
Department of Informatics, University of Zürich

MSc Basic Module

Implementing Self Multiplication
Inside MonetDB

Jonathan Stahl
Matrikelnummer: 13-935-440

Email: jonathan.stahl@uzh.ch

23.06.2019
supervised by Prof. Dr. Micheal Böhlen and Oksana Dolmatova

1 Introduction

Traditional database systems store data in tuple form, or in other words ’row by row’. But if
the main application will be data science / business intelligence, row-store can be unfavorable.
This can be remedied by a column-store database system. In data science a lot of vector based
operations on columns have to be performed. Therefore, the column-store approach, with
the data already in a vector for each attribute, is very interesting. But traditionally in data
science the data is exported from the DBMS into tools like R or MATLAB. The processing
is then conducted there. Performing linear algebra operations, such as matrix operations,
directly in the DBMS could save time and memory by reusing its internal data structures and
optimizer [1].

In the scope of this Master Basic Module, the necessary knowledge should be acquired to
realize the Master Project: Matrix Operations with Gathering in MonetDB. For the project I
will collaborate with Alphonse Mariyagnanaseelan and Timo Surbeck.

1.1 MonetDB
MonetDB is an open-source column store DBMS, which is in development since 1993 at the
Centrum Wiskunde & Informatica (CWI). With its data stored in so called Binary Association
Tables (BAT), it pioneered the column store technology. Each BAT of a table stores all values
of one attribute in an indexed array like data structure. To reassemble the tuples of a table,
each value in a BAT has an Object-Identifier (OID) [2].

The architecture of MonetDB consists of three layers. In the top layer the user finds the
access point. By entering a SQL query the whole machinery is set in motion. First, the query
is translated into a symbol tree. The symbol tree is a representation of the query. Each node
refers to a SQL keyword and is linked with instructions for the second stage. In this stage the
relational tree is built. A relational tree node represents a relation, which can be found in the
database, or is the result of an operation. Further, a node consists of one or two child nodes,
the operator type and also list of of expressions used for the operation. In this stage also the
first optimizations are performed. The strategic optimizer can rearrange the tree according to
heuristics and rules. The third stage is responsible for the creation of a statement tree. This
tree is specific for column store DBMS. Each node is a statement or a statement list and refers
to one or more columns. This tree allows to conveniently define operations on columns. In
the final stage of the top layer, the statement tree is transformed into MonetDB Assembly
Language (MAL). MAL is a language, which operates on BATs. Here is where the middle
layer starts. A MAL-Plan is produced with further optimizations. On the lowest layer the
MAL instructions are carried out directly on the BATs, according to the MAL-Plan [1] [2].

2

1.2 Problem Definition
The purpose of this MSc Basic Module was to gain enough knowledge about the internals
of MonetDB to approach the Master Project. For that reason, the task was to implement self
multiplication of a one-numeric-attribute relation. This new operation should take a relation
r with one numeric attribute as an input, and a relation with one numeric attribute consisting
of all values of r multiplied with it self as an output. An example can be found in table 1.1. It
is a simple operation, but requires to understand, use and extend the structures of the top layer
of MonetDB until the transformation to MAL.

r r’
A A
3 9
9 81
2 4

Table 1.1: Applying self multiplication to table r

2 Design & Implementation

The design and implementation was done in a top down approach. At first the SQL parser,
which is the entry point for a query to be executed, was extended. From there the development
followed the sequence in which MonetDB processes a query. Step by step the symbol tree,
relational tree, statement tree and finally the MAL Plan was extended. As an example, and
sometimes placeholder to test certain parts, the native cross join implementation was used.
For debugging purposes, and to better understand the query processing sequence, the GNU
Project Debugger (GDB) came to action.

As a starting point, MonetDB on version 11.23.13 was used. During the implementation
regularly commits were pushed to the GitHub repository which can be found here:
https://github.com/jonixis/MonetDB

2.1 Symbol Tree
The symbol tree is a tree representation of the SQL query entered by the user. The first
milestone was to introduce a new SQL keyword for self multiplication of a one-column rela-
tion. The query in listing 1 with the new keyword mul should result in r’ seen in table 1.1.
MonetDB uses Yet Another Compiler-Compiler (YACC) to generate the SQL parser. All the
configuration for the SQL parser is handled in the YACC file sql_parser.y. To introduce the

3

new keyword, the code found in listing 2 was added. On the first line it is defined, that the
keyword mul has to be followed by a table name. Next, the table reference (accessed with $2)
is added to a list, which is then transformed into a symbol tree node. With the token SQL_MUL
the operation type is set. In the file rel_select.c the case SQL_MUL is handled, and the symbol
tree node processing continues.

SELECT * FROM mul r;

Listing 1: Example query for self multiplication

1 | MUL table_ref
2 { dlist *l = L();
3 append_symbol(l, $2);
4 $$ = _symbol_create_list(SQL_MUL, l); }

Listing 2: Introduce mul keyword to parser

2.2 Relational Tree
The symbol tree contains table names and attribute names, but those were not yet checked on
their existence. During the construction of the relational tree all values are verified against
the actual database. This all takes place in rel_select.c. If the verification is a success a new
relational tree node is constructed by calling a function defined in rel_rel.c. The necessary
code can be found in listing 3. In the case of our example query the relational tree is very
simple, as seen in figure 2.1, where ⊗ is the operator for self multiplication.

1 sql_rel *rel = rel_create(sa);
2

3 rel->l = l;
4 rel->r = NULL;
5 rel->op = mul;
6 rel->exps = NULL;
7 rel->card = l->card;
8 rel->nrcols = l->nrcols;

Listing 3: Construct a relational tree node for self multiplication

4

π∗

⊗

r

Figure 2.1: Relational tree of the query in listing 1

2.3 Statement Tree
In a next step the relational tree is transformed to a statement tree. The transformation takes
place in rel_bin.c. In listing 4 the corresponding code can be found. Nodes in a statement
tree represent columns or a list of columns. Because the self multiplication operation needs
only one relation, only the left child node is used. On line 1 the function call subrel_bin
recursively transforms the left child nodes into statements. On line 3 to 5 the first column of
the relation is extracted. On line 6 the function shown in listing 5 gets called. It returns a
statement node of the type st_multiplication with one column.

1 stmt *left = subrel_bin(sql, rel->l, refs);
2 assert(left);
3 node *n = left->op4.lval->h;
4 stmt *c = n->data;
5 stmt *l = column(sql->sa, c);
6 stmt *multiplication = stmt_multiplication(sql->sa, l);

Listing 4: Transform relational tree node to statement tree node

1 stmt *
2 stmt_multiplication(sql_allocator *sa, stmt *op1) {
3 stmt *s = stmt_create(sa, st_multiplication);
4

5 s->op1 = op1;
6 s->op2 = NULL;
7 s->key = 0;
8 s->nrcols = 1; }

Listing 5: Construct a statement tree node for self multiplication

5

2.4 MAL Plan
In the last step the statement tree is translated to a MAL plan. In the file sql_gencode.c the
function _dumpstmt contains a big switch case, where a case was added for the statement
nodes with the new type st_multiplication. The MAL plan defines which BAT oper-
ations are performed. The code for this can be seen in listing 6. Again, the tree is translated
recursively as seen on line 1, where _dumpstmt is called. On line 3 the explicit BAT opera-
tion type "*" is passed to a new instruction. It follows the appending of the relations single
attribute l. In order to achieve an element wise self multiplication of this attribute it is added
twice. The internal BAT operation is called batcalc.* and was already part of MonetDB.
For example it is used in the standard query in listing 7. This can be verified by executing the
query with EXPLAIN prepended.

1 l = _dumpstmt(sql, mb, s->op1);
2 assert(l >= 0);
3 q = newStmt(mb, batcalcRef, "*");
4 q = pushArgument(mb, q, l);
5 q = pushArgument(mb, q, l);

Listing 6: Transform statement tree node to MAL plan

SELECT (A*A) FROM r;

Listing 7: Example query for self multiplication

3 Conclusion & Discussion

With relatively few lines of code it was possible to introduce a new SQL keyword mul, which
can be used to perform self multiplication on a single-attribute relation. Although the imple-
mentation did not need many lines of code, this Basic Module gave a thorough introduction
into the architecture and mechanisms of MonetDB. By following the path of the standard cross
join query, the high extendibility, especially for matrix operations, revealed itself.

6

Bibliography

[1] Alphonse Mariyagnanaseelan, Optimization of Mixed Queries inMonetDB System, https:
//www.ifi.uzh.ch/dam/jcr:3fe0b0d1-fbc2-4934-a447-60d2d99c09af/
Bachelorarbeit.pdf, accessed 2019-06-18, 2019.

[2] Database Architectures Research Group (CWI), MonetDB, https://www.monetdb.
org, accessed 2019-06-18.

7

