
Department of Informatics, University of Zürich

BSc In-Depth Study

A Role Intrusion Detection System for
Role Based Access Controlled

Relational Database Management
Systems

Philip Hofmann
Matrikelnummer: 14-710-842

Email: philip.hofmann@uzh.ch

June 24, 2017

supervised by Prof. Dr. Michael Böhlen and Kevin Wellenzohn

Abstract

Most companies maintain a Relational Database Management System (RDBMS) containing
sensitive information. Because this data is valuable, attacks against RDBMS have become
more sophisticated. Though database systems implement effective access controls, the neces-
sity for stronger security has become apparent. We consider a solution proposed by Ashish
Kamra et al. that suggests an Intrusion Detection System (IDS) which extends a RDBMS
and intercepts SQL statements to identify anomalous access patterns. The IDS protects from
insider threats by identifying role intruders thorough mining the audit log of the database and
running a Naive Bayes Classifier to categorize incoming SQL statements as safe or anoma-
lous. This paper studies the proposed solution, applies a scenario and considers situations in
which this system might fail.

1 Introduction

In today’s world, where data has become increasingly valuable, threats of gaining and misus-
ing access to information have been more and more on the rise. Institutions need to protect
their data and even though RDBMS provide good access control mechanisms, it is essential for
the new generation of security aware databases to employ more advanced security techniques.
One needed security feature is the ability to detect anomalous behavior of applications and
users, since impersonation attacks cannot be thwarted by access control mechanisms alone.
A solution to this is extending the database with an Intrusion Detection System (IDS). Such
IDS have been successfully implemented for networks and operating systems, but intrusion
detection techniques specifically tailored towards database systems are still being researched.
This is why in this report, we study the IDS proposed by Kamra et al. (Kamra, A., Terzi, E.,
Bertino, E. 2008. Detecting anomalous access patterns in relational databases. The VLDB
Journal 17:1063–1077). The key idea of the system is to build profiles out of users interacting
with the database through SQL statements. We assume a Role Based Access Control (RBAC)
model, where permissions are assigned to roles and a user is assigned to one or more roles.
Assuming a database with an RBAC model, we can correlate user behavior with a specific
user role. The IDS builds a profile for each role based on the audit log of the database and
is therefore able to match an incoming SQL statement to the most likely role. If the most
likely role is different from the actual associated role, the statement is flagged as anomalous.
Therefore, the system can identify role intruders, i.e. users holding a specific role that deviate
from expected normal role behavior. We now introduce our application scenario to highlight
the problem of role intruders and will later use this scenario to explain the system in detail.

Scenario Our application scenario is based on a fictitious university. This simplified uni-
versity maintains a database with one table for the students who are currently enrolled. This
database is being accessed by two specific user roles, the first role is called “administration”
(AD) and the second is called “rectorate” (RE). Whenever a student moves into a new apart-
ment, he/she needs to report his/her address change to the university. The administration hired
a computer science student to update the student data in the table. Typical behavior of the
AD role is accessing single rows and using SELECT and UPDATE commands in the SQL
statements. The rectorate instead offers services, which include sending out mass emails and
mass mail to students for departments and third parties. Typical behavior of this role RE is
retrieving information in batch from the database, never selecting single rows.

3

Table 1.1: Sample students relation

ID LastName FirstName Street Number

0 Mueller Thomas Zelgstrasse 36
1 Ankli Lea Zelglistrasse 35
2 Case Justin Dubsstrasse 42
3 Maria Ave Zelglistrasse 35

Table 1.2: Sample students relation continued

City Code Email Departement

Zuerich 8003 thomas.mueller@uni.ch Informatics
Aarau 5000 lea.ankli@uni.ch Law
Zuerich 8003 justin.case@uni.ch Law
Aarau 5000 ave.maria@uni.ch Informatics

4

2 Intrusion Detection System
Achitecture

The RDBMS is extended with a separate and independent Intrusion Detection System (IDS).
The components of the IDS are illustrated in this graphic taken from the paper of A. Kamra et
al. and described in the following sections.

Figure 2.1: System Architecture

2.1 Audit Log
The first component is the audit log. It consists of intrusion-free SQL statements that users
issued against the database in the past. These SQL statements are needed to create the initial
profiles in the next step.

Scenario Consider the following SQL statements from our running example. The first
eight queries were issued by the AD role, searching and modifying specific student records in
the database. The last three queries were issued by the RE role, querying emails and addresses
from students.

5

1 - SELECT Students.ID FROM Students
WHERE Students.LastName="Mueller" AND Students.FirstName="Thomas";

2 - SELECT Students.LastName, Students.FirstName, Students.Street,
Students.Number, Students.City FROM Students WHERE ID=1;

3 - UPDATE Students SET Students.Street="Hirschgeweihstrasse",
Students.Number=20 WHERE Students.ID=1;

4 - SELECT Students.LastName, Students.FirstName, Students.Street,
Students.Number, Students.City FROM Students WHERE Students.ID=1;

5 - SELECT Students.Email FROM Students WHERE Students.ID=1;
6 - SELECT Students.ID FROM Students WHERE Students.LastName="Amboise"

AND Students.FirstName="Claire";
7 - UPDATE Students SET Students.Street="Schörlistrasse", Students.Number=3,

Students.City="Zuerich", Students.CityCode=8003 WHERE Students.ID=3;
8 - SELECT Students.Email FROM Students WHERE Students.ID=3;
9 - SELECT Students.Email FROM Students;

10 - SELECT Students.Email FROM Students WHERE Students.Departement="Informatics";
11 - SELECT Students.Email FROM Students;
12 - SELECT Students.LastName, Students.FirstName, Students.Street,

Students.Number, Students.City FROM Students WHERE Students.Departement="Law";

2.2 Profile Creator
The profile creator processes the audit log AL to form profiles. The profiles are created by con-
verting the raw SQL statements into a format supported by the IDS, called quiplets. Kamra et
al. distinguish between three types of quiplets that extract information at a different level of
granularity from an SQL statement: the c-quiplet, the m-quiplet, and the f-quiplet. All quiplets
are of the form Q(c, PR, PA, SR, SA), where the first field c corresponds to the SQL command
used. In the coarse or c-quiplet the fields PR and PA denote the number of relations, respec-
tively the number of attributes used in the projection clause of the statement. Similarly, fields
SR and SA denote the number of relations, respectively the number of attributes used in the se-
lection clause of the statement. The medium-grain quiplet, or m-quiplet for short, substitutes
the single integer values for fields PR, PA, SR, SA with vectors of size equal to the number of
relations in the database. The relation counters PR and SR become bit vectors, where the ith
bit is set to 1 if the query projects, respectively selects from the ith relation in the database.
The ith position of fields PA and SA denotes the number of attributes projected, respectively
selected from the ith relation. The third data unit, the fine-grained quiplet or f-quiplet, differs
from the m-quiplet by expanding the attribute fields PA and SA to be matrixes. PA[i, j] and
SA[i, j] are set to 1 if the jth attribute of the ith relation is projected, respectively selected in
the SQL statement.

6

Table 2.1: Quiplet Construction Illustration.
SQL command c-quiplet m-quiplet f-quiplet
SELECT Students.LastName, Select<2><3> Select<1,1><2,1> Select<1,1>
Students.FirstName, <2><2> <1,1><1,1> <[1,1,1,0,0,0,0,0,0],[1,1]>
Grades.AverageGrade, <1,1>
FROM Students, Courses <[1,0,0,0,0,0,0,0,0],[1,0]>
WHERE
Students.ID=Grades.StudentID

This illustration considers a schema with two relations, namely the Students, and an addi-
tional Grades relation containing only two attributes, StudentID and AverageGrade.

Scenario We consider only c-quiplets, because they suffice to show all interesting aspects
of the system. The sample audit log gets processed into c-quiplets. We indicate the role
belonging to the SQL statement with character being appended to the quiplet. This processed
file is the dataset for the classifier.
1 - SELECT<1><1><1><2> AD
2 - SELECT<1><5><1><1> AD
3 - UPDATE<1><2><1><1> AD
4 - SELECT<1><5><1><1> AD
5 - SELECT<1><1><1><1> AD
6 - SELECT<1><1><1><2> AD
7 - UPDATE<1><4><1><1> AD
8 - SELECT<1><1><1><1> AD
9 - SELECT<1><1><1><0> RE
10 - SELECT<1><1><1><1> RE
11 - SELECT<1><1><1><0> RE
12 - SELECT<1><5><1><1> RE

So far we discussed the components needed to set up the initial profiles. These components
will be re-used each time the IDS updates itself as part of the machine learning process. Now
the system is ready to receive raw SQL statements to be assessed, issued by specific roles.

2.3 Feature Selector
The Feature Selector is the first stage in the normal workflow of the IDS. It takes a raw SQL
statement being issued by a user holding a specific role or roles, and converts it into one of
the three quiplet types supported by the IDS. The quiplet, along with the information about a
user’s role or roles, is passed to the next stage, the Detection Engine.

Scenario The informatics student working for the administration wrote a malicious script
in his spare time. He attached it to a PDF file titled “semesterfee.pdf”, which he plans to
send to all colleagues. For this reason, he issues the SQL statement “SELECT Students.Email

7

FROM Students;”. This statement gets processed by the feature selector into a sample c-
quiplet: Select<1><1><1><0> AD.

2.4 Detection Engine
The Detection Engine assesses the quiplet created by the Feature Selector. Using the Naïve
Bayes Classifier (NBC), it calculates the probability of this quiplet belonging to a specific role
based on the profiles extracted from the audit log . The classifier assigns the quiplet the most
likely role and then checks from which role this statement was issued. If the two mismatch, the
query gets marked as anomalous. For an incoming quiplet Q(c, PR, PA, SR, SA), we compute
the most likely role rML from a set of predefined roles R by assessing the quiplet-values
(attributes) c, PR, PA, SR, SA and considering the existing profiles. Thus, we search the most
likely role given the quiplet values:

rML = argmax
r∈R

p(r|c, PR, PA, SR, SA) (2.1)

The Bayes Theorem provides a way of calculating the posterior probability p(r|c, PR, PA, SR, SA)
by multiplying the likelihood function p(c, PR, PA, SR, SA|r) with the prior probability p(r),
and dividing it by the marginal likelihood p(c, PR, PA, SR, SA). The equation can therefore be
written as

rML = argmax
r∈R

p(c, PR, PA, SR, SA|r)p(r)
p(c, PR, PA, SR, SA)

(2.2)

When calculating the most probable class value belonging to that query, the value of the
marginal likelihood (i.e. the denominator) is a constant, as it is not affected by the choice of
r, and can therefore be omitted. The posterior probability is therefore proportional to prior
probability times likelihood function:

rML = argmax
r∈R

p(c, PR, PA, SR, SA|r)p(r) (2.3)

Since the NBC assumes conditional independence between attribute values, we can multiply
all the distinct attribute probabilities and rewrite the equation as follows:

rML = argmax
r∈R

p(c|r)p(PR|r)p(PA|r)p(SR|r)p(SA|r)p(r) (2.4)

The probability of a quiplet value is based on a frequency count for the quiplet value over
the quiplets in the role profile RPr with role value r. For example, we have P (c|r) = ncr

|RPr| ,
where ncr is the number of quiplets that use command c in the profile of role r and where
|RPr| is the size of the profile for role r. But if any probability calculated this way evaluates
to zero, the equation (2.4) is equal to zero and the classifier is biased. To avoid this risk we
substitute all conditional probabilities p(a|r) with the m-estimate of the probability, which is
formally defines as follows:

8

pm(a|r) =
nar +m× na

|AL|

|RPr|+m
(2.5)

nar denotes the number of times this attribute occurs in the role profile RPr of role r. na

is the number of times this attribute occurs in the audit log AL, where |AL| corresponds to
the number of quiplets in the audit log. Likewise, |RPr| denotes the number of quiplets in
the profile of role r.The constant m, also called a pseudocount, often takes on a value of 0.5
(as used in this paper) known as Jeffrey’s prior approach, or 1, known as Laplace smoothing.
Karma et al. used a value of 100 for m, without further explanation why this value was chosen
or how a value m should be chosen. In general, choosing one of the two suggested values
(m=0.5 or m=1) suffices to prevent probabilities from becoming zero. In case of na = 0, we
assume pm(a|r) = 1

|RPr| .The following shows equation (2.4), extended with the m-estimate of
the probability:

rML = argmax
r∈R

pm(c|r)pm(PR|r)pm(PA|r)pm(SR|r)pm(SA|r)p(r) (2.6)

Scenario We will apply this formula to the scenario and the sample c-quiplet to be assessed
by the Detection Engine, which is Select<1><1><1><0>AD. Since there are two roles rAD

andrRE , we calculate the probabilities for both rAD and rRE and therefore identify which role
the classifier would assign as rML. We set the value of the constant m to 0.5 (Jeffrey’s prior
approach), which suffices to exclude the possibility of any probability rendering to zero. In the
following, we first explain the calculations for the administration role. The prior probability
for role rAD is given by p(rAD) = |RPAD|

|AL| = 8
12

= 2
3
. We calculate a conditional probabil-

ity of, e.g. the command attribute with pm(c|r) =
ncAD+m× nc

|AL|
|RPAD|+m

=
6+0.5× 10

12

8+0.5
≈ 0.7549. The

other attributes are computed in the same way, see figure 3 with the results. Note that both
pm(PR|rAD) and pm(SR|rAD) in this case result to one, because only one relation exists and
therefore the probability that a role chooses this relation in a SQL statement is 100% . The
noteworthy characteristic about the SQL command under investigation is that in its selection
part no attribute is mentioned, which has never been done by the AD role before. By multiply-
ing all of these values, we get a total posterior probability value of around 0.0025 for the AD
role and a total posterior probability value of around 0.1108 for the RE role. As a result, our
classifier assigns this quiplet the RE role, observes that the classified role RE and the actual
role AD, with which this query was issued, mismatch, and marks the query as anomalous.
Note that for simplification purposes, and because it sufficeth to show all relevant parts of the
system, we only address the case of an IDS using c-quiplets. For the computation on basis of
m- or f-quiplets, we refer the reader to the original paper by A. Kamra et al.

Table 2.2: Probabilities of sample quiplet attributes as calculated by the Naive Baies Classifier
role p(r) pm(c|r) pm(PR|r) pm(PA|r) pm(SR|r) pm(SA|r) overall
administration 0.6667 0.7549 1 0.5049 1 0.0098 0.0025
rectorate 0.3333 0.9815 1 0.7315 1 0.4630 0.1108

9

2.5 Response Engine
The Response Engine receives the assessment of the query from the Detection Engine and
triggers an adequate action within the system, by consulting the policy base of existing re-
sponse mechanisms, the Response Policy Base. The Response Engine can be configured to
take different actions in case of an anomaly. Some possible actions in conjunction with other
systems would be to send an alert to the administrators, drop the query, log the query with
other information in a special security log, disconnect the user or disable a whole role. In
case where the Detection Engine reports the query as being non-anomalous, it can forward
the query to the database. Moreover, as part of its machine-learning mechanism the IDS adds
the query together with the role information to the database audit log and triggers the Profile
Creator to update the existing profiles.

10

3 Shortcomings

The scenario we discussed so far showed a working example where the resulting output, the
alarm being raised, matched our expectation. To differentiate between the different actions
being taken by the IDS and our personal assessment of the result, we will use the following
terminology: A true positive TP is when the IDS correctly (true), based on our own judgment,
marks a quiplet as anomalous (positive). A false positive FP, on the other hand, corresponds
to a false alarm where, the IDS marks a quiplet as being anomalous (positive), whereas we
deem the query as being of non-malicious nature. In the same way, a true negative TN is a
quiplet of non-malicious nature and being correctly assessed by the system as non-anomalous,
whereas a false negative FN is a query that should have raised an alarm, but was deemed by
the classifier as non-anomalous.

Next we discuss two scenarios in which the IDS makes a false decision. In one case the
system raises an alarm for a benign quiplet (i.e. a false positive), and in the other case the
system raises no alarm for a malignant quiplet (i.e. a false negative).

3.1 False Positive
A false positive is provoked whenever a benign SQL statement submitted by one role shows a
specific behavior that is typical for another role. So if there are two roles defined, that naturally
show similar access patterns, chances are that the IDS will always favor one role and block
the other role from executing statements with this behavior. Since only queries categorized as
non-anomalous can influence the classifier through its machine-learning updating mechanism,
the access-behavior will be permanently assigned to a specific role, based on the audit log.

To provoke a false positive (FP) in our running example, we extend our previously used
scenario by a third user role, the “Creator” (CR) which creates all the new student records
in the database. Typical behavior for this role would be to primarily use the “INSERT” SQL
command. We extend our previous scenario with the following logs:
1 - UPDATE Students SET Street="Zelglistrasse", Number=15
WHERE Students.LastName=’Ankli’ AND Students.FirstName=’Lea’
AND Students.City=’Zuerich’ ; AD
2 - INSERT INTO Students VALUES ("Huber", "Stephanie", "Fliederweg", "6",
"Holziken", "5043", "stephanie.huber@uni.ch", "Economy"); CR
3 - INSERT INTO Students VALUES ("Müller", "Franz", "Albisstrasse", "1",
"Zuerich", "8038", "franz.mueller@uni.ch", "Law"); CR
4 - INSERT INTO Students VALUES ("Baker", "John", "Abendweg", "1",
"Zuerich", "8005", "john.baker@uni.ch", "Economy"); CR
5 - INSERT INTO Students VALUES ("Ahluwalla", "Rahul", "Hagenbuchrain", "4",
"Zuerich", "8047","rahul.ahluwalia@uni.ch","Informatics"); CR

11

Now the specific case happens that actually a misspelling in the name took place in the
last insert statement. The user of this role CR catches the error and tries to correct it with
another SQL query, this time an Update query. This becomes therefore the next query to be
assessed by the IDS: “UPDATE Students SET Students.Lastname=”Ahluwalia” WHERE Stu-
dents.Firstname=”Rahul” AND Students.Street=”Shilstrasse” AND Students.Number=4;”. The
Feature Selector generates this query: Update<1><1><1><3> CR. Then the Classifier calcu-
lates the rML with the updated profiles:

Table 3.1: Probabilities of FP quiplet attributes as calculated by the Naive Baies Classifier
role p(r) pm(c|r) pm(PR|r) pm(PA|r) pm(SR|r) pm(SA|r) overall
administration 0.5294 0.3251 1 0.4427 1 0.1084 0.0083
rectorate 0.2353 0.0196 1 0.7124 1 0.0065 2.1E-05
creator 0.2353 0.0196 1 0.0458 1 0.0065 1.4E-06

The NBC calculates the AD role to be the most likely associated with this query. When con-
sulting the probability-values shown in Figure 5, we derive the following reasons: any query
entering the system in this exact setting is most likely to come from the AD role according to
p(r), since nine out of seventeen statements already stored in the system stem from this role.
The value of the next probability p(c|r) is also highest for the AD role, since alle UPDATE
statements in our AL are so far exclusively from this role. The p(PA|r) probability is highest
for the RE role, since the RE role had the highest ratio of queries with only projecting on one
attribute, namely four out of five. The biggest impact although stems from the SA-probability,
since there is only one statement in the AL that selected on exactly three attributes. The IDS
therefore assigns the most likely role of AD to this query and deems the query to be anomalous
since the role issuing the query is CR. The Response Engine would now consult the Response
Policy Base, raise an alarm and drop the query, depending on our configuration. This is an un-
desired behavior, since we deem this query not to be of malicious nature but actually a desired
behavior in order to ensure a certain quality of the data. We therefore would see this as a false
alarm. In such cases, it would be important to ensure that desired behavior of specific roles,
although it might be atypical behavior, get defined and stated in the Response Policy Base for
the IDS to not issue FP responses.

3.2 False Negative
To find a false negative, meaning a query that did not raise an alarm but is deemed as not
desired behavior of a role, we have a look at our scenario again. In this scenario, the student
wants to get all the Emails from all students to send his malicious script to. This is why he
issued the query “SELECT Students.Email FROM Students;”. This query then went through
our IDS, got assessed as anomalous and was dropped. The student recognizes that his query
got dropped since he did not receive any results. But since he still has access, he decides to
rewrite his initial query so that it looks more like a query that his role would issue, but that
still returns the same result as the blocked query. His new query is “SELECT Students.Email

12

FROM Students WHERE Students.ID >= 0;”. The resulting quiplet, generated by the Feature
Selector, is Select<1><1><1><1>. Remember that our system does not update itself with
anomalous queries, so the audit log and therefore the profiles have not changed. The classifier
assigns the most likely role of AD, as shown in Figure 6. Since the student’s role is AD, the
query is deemed non-anomalous and no alarm is raised.

Table 3.2: Probabilities of FN quiplet attributes as calculated by the Naive Baies Classifier
role p(r) pm(c|r) pm(PR|r) pm(PA|r) pm(SR|r) pm(SA|r) overall
administration 0.6667 0.7549 1 0.5049 1 0.7451 0.1893
rectorate 0.3333 0.9815 1 0.7315 1 0.5185 0.1241

The determining factor for classifying the the student’s initial query as anomalous in the
scenario was that the initial query did not select any attributes in its WHERE clause This was
assessed as being rather atypical for the AD role, compared with the SE role. Since the student
has changed the number of Selected Attributes in his second query, this time the query gets
assessed as non-anomalous and the student receives his desired email-addresses. What we
would like is our IDS to raise an alarm since this is still batch retrieval and undesired behavior
of the AD role. In this specific case, the alarm had already been raised and the administrators
will know what has happened. The student still got what he wanted, because he did still
have access. We could of course instantly block the access of a specific role as soon as an
alarm is raised by the IDS, but this is not practical because of FPs and the time it takes for
the administrators to assess and investigate every alarm raised before granting access again,
this resulting in lost time and therefore big costs generated in large companies. If the attacker
could generate an FN without an FP beforehand as in this case, his attack would go unnoticed
for probably a long time or even never getting noticed. The attackers disadvantage is that
he has no knowledge of the specific values our classifier uses, since no database-role should
have access to the AL, and therefore an attacker can never be certain not to raise an alarm.
The information an eventual wrongdoer has, are the queries he normally issues. Therefore
the wrongdoer will craft a query that will get the desired result but will be as close to the
structure of the expected behavior of his role. This IDS cannot really protect against rewriting
or crafting queries to simulate expected behavior but still be of malicious user. We would need
to specify a white or blacklist within the Response Policy Base to minimize the risk of such
attacks.

13

4 Summary

We studied the inner working and the concept on which the Intrusion Detection System of
Kamra et al. is built upon. We have illustrated a scenario in a university-like setting and
assessed a number of incoming SQL queries using the Naive Bayes Classifier as described
by Kamra et al. We also had a look at some ways where the system cannot successfully
prevent an attack or might also interfere with desired behavior of authorized users. In general,
the approach of Kamra et al. for an Intrusion Detection System as a separate component
that extends traditional relational databases is useful, should be rather easily deployable and
is worth further investigation. As shown in this paper, the biggest risk comes from False
Negatives, were successful attacks happen that go unnoticed. False Positives can generate
additional labor and generate costs for administrators that need to investigate every benign
query for which the IDS raised an alarm . Also apparent in the examples is that our IDS
cannot prevent well designed attacks like simulating expected behavior, therefore there need
to be additional security mechanisms deployed for the database to cover such cases.

14

