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Autonomous micro aerial vehicles (MAVs) will soon play a major role in tasks such as search and rescue,
environment monitoring, surveillance, and inspection. They allow us to easily access environments to which
no humans or other vehicles can get access. This reduces the risk for both the people and the environment. For
the above applications, it is, however, a requirement that the vehicle is able to navigate without using GPS, or
without relying on a preexisting map, or without specific assumptions about the environment. This will allow
operations in unstructured, unknown, and GPS-denied environments. We present a novel solution for the task
of autonomous navigation of a micro helicopter through a completely unknown environment by using solely
a single camera and inertial sensors onboard. Many existing solutions suffer from the problem of drift in the
xy plane or from the dependency on a clean GPS signal. The novelty in the here-presented approach is to use a
monocular simultaneous localization and mapping (SLAM) framework to stabilize the vehicle in six degrees of
freedom. This way, we overcome the problem of both the drift and the GPS dependency. The pose estimated by
the visual SLAM algorithm is used in a linear optimal controller that allows us to perform all basic maneuvers
such as hovering, set point and trajectory following, vertical takeoff, and landing. All calculations including
SLAM and controller are running in real time and online while the helicopter is flying. No offline processing
or preprocessing is done. We show real experiments that demonstrate that the vehicle can fly autonomously in
an unknown and unstructured environment. To the best of our knowledge, the here-presented work describes
the first aerial vehicle that uses onboard monocular vision as a main sensor to navigate through an unknown
GPS-denied environment and independently of any external artificial aids. C© 2011 Wiley Periodicals, Inc.

1. INTRODUCTION

Small-scale autonomous aerial vehicles will play a ma-
jor role in the near future. Micro helicopters—and espe-
cially quadrocopters—will be of particular interest because
of their great agility and ability to perform fast maneu-
vers (Mellinger, Michael, & Kumar, 2010). They will ac-
complish tasks in areas such as surveillance, search and
rescue, monitoring, mapping, and other areas in which an
agile ground-decoupled system is needed. The research
in autonomous micro aerial vehicles (MAVs) is advanc-
ing fast, but even though a lot of progress has been
achieved in this topic during the past few years, we still
strive to find autonomous systems in unknown, cluttered,
and GPS-denied environments. Only after solving this is-

Multimedia files may be found in the online version of this article.

sue can high-level tasks such as autonomous exploration,
swarm navigation, and large trajectory planning be tackled
(Belloni, Feroli, Ficola, Pagnottelli, & Valigi, 2007; Birk,
Wiggerich, Bulow, Pfingsthorn, & Schwertfeger, 2011;
Dhaliwal & Ramirez-Serrano, 2009; Goodrich et al., 2007;
Maza, Caballero, Capitán, de Dios, & Ollero, 2011; Merino,
Caballero, de Dios, Ferruz, & Ollero, 2006).

A key problem on an airborne vehicle is the stabiliza-
tion and control in six degrees of freedom (DOF), that is,
attitude and position control, Today’s systems handle well
the attitude control. Without a position control, they are,
however, prone to a position drift over time. Stable flights
and navigation with GPS are well explored and work out of
the box (AscTec, N.D.). However, GPS is not a reliable ser-
vice as its availability can be limited by urban canyons and
it is completely unavailable in indoor environments. The al-
ternative of using laser range finders is not optimal because
these sensors have a restricted perception distance and are
still heavy for MAVs.
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Considering what we have mentioned so far, in or-
der to be independent of the (quality of the) GPS signal,
a viable solution is to navigate using a vision-based sys-
tem. Stable flights and navigation with external (i.e., off-
board) cameras—such as the motion capture systems—are
well explored (How, Bethke, Frank, Dale, & Vian, 2008;
Michael, Fink, & Kumar, 2010; Valenti, Bethke, Fiore, &
How, 2006). However, they have numerous disadvantages:
they are limited to small environments, the operation of
the helicopters is constrained within the cameras’ field of
view, and they require manual installation and calibration
of the cameras, and thus they are limited to environments
that are physically accessible by humans. The alternative
and only viable solution to make the vehicle free to ex-
plore places that are not accessible by humans is to install
the sensors onboard. In this work we focus on vision sen-
sors because laser-based systems are still much heavier and
consume much more power. In the past few years, develop-
ment on digital cameras has made them fulfill two impor-
tant requirements for MAVs, low weight and low power
consumption. In addition, the quality of the cameras—in
terms, for instance, of contrast, resolution, frame rate, high
dynamic range, global shutter—increased, while their price
dropped remarkably. The main advantage of an onboard
camera is that it provides very rich and distinctive infor-
mation. This is definitely useful for structure and motion
estimation and relocalization. Monocular or stereo cameras
offer both a good solution. However, we must remember
that a stereo camera loses its effectiveness if the distance to
the scene is much larger than the baseline. In this case, the
range data become inaccurate and the utility of the stereo
reduces to that of the monocular camera.

In this paper, we show that full navigation of a mi-
cro helicopter becomes possible using only a single cam-
era as exteroceptive sensor and an inertial measurement
unit (IMU) for proprioceptive measurements. We show au-
tonomous navigation in GPS-denied and completely un-
known environments. The here-presented approach uses
the camera to build a sparse three-dimensional (3D) map
of the environment, localize with respect to the map, and
finally navigate through it. The entire process runs in real
time during the flight. The difference of the estimated cam-
era position in the 3D map and a corresponding setpoint is
used as error in a linear quadratic Gaussian/loop transform
recovery (LQG/LTR)-based controller. We show that mini-
mizing this error allows all basic flight maneuvers such as
hovering, set point and trajectory following, vertical take-
off, and landing. We present many experimental results and
show that the combination of these basic tasks leads us to
fully autonomous flight, from takeoff to landing. To the best
of our knowledge, this work describes the first micro he-
licopter platform that uses monocular simultaneous local-
ization and mapping (SLAM) to navigate through an un-
explored GPS-denied environment and independently of
any artificial aid such as external beacons, offboard cam-
eras, and markers.

The outline of the paper is as follows. The related
work is described in Section 2. We introduce the notation in
Section 3. In Section 4, we summarize the SLAM algorithm
that has been used and explain the reason for this choice for
our approach. In Section 5, we describe the modeling of the
system and the parameter identification. After that, we dis-
cuss the controller design in Section 6 and analyze the entire
structure of our approach in Section 7. In Section 8, we de-
termine the visual-SLAM algorithm’s accuracy and focus
on our technique for local navigation. Finally, we discuss
the achieved results and conclude the paper in Section 9.

2. RELATED WORK

Because MAVs are in general highly unstable and non-
linear systems, a clever combination of sensor equipment
and controller must be designed. Most of the approaches
model the MAV as two connected ideal subsystems and
use a cascaded control structure: one controller for the at-
titude of the MAV (3D orientation of the helicopter) and
one superposed controller for its 3D position. In general,
the attitude controller has to be faster than the position
controller because of the vehicle’s high dynamics. Often,
a simple proportional–derivative (PD)-controller is enough
for this purpose; however, other techniques can also be
applied for its design (Cai, Chen, & Lee, 2008; Castillo,
Lozano, & Dzul, 2004; Peng et al., 2007). Bouabdallah and
Siegwart (2005) analyzed the application of two different
control techniques—“sliding-mode” and “backstepping”—
and showed that the latter has particularly good stabilizing
qualities. In our case, we use the onboard attitude controller
provided by Ascending Technologies (AscTec, N.D.). It is
basically a PD controller running at 1 kHz.

The use of accelerometers, gyros, and compasses can
lead to strong attitude controllers and enables the stabiliza-
tion of the vehicle’s attitude. Although it is possible to hold
the flying platform in a hovering state, there is no possi-
bility to perceive and correct for any drift caused by ac-
cumulated errors. To tackle this issue, exteroceptive sen-
sors (e.g., laser scanners, cameras, GPS, pressure sensors,
or ultrasonic sensors) able to measure the vehicle position
are unavoidable. The most common approach is to mount
a DGPS receiver on the MAV. By using a so-called iner-
tial/GPS approach, in which data from an IMU and GPS
data are fused together, the position can be estimated up
to a precision of some decimeters. Thus, the MAV can be
fully stabilized and controlled (Abdelkrim, Aouf, Tsourdos,
& White, 2008; Yun, Peng, & Chen, 2007). The two draw-
backs of this approach are the necessity to receive a clean
GPS signal and the lack of precision of the position esti-
mate. Furthermore, GPS is not a reliable service; its avail-
ability can be limited by urban canyons, and it is com-
pletely unavailable in indoor environments. Nevertheless,
most approaches for autonomous MAVs have been devel-
oped using GPS, sometimes in combination with onboard
cameras and an IMU. For instance, Ludington, Johnson,
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and Vachtsevanos (2006) used a Kalman filter to fuse GPS,
vision, and IMU data. Templeton, Shim, Geyer, and Sastry
(2007) used a GPS-based flight control system for naviga-
tion and vision to estimate the 3D structure of the terrain in
order to find adequate landing sites.

Alternatively to GPS, successful results have re-
cently been achieved using laser range finders (Achtelik,
Bachrach, He, Prentice, & Roy, 2009; Bachrach, He, &
Roy, 2009a, 2009b). Bachrach et al. (2009a, 2009b) used an
Hokuyo laser scanner and two-dimensional (2D) SLAM
for autonomous navigation in a maze. With their platform,
they won the international competition of MAVs (IMAV),
which consisted of entering and exiting from a maze. In
contrast to cameras, laser range finders have the advantage
of working in texture-less environments. Although very ap-
pealing, the use of range finders is not optimal because
these sensors have a restricted perception distance and lim-
ited field of view (typically only in a plane) and are still
heavy for MAVs. We note that both the power consumption
of the sensor itself and the energy to lift its weight have to
be taken into account for the system’s energy budget.

As mentioned previously, and given a limited weight
and energy budget, the most viable solution for GPS-
denied environments is to use vision. The most simple way
is to install a number of external cameras with known loca-
tion and to have them track the vehicle (Altug, Ostrowski,
& Mahony, 2002; Klose et al., 2010; Park et al., 2005). In the
past few years, excellent results in this endeavor have been
achieved using the motion capture system from Vicon1: a
system of high-resolution, external cameras that can track
the six-DOF pose of one or more helicopters with submil-
limeter accuracy (How, Bethxe, Frank, Dale, & Vian, 2008;
Michael, Mellinger, Lindsey, & Kumar, 2010; Valenti et al.,
2006). This is made possible by the use of retroreflective
markers that are rigidly attached to the vehicle’s body and
that can easily be tracked by the Vicon’s cameras even when
all but one camera are occluded. Using the software from
Vicon, tracking of quadrotors is rarely lost, even during ex-
treme situations such as fast maneuvers (speed of 3.5 m/s,
acceleration of 15 m/s2) (Michael, Mellinger, et al., 2010).
Aggressive maneuvers such as multiple flips of the MAV
(Lupashin, Schöllig, Sherback, & D’Andrea, 2010), docking
to an oblique wall (Mellinger, Michael, et al., 2010), or coop-
erative grasping of objects (Mellinger, Shomin, Michael, &
Kumar, 2010; Michael, Fink, & Kumar, 2010) were achieved
in 2010 using the Vicon system. Typically, in these instal-
lations the number of Vicon cameras for MAV test beds
ranges between 1 and 16, the resolution can be up to
16 megapixels, and the frame rate can reach 375 Hz. Mo-
tion capture systems are very efficient and robust for testing
purposes and can be used as ground truth reference to eval-
uate other approaches. However, they are obviously not

1http://www.vicon.com.

suitable for large environments and for missions in which
the installation of an appropriate infrastructure for external
cameras is not feasible. Additionally, they require an accu-
rate calibration of the camera system. Finally, we also point
out the difference between onboard cameras and external
(i.e., offboard) cameras: when using external cameras (such
as the Vicon), it is not the helicopter that is autonomous but
rather the system comprising the external cameras plus the
helicopter. It is only in the case of onboard cameras that the
helicopter can be considered truly autonomous.

Most vision-based works developed so far concen-
trated on specific, individual tasks only such as takeoff,
landing, hovering, or obstacle avoidance. For instance, Sari-
palli, Montgomery, and Sukhatme (2002) and Mejias, Usher,
Roberts, and Corke (2006) focused on autonomous landing
using only vision or vision and IMU, respectively. In par-
ticular, Mejias et al. (2006) used vision to identify a good
landing spot and reach it as fast and safely as possible.
Most vision-based controllers for hovering purposes only
have been implemented by means of optical flow (Herisse,
Russotto, Hamel, & Mahony, 2008; Zufferey & Floreano,
2006). Herisse et al. (2008) used an optical flow–based PI
controller to stabilize a hovering MAV. They also imple-
mented an automatic landing routine by analyzing the di-
vergent optical flow. However, optical flow–based hover-
ing is affected by drift because it computes the relative
displacement of the features between the last two frames
and not their absolute motion, for example, with respect
to the initial frame. This also holds for visual odometry–
based implementations, in which the pose is estimated by
considering the feature displacements between two con-
secutive images (Fowers et al., 2007). Optical flow, how-
ever, turns out to be extremely useful for obstacle avoid-
ance and wall or terrain following. Based on optical flow,
some biologically inspired control algorithms have been
developed in this endeavor, as reported in Garratt and
Chahl (2008), Hrabar, Sukhatme, Corke, Usher, and Roberts
(2005), Ruffier and Franceschini (2004), and Zufferey and
Floreano (2006). For example, a wall-collision avoidance
was developed by Hrabar et al. (2005), who implemented
a strategy to navigate in urban canyons. They used opti-
cal flow from two cameras placed on both sides of the ve-
hicle. In addition, they used a front-looking stereo camera
to avoid oncoming obstacles. In our previous work (Zingg,
Scaramuzza, Weiss, & Siegwart, 2010), we also used opti-
cal flow to control a quadrocopter to remain in the center
of a corridor. Garratt and Chahl (2008) used optical flow to
perform terrain following with a coaxial helicopter.

Because optical flow alone is not a good choice for
fully autonomous helicopters, the only viable solution is
to extract and track distinctive and reliable features that
can easily be matched across multiple frames. In general,
two approaches are possible when using onboard cam-
eras: the first one is by tracking a known, fixed object
(such as artificial markers, or user-specified points), which

Journal of Field Robotics DOI 10.1002/rob



Weiss et al.: SLAM-Based Autonomous Helicopter • 857

implicitly solves the matching and relocalization problem
because the markers are already known and their relative
3D position too; the second approach is by extracting dis-
tinctive natural features—whose 3D position is a priori not
known—and use them for both motion and structure esti-
mation and relocalization (i.e., visual SLAM). Many differ-
ent approaches have been developed within the first cate-
gory (Hamel, Mahony, & Chriette, 2002; Proctor & Johnson,
2004). Hamel et al. (2002) implemented a visual trajectory
tracking method to control a MAV with an onboard cam-
era observing n fixed points. A similar approach was de-
veloped by Cheviron, Hamel, Mahony, and Baldwin (2007),
who additionally fused the vision with IMU data. Another
possibility is to have the MAV tracking a leading MAV and
maintain fixed relative position and orientation. Chen and
Dawson (2006) implemented this by tracking some copla-
nar points on the leading vehicle and using homography
to estimate the relative pose. In contrast, Wenzel, Masselli,
and Zell (2010) used four light sources on a ground robot (a
Pioneer) and homography to perform autonomous takeoff,
tracking, and landing on the moving ground robot.

To the best of our knowledge, very little work has been
done within the second category, which is using a full vi-
sual SLAM algorithm for controlling the helicopter. These
works are described in Artieda et al. (2008) and Ahrens,
Levine, Andrews, and How (2009). The advantage of vi-
sual SLAM compared to all the approaches mentioned so
far is that it allows the MAV to cancel the motion drift
when returning to an already-visited location. The work of
Artieda et al. (2008) describes the implementation of a vi-
sual SLAM based on an extended Kalman filter (EKF) for
UAVs, but their visual SLAM is used only for mapping
and not for controlling the helicopter. Therefore, the work
that is probably closer to ours is that from Ahrens et al.
(2009). On the basis of the monocular SLAM algorithm of
Davison, Reid, Molton, and Strasse (2007), they built a lo-
calization and mapping framework that provides an almost
drift-free pose estimation. With that, they implemented a
position controller and obstacle avoidance. However, due
to the simplification they used in their feature-tracking al-
gorithm, a nonnegligible drift persists. In addition, they
used the Vicon motion capture system to control the aerial
vehicle. Therefore, the output of the SLAM-based localiza-
tion system was not used for vehicle stabilization. Another
problem is represented by the choice of an EKF-based vi-
sual SLAM algorithm that is particularly sensitive to out-
liers, abrupt motion, and occlusions and that does not per-
form relocalization if the helicopter is “kidnapped.” An-
other major difference is that they focus only on navigation
indoors and do not cover autonomous takeoff and landing,
which, in contrast, is tackled in the present work.

In this paper, we present an approach based on the vi-
sual SLAM algorithm of Klein and Murray (2007), which—
as recently shown by Strasdat, Montiel, and Davison
(2010)—is more robust than filter-based visual SLAM im-

plementations and therefore more suitable for MAV appli-
cations. It enables the airborne vehicle to autonomously
determine its location and consequently stabilize itself. In
contrast to other approaches, we do not require any a pri-
ori information on the environment, nor do we need ex-
ternal aids such as an external tracking system in order to
obtain a position and attitude control for the MAV. The con-
troller is based on a cascaded structure and is designed by
means of a discrete LQG/LTR procedure applied on a sim-
plified MAV model. This enables us to handle the consider-
able time delay that comes from the image processing and
from the SLAM algorithm.

For the experimental tests, a downward-looking cam-
era is mounted on a quadrocopter from Ascending Tech-
nologies.2 The images are fed to the visual SLAM algorithm
running onboard an Atom computer. Based on the posi-
tion estimate from the SLAM, the control inputs are com-
puted and then used to control the quadrotor. To the best of
our knowledge, this is the first implementation of a closed-
loop, vision-based MAV navigation system for unknown
GPS-denied environments, which runs fully onboard and
without the aid of external beacons, offboard cameras,
and markers. We remark that with this system we ranked
second in the European MAV competition (EMAV’09) in
September 2009 in Delft, The Netherlands. Our helicopter
was the only autonomous vehicle using vision (no laser
range finder or external beacon was used). The task con-
sisted of taking off, approaching a small apartment, and
passing through its window as shown in one of the videos
attached to this paper.

3. NOTATION

To facilitate the following considerations we will introduce
some notation. We always use boldface for vectors.

Common notations:
Av Vector v expressed in the A coordinate system
RAB Rotation matrix from coordinate system B to

coordinate system A

Coordinate systems:
I Inertial coordinate system, chosen so that the

gravity lies along the z axis
M Coordinate system of the map of the SLAM

algorithm
C Coordinate system of the camera frame
H Coordinate system of the helicopter

Vectors and scalars:
r Position vector of the helicopter
T Thrust vector of the helicopter (always lies on the

z axis of the H coordinate frame).

2http://www.asctec.de.
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T The absolute value of the thrust vector T
ϕ Roll angle of the helicopter, rotation around the

x axis of the I coordinate system
θ Pitch angle of the helicopter, rotation around the

y axis of the I coordinate system
ψ Yaw angle of the helicopter, rotation around the

z axis of the I coordinate system
ω Rotational speed around the z axis of the I

coordinate system

Constant parameters:
FG Gravitational force
g Gravitational acceleration
m Mass of the helicopter

Please note that we use the Tait–Bryan convention for the
Euler decomposition of the rotation matrix RHI into the
three angles ϕ, θ , and ψ . If the angles represent rotations
between two coordinates frames other than I and H , we
specify them in the index, e.g., ψCM represents the rota-
tion around the z axis from the map coordinate frame to
the camera coordinate frame. All coordinate frames have
the same invariant origin.

Estimated values are denoted by an additional tilde
(e.g., M r̃). Reference values are denoted with a star (e.g.,
T ∗).

4. VISUAL SLAM-BASED LOCALIZATION

4.1. Description of the Visual SLAM Algorithm

The here-presented approach uses the visual SLAM algo-
rithm of Klein and Murray (2007) in order to localize the
MAV with a single camera (see Figure 1). In summary, Klein
and Murray split the SLAM task into two separate threads:
the tracking thread and the mapping thread. The tracking
thread is responsible for the tracking of salient features in
the camera image, i.e., it compares the extracted point fea-
tures with the stored map and thereby attempts to deter-
mine the position of the camera. This is done with the fol-
lowing steps: first, a simple motion model is applied to
predict the new pose of the camera. Then the stored map
points are projected into the camera frame, and correspond-
ing features [FAST corners (Rosten & Drummond, 2005)]
are searched. This is also often referred to as the data asso-
ciation. When this is done, the algorithm refines the orienta-
tion and position of the camera such that the total error be-
tween the observed point features and the projection of the
map points into the actual frame is minimized. The map-
ping thread uses a subset of all camera images—also called
key frames—to build a 3D-point map of the surroundings.
The key frames are selected using some heuristic criteria.
After adding a new key frame, a batch optimization is
applied to refine both the map points and the key frame
poses. This attempts to minimize the total error between the
reprojected map points and the corresponding observations

in the key frames. In the computer vision community, this
procedure is also referred to as bundle adjustment.

There are several important differences between the
key frame–SLAM algorithm considered here and the stan-
dard filter-based approach [e.g., Davison et al. (2007)]. First,
Klein and Murray’s algorithm does not use an EKF-based
state estimation and does not consider any uncertainties,
either for the pose of the camera or for the location of the
features. This saves a lot of computational effort. Consider-
ing the uncertainty of the state could ease the data associa-
tion process. The lack of modeling uncertainties, however,
is compensated by the use of a large number of features
and the global batch optimization. Therefore, despite using
a fixed area for feature matches, the algorithm is still able to
track efficiently the point features and to close loops. This
makes the algorithm extremely fast and reliable and the
map very accurate. As demonstrated in a recent paper by
Strasdat et al. (2010), key frame SLAM outperforms filter-
based SLAM.

4.2. Analysis of the SLAM Algorithm

The main advantage of the thread splitting lies in that both
the mapping and the tracking thread can run at differ-
ent frequencies. Thus, the mapping thread is able to apply
a much more powerful and time-consuming algorithm to
build its map. Simultaneously, the tracking thread can es-
timate the camera pose at a higher frequency. This does
strongly improve the performance. Compared to frame-
by-frame SLAM (such as EKF SLAM), the algorithm of
Klein and Murray (2007) saves a lot of computational
effort in that it does not process every single image. Par-
ticularly when using a camera with a wide field of view,
consecutive images often contain a lot of redundant infor-
mation. In addition, for example, when the camera is mov-
ing very slowly or if it stays at the same position, the map-
ping thread rarely evaluates the images and, thus, requires
only very little computational power. This is the main rea-
son that we chose this monocular SLAM algorithm.

The fact that we mounted the camera down looking in-
creases the overlapping image portion of neighboring key
frames, so that we can even further loosen the heuristics for
adding key frames to the map. In addition, once the MAV
has explored a certain region, no new key frames will be
added within the region boundaries. The computation time
thus remains constant. On the other hand, when exploring
new areas the global bundle adjustment can be very expen-
sive, limiting the number of key frames to a few hundred on
our platform (around 50–100, depending on the key frame
heuristics).

Another strength of this monocular SLAM algorithm
is its robustness against partial camera occlusion. If a suf-
ficient part (around 50%) of the point features can still be
tracked, the pose estimate is accurate enough to sustain
stable MAV control. In addition, the algorithm will avoid
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Figure 1. The top-left picture depicts our vehicle (the Pelican) from Ascending Technologies; beneath it, the onboard-mounted
camera. The top-right picture is a screenshot of Klein and Murray’s visual SLAM algorithm. The tracking of the FAST corners can
be observed. This is used for the localization of the camera. In the bottom picture, the 3D map built by the mapping thread is
shown. The three-axis coordinate frames represent the location where new key frames were added.

adding any key frames in such a situation so as not to cor-
rupt the map.

An intricate hurdle when using a monocular camera is
the lack of any depth information. Because of this, the algo-
rithm must initialize new points based on the observations
from more than one key frame. This could motivate the use
of a stereo camera. However, for a stereo camera to bring
any further advantage, the observed scene must be within
some range of the stereo camera; otherwise a single camera
will yield the same utility. Closely linked to this problem
is the unobservability of the map scale. To tackle this, we
initially set the map scale by hand. An EKF is then used to
maintain a consistent scale estimate by opportunely fusing
IMU data and camera poses. This is described in detail in
our previous work (Nutzi, Weiss, Scaramuzza, & Siegwart,
2010).

4.3. Adaptations to the SLAM Algorithm

We adapt some parameters of Klein and Murray’s (2007)
visual SLAM algorithm to increase its performance within
our framework. First, we use a more conservative key
frame–selection heuristics in order to decrease the number
of key frames added during the map expansion. Thereby,
we are able to map much larger areas before reaching the
computational limit. Additionally, we reduce the number
of points being tracked by the tracking thread from 1,000
to 200. This again increases the maximal map size and the
frame rate, while keeping the accurate tracking quality and
the robustness against occlusion. Last, in order to increase
the tracking quality when hovering over very uneven envi-
ronments, we increase the depth range at which new map
points are added.

Journal of Field Robotics DOI 10.1002/rob
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A point to note for the later controller design is the
speed of the visual SLAM algorithm. On our setup, we can
observe very varying time steps between consecutive out-
puts of the pose estimates. Depending on the actual state of
the mapping thread, 10 to 40 pose estimations per second
are obtained. This yields us a Nyquist frequency of around
5 Hz (worst case).

To increase the autonomy of the system, we write a
routine that can store and load maps. With this, we are able
to overcome the initialization of the map during which no
position estimate is available. This provides the possibility
to start the helicopter from a small known patch and to skip
the initialization process. Later the loaded map of the patch
can be expanded by exploring the environment.

5. MODELING AND PARAMETER IDENTIFICATION

The MAV platform used in our experiments is the
Pelican quadrotor from Ascending Technologies (AscTec,
N.D.) (Figure 1). The sensors on the platform, which we got
out of the box, include three gyroscopes, a 3D compass, and
an accelerometer. At this point, it is important to mention
that an efficient attitude controller is implemented on the
onboard microcontroller of the helicopter. This permits us
to focus on the design of a controller for the stabilization of
the x–y–z-position coordinates and the yaw angle.

We produce a model of the system and use the refer-
ence values of the attitude controller as the model’s control
inputs. The output is the pose of the camera, i.e., the 3D po-
sition and orientation of the camera in the coordinate frame
of the stored map. Thus, the dynamics of the internal atti-
tude controller have to be included in the model.

The attitude controller is designed to control the two
tilt angles ϕ, θ , the angular velocity around the vertical axis
ω, and the total thrust T of the helicopter. Therefore, the cor-
responding reference values of the attitude controller (de-
noted by ϕ∗, θ∗, T ∗, and ω∗) are the inputs to the model,
and the outputs are the estimation of the helicopter posi-
tion M r̃ and the yaw angle ψ̃CM computed by decomposing
the rotation matrix R̃CM . M r̃ and R̃CM are obtained through
the SLAM algorithm and can also be transformed to the I

coordinate frame.
The helicopter is modeled as a simple point mass on

which we apply the principle of linear momentum (New-
ton’s second law). The forces that act on the helicopter are
reduced to the thrust force T aligned with the z axis of the
helicopter and the gravitational force FG pointing toward
the positive z axis of the inertial coordinate system (see
Figure 2). We can now project FG onto the x–y–z axes and
apply the principle of linear momentum onto the three di-
rections of the inertial coordinate frame. This yields the fol-
lowing matrix equation:

I r̈ = RIM · M r̈ = 1
m

R−1
HI (ϕ, θ, ψ)

⎛
⎝ 0

0
−T

⎞
⎠ +

⎛
⎝0

0
g

⎞
⎠ . (1)

Figure 2. Point mass model of the helicopter. The inertial co-
ordinate frame and the helicopter coordinate frame are illus-
trated. Using the rotation matrix RHI , the thrust force T and
the gravitational force FG can be projected onto the three axes
of the inertial coordinate frame. Subsequently the principle of
linear momentum can be applied.

Now the state M r can be computed given the three angles
ϕ, θ , ψ and the thrust value T . For the yaw angle ψ and the
thrust value T , we assume the following simple relations:

ψ̇ = ω∗, T = T ∗. (2)

Note that it is important that the z axis of the inertial frame
points toward the center of gravity. Otherwise, the gravity
vector is added in the wrong direction. At the moment this
is adjusted manually.

As the attitude controller dynamics from the inputs ϕ∗
and θ∗ to the angles ϕ and θ is quite fast, we model them
as two separated second-order systems with the following
transfer function:

T (s) = ω2

s2 + 2 · d · ω · s + ω2 . (3)

We then identify the parameters d and ω on the plant by an-
alyzing the step response (see Figure 3). This yields values
of 15.92 rad/s for ω and 1.22 for d .

For the subsequent controller design, we need to esti-
mate the time delay Td in the control loop. This was done
by observing the same step response as before. We assume
that the time delay is mainly caused by the SLAM algo-
rithm (maximum 80.6 ms), so that its value is the same for
all outputs.

The block diagram of the entire system is represented
in Figure 4. Note that for the sake of simplicity, we do not
model disturbances or noise.
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Figure 3. Measured step response on the pitch input of the quadrotor device. The system is modeled as a second-order system
with time delay. This yields a critical frequency ω of 15.92 rad/s, a damping d of 1.22, and a time delay Td of 80.6 ms.

Figure 4. Model of the entire system with the roll angle ϕ∗, the pitch angle θ∗, the total thrust T ∗, and the yaw rate ω∗ as inputs.
The outputs are the position of the helicopter I r̃ and the yaw angle ψ̃ . The attitude controller dynamics and the time delay are
included in the model. Note that external disturbances and noise are not modeled.

6. CONTROLLER DESIGN

As already mentioned, the design of the position controller
is based on a plant model in which the dynamics of the atti-
tude controller are included. Unfortunately, the control in-
puts introduce strong nonlinearities into the system, as can
be seen in Eq. (1). Using the Tait–Bryan convention, the fol-
lowing equations for the force acting on the helicopter are
derived:

⎛
⎝I Fx

I Fy

I Fz

⎞
⎠ = −T

⎛
⎝cos ψ sin θ cos ϕ + sin ψ sin ϕ

sin ψ sin θ cos ϕ − cos ψ sin ϕ

cos θ cos ϕ

⎞
⎠ +

⎛
⎝ 0

0
mg

⎞
⎠ .

By solving this equation for ϕ, θ , and T , we can
write the following transformation of the control

inputs:

θ∗ = arctan

(
cos ψ̃ ·I F ∗

x + sin ψ̃ ·I F ∗
y

I F ∗
z − mg

)
, (4)

ϕ∗ = arctan

(
sin ψ̃ ·I F ∗

x − cos ψ̃ ·I F ∗
y

I F ∗
z − mg

cos θ∗
)

, (5)

T ∗ = mg −I F ∗
z

cos θ∗ cos ϕ∗ . (6)

Assuming that the attitude control’s dynamics is fast and
smooth enough, the second-order system block (attitude
controller dynamics) and the control input transformations
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Figure 5. The four decoupled linear systems. They were ob-
tained by transforming the system inputs of Figure 4 and
exchanging the order of the nonlinear input transformation
and the second-order system blocks. This can be justified by
the smoothness of the nonlinear transformation and the high
speed of the second-order system.

can be exchanged in order to obtain a new plant with
the input I F

∗
x , I F

∗
y , I F

∗
z , and ω∗. This yields four decou-

pled linear systems that can be controlled separately (see
Figure 5).

Because the subsystem for the yaw angle is simple and
can be easily stabilized, a simple design will be sufficient:
it outputs a constant angular velocity ω∗ when the angular
error exceeds a certain value. Thereby, large angular veloci-

ties that could destabilize the position of the helicopter can
be avoided.

The position controllers are designed by means of the
discrete LQG/LTR approach. The procedure is identical for
all three position values, except that for the z-coordinate
the second-order system is left out. Because of the limited
computational power, the constant controller frequency is
kept at roughly 20 Hz. This approximately matches the fre-
quency of the SLAM pose estimates (around 15–30 Hz). For
the Nyquist frequency, we take 7.5 Hz (half of the measure-
ment frequency). It is possible that the measurement fre-
quency temporarily falls beneath 15 Hz, but this generally
does not last longer than some 100 ms.

The discrete system model is derived via the zero-
order hold transformation of the continuous time model
including the second-order system of the internal controller
dynamics and the momentum law (double integration). Af-
ter that, the time delay, approximated by a multiple of the
sampling time, is added at the output of the model. Addi-
tionally, due to varying battery power and tilt angle calibra-
tions, an output-error integrating part is added to the sys-
tem. This eliminates steady-state errors induced by these
varying factors.

Now the corresponding system matrices F , G, C, D re-
quired for the LQG/LTR can be computed. Applying the
LQG/LTR procedure with feed-forward action yields the
structure in Figure 6.

The Nyquist frequency (around 7.5 Hz) is strongly lim-
iting the tuning process of the LQG/LTR. The resulting

Figure 6. LQG/LTR controller structure. It results from the combination of a state observer and a state feedback controller. An
integrating part and feed-forward action were included in order to obtain unity steady state gain and to render the observation
error independent of the reference value. F , G, C are the discretized system matrices. The controller gains K , KI , �, and � are
obtained using the LQG/LTR procedure.
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Figure 7. Pole-zero map of the closed-loop system. Except for the four poles induced by the time delay, all poles lie within
1–32 rad/s. No pole has a damping lower than 0.5. A zero situated at −7.2 is not displayed on the plot.

closed-loop system has its poles as in Figure 7. Except for
the four poles induced by the time delay, all poles are be-
tween 1 and 32 rad/s. This enables the system to stabilize
from an initial error of 1 m with a T90 time of around 1 s
and 20% overshoot [Figure 8(a)]. At the expense of the per-
formance, we attempt to maximize the robustness of the
system in order to handle the modeling errors and exter-
nal disturbance. However, to attain fast error correction at
the beginning, a sufficiently large integrating part has to be
maintained. Examining the Nyquist plot [Figure 8(b)], we
can observe a phase margin of 27.7 deg and a gain margin
of 5.5 dB, suggesting an acceptable robustness.

The main advantage of the LQG/LTR controller design
is that it is a rather simple procedure to build linear stabi-
lizing controllers with good robustness qualities and con-
venient tuning parameters. It also filters the measurements
and estimates the velocity of the helicopter. Compared
to the standard proportional–integral–derivative (PID) ap-
proach, it enables us to handle the nonnegligible time delay
in order to obtain faster controllers.

To ensure controllability of the x and y positions, we
limit the force in the z direction to (m·g)/2. Otherwise, the
total thrust T could go toward 0, disabling any control in
the x and y directions.

7. FINAL SYSTEM STRUCTURE, FINAL
IMPLEMENTATION

We use the Pelican quadrotor platform from Ascending
Technologies (AscTec, N.D.). An onboard eight-bit micro
controller combines all data in order to obtain an estimate
for both tilt angles and the angular velocity around the ver-
tical axis. Based on these estimates, a high-performance on-
board controller is able to stabilize the tilt angles and the
yaw rate at desired reference values. These can be sent by
an external operator via an XBee digital radio.

Beneath the quadrotor, we mounted a 12-g USB-2 uEye
UI-122xLE camera that gathers 752 × 480 pixel images with
global shutter. We used a 190-deg-field-of-view lens to gen-
erate wide-angle images of the surroundings. Finally, both
the visual SLAM algorithm and the controller run on a
1.6-GHz Intel Atom computer installed onboard the
helicopter.

In the flow diagram (see Figure 9), the entire closed-
loop system is represented. Based on different flight phases,
the quadrotor is able to land or take off from the ground.
Because the vision-based localization does not work when
the helicopter is on the ground (the camera is too near to the
floor), the takeoff is feasible only when the initial land patch
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(a) (b)

Figure 8. (a) Time domain system response to an initial error of 1 m. The controller is able to correct the error with a T90 time of
around 1 s and an overshoot of 20%. The performance is limited by the relatively slow measurement rate and the time delay of the
system. (b) Nyquist plot of the system (open loop). Phase margin: 27.7 deg. Gain margin: 5.5 dB.

Figure 9. Closed-loop controller structure. The entire data flow is represented. Receiving the images from the mounted camera,
the SLAM algorithm computes the estimate of the pose of the camera. This is transformed into the position and yaw angle of
the helicopter in the inertial frame and fed to the controller. After the nonlinear control input transformations [Eqs. (4)–(6)], the
reference values are sent back to the attitude controller on the quadrotor.

beneath it is already stored in the map. Giving increasing
thrust, the helicopter can then fly blindly until it detects the
map and stabilizes itself (the position can be tracked from a
height of about 15 cm).

The problem of rotational drift is currently solved by
realigning the inertial coordinate frame every 40 cm. For
this, the helicopter has to be stabilized until its pose is
approximately horizontal. This is done by observing the
RMS value of the last 30 position errors (around 1.5 s). If
this value is beneath a certain threshold (0.06 m), we can
assume that the pose is horizontal (±0.02 rad in the tilt
angles). This also leaves the mapping thread of the SLAM

algorithm some time to expand the map. The issue of rota-
tional drift is addressed in more detail in the next section.

8. EVALUATION OF THE VISUAL SLAM ACCURACY

For completeness, we analyze the visual SLAM algorithm’s
accuracy and behavior. We ran several tests in an external
Vicon-motion-capture system to compare the SLAM frame-
work to ground truth. This section also points out the fact
that for controlling a MAV, it is sufficient to have an ac-
curate local pose estimate and that there is no need for a
globally consistent map. We remark that the tests in the
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Figure 10. (a) Map drift represented in angular errors. Note that as we move in the positive x direction the angular error in pitch is
most affected. From seconds 115 until 146, the map is lost and the data are corrupted. After, the map is recovered again. However,
the angular error remains as before the map loss. Note that this plot also reveals unreliable tracking parts as shown around the
60th second. (b) Owing to the angular drift, the position experiences an error as well. For example, the drift toward negative roll
leads to a higher z position compared to reality. The wrong angle estimation eventually leads to instability of the controller because
of misalignment to the inertial system.

Vicon-motion-capture system were used only for ground
truth comparisons and not to control the helicopter nor to
gain quantitative knowledge for any control parameters.

Apart from the algorithm speed, there are three partic-
ular types of behaviors of the visual SLAM algorithm that
are of interest when using it as input for a controller: the
scale drift, the map drift, and localization failures.

The scale drift was handled by opportunely fusing the
visual SLAM algorithm with the IMU data as described in
our previous work (Nutzi et al., 2010). Whereas the scale
drift affects the error measurement to the target, the map
drift perturbs the pose itself. In the tests in the Vicon-
motion-capture-system, we identified a nonnegligible ro-
tational map drift so that the inertial coordinate frame is

no longer correctly aligned. Rotations around the z axis can
be adjusted by the yaw controller. Rotations around the x

and y axes are more problematic. Because the error between
the reference value and the actual position is no longer
correctly decomposed into its x, y, and z values, this can
lead to instability if not considered. In Figure 10(a) the ro-
tational drift for the above-mentioned linear trajectory can
be observed. Because the movement occurs in the x direc-
tion, the pitch-angle estimation is mostly affected by the
drift. The same plot also reveals when the tracking thread
lost the map and when unreliable tracking occurred. In
Figure 10(b), the resulting deviations in position are de-
picted. The drift in negative pitch, for example, leads to a
higher estimated z value than it is in reality.
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Figure 11. (a) To overcome the map drift problem, correction steps are applied each �t = 5 s. The helicopter is set to hover mode
while inertial data are gathered. Based on the sensor information, the map is realigned to the inertial frame. On our platform we
applied the correction step at a fixed traveled distance �d rather than making it dependent on time. (b) By eliminating the angular
drift in the map, the position drift is minimized as well.

To overcome the problem of map drift, we imple-
mented a very simple correction step in our controller. That
is, we read the inertial measurements in hovering mode
and realign the SLAM map according to the inertial frame.
We decided to apply this step every time a defined dis-
tance �d has been traveled. Making this step independent
of time, we save computation power while hovering. In
Figure 11(a), the effect of such correction steps is shown.
Note that to facilitate the understanding of this figure, we
applied the correction at a fixed time difference �t = 5 s
rather than at a fixed distance, as we did on the real system.
The angular error is reset every �d , and the map drift in
position is minimized as shown in Figure 11(b). These cor-
rection steps do not improve the consistency of the global
map. However, they assure accurate local pose estimations.
This is sufficient for robust MAV control.

Short failure periods—as seen in Figure 10(a) around
the 60th second—are unavoidable in real systems because
they originate from various sources (extensive occlusion,
temporarily wrong data association, etc.). However, being
short enough, they do not destabilize the controller. Posi-
tion spikes are filtered in the observer model of the con-
troller. Periods of bad tracking are recognized by the visual
SLAM algorithm. To overcome short periods of bad track-
ing, we implemented a safety procedure providing an av-
erage thrust computed as the mean thrust every time the
helicopter was in hovering mode:

T =
N∑

t=1

Tt

N
, (7)
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Figure 12. Position error while hovering during 60 s. The RMS value of the position error is 2.89 cm in x, 3.02 cm in y, and 1.86 cm
in z. The maximum runaway has an absolute error value of 11.15 cm (marked with a red o).

where Tt is the thrust applied at time t when the inertial
measurements indicated hovering mode. The more hover-
ing periods the helicopter had when the tracking failure oc-
curs, the more stable it is during tracking failures and the
longer failure periods it can compensate.

9. RESULTS AND DISCUSSION

With the techniques mentioned in the preceding section,
we were able to navigate robustly our MAV using our
vision-based controller. To test the platform, a setup was
constructed in which the helicopter was secured by two
nylon wires in a large indoor laboratory environment.
These wires are visible in some of the attached videos. For
outdoor experiments we sometimes used a fishing rod for
security reasons. However, when the helicopter was flying
at high altitudes we did not use any security wires and
just relied on the remote controller as a backup in case of
failures.

For the experimental tests, a downward-looking cam-
era is mounted on a quadrocopter from Ascending Tech-
nologies. As the camera, we use a Point-Grey USB Firefly
camera with a WVGA resolution of 752 × 480 pixels and a
global shutter. The camera faces the ground with a 150-deg-
field-of-view lens. The images are fed to the visual SLAM
algorithm described in Section 4.

When hovering, the quadrotor is very stable. In
Figure 12 the flight path for a 60-s hovering can be seen.
Because the mapping thread goes almost into sleep mode
once a region has been explored, the computational power
can be fully used for tracking and controlling the quadrotor.
In addition, the map will never get corrupted in this state
and the localization quality is guaranteed. Overall, the po-
sition error during 60 s in hovering has an RMS value of
2.89 cm in x, 3.02 cm in y, and 1.86 cm in z, which yields an
absolute RMS error value of 4.61 cm (see Figure 13).

We tested the performance of the controller and the ac-
curacy of the underlying model by applying a step input to
the real system. No quantitative tests using constant or im-
pulse disturbances were applied. This is because of the lack
of appropriate equipment (wind tunnel and corresponding
measurement devices). However, we refer to the qualitative
tests shown in the corresponding videos. We applied a step
input by setting a desired position 35 cm away from the cur-
rent hovering position. This is actually the action the MAV
will perform when following waypoints.

The controller is able to correct the error with a T90 time
of around 1 s as modeled in Section 6 and an overshoot of
50% as compared to the modeled 20%. Figure 14 depicts the
evolution of the step input applied to the MAV.

The overshoot is larger than predicted by the model
in Figure 8(a); however, it is sufficient for robust MAV
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Figure 13. Position error in the x, y, and z positions. The value remains ±10 cm. The z position is more accurate than the x and y

positions.

navigation. We note here that the large overshoot is caused
by the integral block in the controller structure. Also be-
cause of this, windup issues have to be considered as soon
as the MAV is prevented from reaching a goal position (ob-
stacle, MAV fixed to a cord, etc.).

To test the waypoint following ability, we applied a set
of step inputs and verified the controller performance. Fig-
ure 15 shows that the MAV can robustly follow one way-
point after the other.

The platform is now able to fly to desired setpoints.
For this, the path is split into waypoints. The distance be-
tween them is chosen so that the helicopter can realign the
orientation of the inertial coordinate frame at each way-
point. Here, a little higher RMS value is obtained as in
the hovering mode (see Figure 16). The map consisted of
seven key frames at the start. While expanding the map,
the SLAM algorithm has processed more than 40 additional
key frames. At each waypoint, the helicopter stabilizes it-
self and waits until the RMS value is small enough (10 cm
in absolute error value) to realign the map. At the same
time, this leaves some time to the SLAM algorithm to pro-
cess new key frames and expand the map. This shows the
idea of having only a locally consistent map to control the
helicopter. The realignment leads to a correct map represen-
tation in the close neighborhood. However, it distorts the
map positions currently unobservable by the camera. The

map might not appear to be globally consistent, but never-
theless the vehicle is well controlled at any position.

At some points, when the helicopter flies from way-
point to waypoint, a notable overshoot can be observed.
This is due to the integrating action of the controller, which
is necessary to correct steady state errors. It does introduce
additional overshoot and reduces the robustness of the sys-
tem. However, a satisfying trade-off was found.

In Figure 17 the map that was built during the flight
can be seen. It is composed of 52 key frames and 4,635 map
points. It represents an approximate surface of 15 m2. The
quadrotor will always localize itself correctly with respect
to the neighboring local maps, so that if the map drifts, this
will not influence the control quality.

Some failure modes also have to be mentioned. Owing
to the lack of features or to varying illumination, it is pos-
sible that the tracking thread cannot find enough features.
This would disable any localization of the vehicle. Also, if
the map becomes too large, the mapping thread may use
too much computational power for the global bundle ad-
justment, leading to a greater time delay and slower rate
of the pose estimates until the controlled system becomes
unstable.

The achieved results show that our platform can au-
tonomously fly through a large unknown indoor envi-
ronment with a high degree of accuracy. The system is
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Figure 14. Step input applied to the real system. The controller is able to correct the error with a T90 time of around 1 s as modeled
in Section 6 and an overshoot of 50% as compared to the modeled 20%. The overshoot is caused by the integrator block in the
controller structure.
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Figure 15. Several step inputs are applied one after the other to the real system. This is an intermediate step toward an ongoing
waypoint following. The plot shows that the system is able to follow robustly the applied sequence and is thus capable of following
any trajectory, as we show later in this paper.
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Figure 16. Path that the helicopter has flown. This does not represent ground truth. It is the pose estimation of the SLAM al-
gorithm. However, the attitude of the helicopter can be observed while successfully flying a rectangular loop and landing on the
ground. The RMS value of the position error is 9.95 cm in x, 7.48 cm in y, and 4.23 cm in z. The path has a total length of a little bit
more than 10 m in an area of 3.5 × 2 × 1 m3.

Figure 17. 3D view of the built map. It contains 4,635 map points, observed in 52 different key frames.

robust against external disturbances and can handle mod-
eling errors. Outdoor tests confirm the controller’s robust-
ness, which was able to handle considerable side winds and
turbulence.

10. CONCLUSION

This paper presented a vision-based MAV control ap-
proach. The pose was estimated by means of a monocular
SLAM algorithm with a precision of a few centimeters.
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This was then used to stabilize the position of the vehicle.
Based on a control input transformation and on the linear
LQG/LTR procedure, a controller was designed. The
resulting platform successfully managed to hover and
follow desired setpoints in an indoor laboratory. For this, it

Extension Media type Description

1 Video Autonomous takeoff, hovering, set-point following, and landing using the approach described
in this paper. Disturbances are applied.

2 Video Autonomous takeoff using one landmark, hovering, set-point following, and landing using the
approach described in this paper. The MAV navigates into and lands in previously unknown
area.

3 Video EMAV competition in Delft, Holland, 2009. The MAV navigates through a window using the
approach described in this paper

4 Video Helicopter hovering outdoors above the asphalt (low contrast, repetitive structure) and also in
presence of wind.

5 Video Autonomous outdoor hovering in windy conditions above a repetitive texture ground. Shows
failure mode because of mismatches on the repetitive texture.

6 Video Helicopter flying above an (abandoned) village. The environment is reconstructed and textured
with the aid of a meshing approach.

7 Video Autonomous vision–based outdoor hovering compared to GPS-based hovering.

does not need any prior information on the environment.
After the initialization, a map of the surroundings was built
incrementally, wherein the MAV was able to localize itself
without any time drift. The vehicle can control its position
up to a few centimeters of error (RMS around 2–4 cm). We
showed that this is possible by having only a local con-
sistent map, making the controller largely independent of
map and scale drift. All calculations including SLAM and
controller are running in real time and online while the
MAV is flying. No offline or preprocessing is done. Using
the proposed strategy, our helicopter is able to perform all
basic flight maneuvers such as autonomous take off, set-
point following, and landing.

We note that the described approach needs short-
period hovering slots to adjust the local map with the grav-
ity vector. This way the controller is largely independent
of map and scale drift. However, continuous flight with-
out pauses is still an open issue. Continuous flight in the
sense of continuous operation in unknown environments
is achieved with this approach.

For future systems we are strongly motivated toward
modular sensor fusion. We aim at a modular approach in
order to be independent of the underlying vision algorithm.
This way, we can select the (computationally) most efficient
solution for good onboard performance. Also modular, or
loosely coupled, solutions are computationally less expen-
sive and thus more suited for MAVs. Additionally, vision
SLAM algorithms depend on a (local) map. If this map is
lost for any reason, the algorithm enters an expensive re-
covery mode. This issue should be tackled in order to have
a good state estimation of the MAV at any given time.

11. APPENDIX: INDEX TO MULTIMEDIA
EXTENSIONS

The videos are available as Supporting Information in the
online version of this article.

Video extension 1 shows autonomous takeoff, hover-
ing, set-point following, and landing using the approach
described in this paper. Furthermore, you can also see that
the helicopter is heavily perturbed by a human to show
stability against turbulences. Notice that the two cables
are used only for security reasons in case something goes
wrong. Thus, they do not constrain the motion of the he-
licopter. In the last third of the video, we show success-
ful navigation through a circular window of 1-m diameter.
For safety, security, and rescue robotics (SSRR) this is a vi-
tal ability in order to penetrate unknown areas difficult to
access for humans.

Video extension 2 shows another demonstration of
takeoff, hovering, set-point following, and landing using
our approach. In this video, you can also see both the heli-
copter and the camera’s view with overlaid features during
the all operation. The difference with the previous video
is that here we also experimented with a blob-based take-
off and landing. The blob is the black-and-white circle at
the beginning and at the end of the experiment. This was
done for our participation in the European MAV competi-
tion (see next video), in which the rules required the ability
to do high-precision takeoff and landing from a given pat-
tern. This is, however, not part of this paper. In the current
paper, we do not use any external or artificial landmark but
just natural features. The combination of the high-precision
takeoff and landing together with the capability of explor-
ing unknown terrain using natural features shows the po-
tential for SSRR missions in an SSRR scenario, much like the
landing blob in the video, a defined object can be searched
for during the SLAM-based navigation and then used as
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precision landing target. The interested reader can find a
detailed description of the blob-based pose estimation in
our previous work (Eberli, Scaramuzza, Weiss, & Siegwart,
2010).

Video extension 3 shows our helicopter during the
EMAV’09 competition that took place in Delft, Holland, in
September 2009 and where our team ranked second. Our
helicopter was the only autonomous vehicle using vision.
The task consisted of taking off, approaching a small apart-
ment, and passing through its window. This video demon-
strates autonomous takeoff, hovering, and set-point follow-
ing, using the approach described in this paper. Notice
that toward the end of the video the helicopter was able
to fly through the window. This was possible because in
this case we visually mapped the environment just before
the competition. Again, notice that the fishing rod is used
only for security reasons because we were operating in an
open, public space. Also observe that—because the compe-
tition took place in a gymnasium—there was no texture on
the floor. Textureless environments are a known limitation
of any vision-based algorithm. To overcome this problem,
we added some sparse features. The features consisted of
pieces of adhesive tape stuck on some bands. Please notice
that we could have used any other natural features (such
as stones thrown on the floor) but we were not allowed to
dirty the floor due to the strict rules of the competition. In
our outdoor experiments, stones indeed proved to be ro-
bust features. This gives motivation to use our approach
in disaster areas such as partially destroyed houses after
earthquakes or in similar SSRR missions outdoors.

Video extension 4 shows our helicopter hovering out-
doors above the asphalt and also in the presence of wind.
Compared to stones (i.e., ballast), asphalt is a very challeng-
ing terrain due to the very low contrast and the lack of very
distinctive features. Notice, indeed, that the vehicle starts
to oscillate when it gets too high. This is because—with
the height—the resolution of the features on the ground
and, thus, the number of features decrease. In essence, the
more cluttered the environment is, the more contrast we
have and thus the more robust the navigation is. Again, this
motivates SSRR missions in cluttered disaster areas. Notice
also that wind was present and that the fishing rod was
again used for security.

Video extension 5 shows outdoor hovering in windy
conditions above a repetitive-texture ground. As you can
see, the ground consists of small self-similar checkers. At
some point the helicopter becomes unstable because of mis-
matches among the corners of the checkers, which all look
the same. Repetitive texture is a known limitation of vision-
based algorithms.

Video extension 6 shows an outdoor mapping result.
Here the helicopter was flying above a village (current mil-
itary area) near Zurich. The average height of the helicopter
during the flight was 15 m. The flight represents a typi-
cal reconnaissance mission task monitoring an urban en-

vironment. This video shows the feature tracking and map-
ping process. Texture was added to the 3D map. This was
done by first performing a Delaunay triangulation and then
projecting the texture onto the 3D mesh. This is, however,
not part of this paper. The interested reader can find a de-
tailed description of the textured-3D mapping in our previ-
ous work (Weiss, Achtelik, Kneip, Scaramuzza, & Siegwart,
2010).

Video extension 7 shows another outdoor experiment.
In this video, you can see two helicopters in hovering mode.
One uses GPS for stabilization, and the other one only vi-
sion, using the method described in this paper.
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