantage that it only uses integrated data types and no modification on the

DBMS is required, it can be concluded that these three approaches are far from optimal and are should

not be used in a real-world application.

Empty range
Stantic et al. described a new approach. If the start and end timestamps of an interval is the same (e.g.

[01.01.2017 – 01.01.2017]), it means that this tuple is valid from the date until now. This type of

interval does not have a meaningful use in the real world: It starts on one date and ends before the

date has begun. The meaning of the useless tuple gets replaced with a now semantic.

An example:

The first row shows how it is physically stored in the database. It has the same semantics as the second

row, but does not require a special value for now.

Employee [Start End)

Jane 01.01.2017 01.01.2017

Jane 01.01.2017 now

The advantage of this is that is does not require a special data type, as it only uses conventional

timestamps, thus no modification to the DBMS is needed. The disadvantage an additional layer

between the user and database needed to “translate” the notation from the database into a human

readable form, which is a problem with all approaches that only use integrated functionalities of the

DBMS.

Approach in modification semantics
In this paper from K. Torp et al. a possible approach to implement a database with now-relative

timestamps is described.

With this approach the valid time gets represented with 4 date variables:

- V-Begin

Lukas Yu 14-720-866

- V-Begin-Offset

- V-End

- V-End-Offset

Offset values different from NULL indicates a max and min function, respectively. An example:

Name V-Begin V-Begin-Offset V-End V-End-Offset

Jane 10.01.2003 NULL 20.01.2003 Now

This tuple pretty much means [10.01.2003 – min(20.01.2003, now)). It starts on January 10th and ends

on now if the reference time is until January 20th.

While this approach doesn’t extend any data types, this cannot be implemented in Postgres without

losing the functionality that comes with the daterange data type.

Generally Valid Queries on Databases with Ongoing Time Points
In previous approaches, a reference time is specified when querying a temporal database, which then

is bound to every involved now variable.

A query that is frequently executed and is requiring heavy computing, it can be significantly improved

with the optimization described in the paper. The concept is that a result is computed that is

independent of reference time to get a generally valid result. The result of the query is then saved into

another table consisting of the fact and a reference time interval for which the fact is true. Any future

requests of the same query just have to check if the reference time falls into the interval, significantly

reducing the work load.

In the same paper another approach to represent now is used. The date data type of Postgres gets

extended:

- Date a

- Date c

- boolean bottomed

- boolean topped

Name Date a Date c bottomed topped

Jane 10.01.2017 20.01.2017 true true

The tuple above describes a date that evaluates to now between the two timestamps and is limited to

these dates beyond them. The limitations can be disabled by setting the corresponding Booleans to

false.

A valid time interval is described by two of them. Because the new date data type is an extension of

the existing integrated Postgres date data type, the daterange data type provided by Postgres can be

used to contain two extended date types.

Advantages and challenges of timestamps with and without extensions

of data types
The Stratum approach does not modify the underlying DBMS. It adds an layer between the user and

database to translate the variable queries and modifications into conventional SQL. It does not require

any modifications to the actual database. However, optimization might be difficult and the data cannot

be understood directly without the translator as the layer is essentially a workaround.

Lukas Yu 14-720-866

The integrated approach modifies and adds the temporal features directly into the database. It is

generally more difficult to implement than the stratum approach, but it should yield better

performance and does not require an additional layer. The only disadvantages comes from the

difficulties when extending integrated data types. Functionalities may break and must be repaired

again to ensure a safely working system.

Date data type extension in a Postgres environment
As mentioned before, if the date data type gets extended, functions and predicates of the extended

date and daterange data type may break.

The approach from the paper “Generally Valid Queries” is used. When the date data type of Postgres

is extended, some operators and functions of date and daterange must be redefined. Especially the “<”

operator is essential, as it is used for ORDER BY, indexing, merge joins etc.

The problem with the extension of date is that it’s reference time dependent. Operators as easy as “<”

which previously only returned true or false is now a generally valid boolean. When comparing two

extended date types to find out which one is smaller, the system has to compute an answer which can

evaluate to true or false depending on the reference time, which is not known yet when generating a

generally valid answer from a query. The same procedure must be done for daterange, which is

dependent on the date data type.

The logical connectors for those generally valid Booleans also must be defined as they are not simple

Booleans anymore.

Fortunately, this work has already been done. Details on the implementation plan are all described in

the paper.

