
A Real-Time Game Theoretic Planner for
Autonomous Two-Player Drone Racing

Riccardo Spica, Davide Falanga, Eric Cristofalo, Eduardo Montijano, Davide Scaramuzza, Mac Schwager

Abstract—To be successful in multi-player drone racing, a
player must not only follow the race track in an optimal way,
but also compete with other drones through strategic blocking,
faking, and opportunistic passing while avoiding collisions. Since
unveiling one’s own strategy to the adversaries is not desirable,
this requires each player to independently predict the other
players’ future actions. Nash equilibria are a powerful tool to
model this and similar multi-agent coordination problems in
which the absence of communication impedes full coordination
between the agents. In this paper, we propose a novel receding
horizon planning algorithm that, exploiting sensitivity analysis
within an iterated best response computational scheme, can
approximate Nash equilibria in real time. We demonstrate that
our solution effectively competes against alternative strategies in
a large number of drone racing simulations.

I. INTRODUCTION

Drone racing has recently become a popular sport with
international competitions being held regularly and attracting
a growing public [1]. In these races, human pilots directly
control the UAVs through a radio transmitter while receiving a
first-person-view live stream from an onboard camera. Human
racers need years of training to master the advanced navigation
and control skills that are required to be successful in this
sport. Many of these skills would certainly prove useful for
a robot to safely and quickly move through a cluttered envi-
ronment in, for example, a disaster response scenario. For this
reason, drone racing has attracted a significant interest from
the scientific community, which led to the first autonomous
drone racing competition being held during the IROS 2016
international conference [2].

Most of the past research has focused on a time trial style
of racing: a single robot must complete a racing track in the
shortest amount of time. This scenario poses a number of chal-
lenges in terms of dynamic modeling, on-board perception,
localization and mapping, trajectory generation and optimal
control. Impressive results have been obtained in this context

Toyota Research Institute ("TRI") provided funds to assist the authors with
their research, but this article solely reflects the opinions and conclusions of
its authors and not TRI or any other Toyota entity. This research was also
supported by ONR grant N00014-16-1-2787 and a National Defense Science
and Engineering Graduate Fellowship. We are grateful for this support.

This research was supported by the SNSF-ERC Starting Grant and the
National Centre of Competence in Research (NCCR) Robotics, through the
Swiss National Science Foundation.

This research was supported by the Spanish project Ministerio de Economía
y Competitividad DPI2015-69376-R.

R. Spica, E. Cristofalo and M. Schwager are with the Department of
Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA
rspica;ecristof;schwager@stanford.edu

D. Falanga and D. Scaramuzza are with the Robotics and Perception Group,
Dep. of Informatics, University of Zurich, and Dep. of Neuroinformatics, Uni-
versity of Zurich and ETH Zurich, Switzerland–http://rpg.ifi.uzh.ch.

E. Montijano is with Instituto de Investigación en Ingeniería de Aragón,
Universidad de Zaragoza, Zaragoza 50018, Spain emonti@unizar.es.

Figure 1: Drone racing experiment. A video of the experiments can
be found at [16].

not only for autonomous UAVs [3], but also for a variety of
different platforms, such as cars [4]–[6] motorcycles [7], and
even sailboats [8]. Much less attention, on the other hand, has
been devoted to the more classical multi-player style of racing
that we address in this paper. In addition to the aforementioned
challenges, this kind of race also requires direct competition
with other agents, incorporating strategic blocking, faking, and
opportunistic passing while avoiding collisions. Multi-player
drone racing is then also a good testing ground for developing
and testing more widely applicable non-cooperative multi-
robot planning strategies.

A number of single-agent planning strategies can effectively
deal with both fixed and moving obstacles such as other
racers. See, for example, [9]–[13], and [14], which considers
the car racing application. Most of these works, however,
rely on simple “open-loop” models to predict the obstacle
motion. By not taking into account the reactive behavior of
other players, these solutions can induce oscillatory effects
sometimes referred to as reciprocal dances [15]. Moreover, by
properly anticipating other players reactions, one can realize
more sophisticated and effective strategies.

In this paper, we consider two-player autonomous drone
racing as a practical application to develop effective strategies
for scenarios involving multiple rational agents that: i) do not
communicate their policies to each other, ii) know each other’s
goals and constraints, iii) behave reactively in order to avoid
collisions with other agents. We believe that game theory [17]
is the most appropriate tool to model scenarios such as these.

While broadly used in economics and social science, game
theory has not yet attracted, in our opinion, a sufficient interest
from the robotics community, mostly due to the computational
complexity typically associated with these methods.

Some interesting results have been obtained in the context of
robust control design where the disturbance acting on a system
can be modeled as an antagonistic agent thus giving rise to a
zero-sum differential game [18], [19]. More recently, in [20],



[21], the interaction between an autonomous car and a human
driven one was modeled as a Stackelberg game: the human is
assumed to know in advance what the autonomous car will
do and to respond optimally according to an internal cost
function. Giving the other players some information advantage
can, in general, improve the robustness of the system but
also result in overly conservative actions. A more realistic
model for racing applications is that of Nash equilibria which,
instead, assume a fully symmetric information pattern. A very
recent paper [22] proposes a control algorithm for coordinating
the motion of multiple cars through an intersection exploiting
generalized Nash equilibria. In the context of car racing, the
authors of [23] investigate both Stackelberg and Nash equilib-
ria. In both these works, however, computational performance
close to real time can only be obtained in simplified scenarios.
The authors of [23] also discuss the importance of exploiting
blocking behaviors in racing. However, while in our work such
behaviors naturally emerge from the use of sensitivity analysis,
in [23] these are hardcoded in the payers’ cost function.

Motivated by the success obtained by Model Predictive
Control (MPC) in the development of real-time optimal control
schemes, we apply similar receding horizon control strategies
in the context of multi-player drone racing. Differently from
a standard MPC planner, however, our strategy also takes into
account other agents reactions to the ego agent actions. We
achieve this by employing an iterated best response com-
putation scheme: each player alternatively solves an optimal
control problem for each player while keeping the other
player’s strategy constant. In addition to this, in order to
fully capture and exploit the effects of the collision avoidance
constraints, we also use sensitivity analysis to approximate the
effects of one player’s actions on its opponent’s cost.

Despite the fact that Nash equilibria are often difficult to
achieve or verify in dynamic games, we prove that, if our
algorithm converges, the output satisfies necessary conditions
for a Nash equilibrium. In practice, we find that the algorithm
does converge, providing a theoretical foundation for our
technique. The algorithm also runs in real time, at 20Hz,
on standard hardware. We demonstrate the effectiveness of
our approach in a large number of simulations in which our
planner competes against multiple alternative strategies.

The rest of the paper is organized as follows. First, in
Sect. II, we model the drone racing problem and introduce the
associated sensing and control constraints. Then, in Sect. III,
we formulate the control problem as a Nash equilibrium
search and we detail the numerical methods used to obtain
real time solutions. In Sect. IV we report simulation results
obtained by letting our method compete against alternative
ones. Finally, in Sect. V, we conclude the paper and outline
future extensions.

II. PRELIMINARIES
Consider two quadrotor UAVs competing against each other

in a drone racing scenario. In order to simplify the high
level control strategy, we will assume that the robots fly at
a constant altitude with simplified holonomic discrete time
dynamics given by

pki = pk−1
i + uk

i (1)

τ wτ

pi

τ i

ni

ti

Figure 2: Representation of the race track used for the simulations.
The track is parameterized by its center line τ and its half width
wτ . Given the current robot position pi, we can define a local track
frame with origin τ i as the closest point to pi and with ti and ni

being the local tangent and normal vectors to the track in τ i.

where pi ∈ R2 is the robot horizontal position in the world
frame, and ui ∈ R2 is the robot linear velocity, which we
control directly as the input. We also assume that the players
can measure their opponent’s position by exploiting onboard
cameras and visual markers attached to the robots frames.

Due to limitations of onboard actuators, the robots linear
velocities are limited, i.e.

‖ui‖ ≤ ui ∈ R+.

The race track center line is defined by a twice continuously
differentiable immersed plane closed curve τ (see Fig. 2). For
such a curve, there exists an arch-length parameterization

τ : [0, lτ ] 7→ R2, with τ (0) = τ (lτ )

where lτ is the total length of the track. Moreover, one can
also define a local signed curvature κ and unit tangent and
normal vectors (t and n respectively) as follows

t = τ ′ (2)
nκ = τ ′′. (3)

To remain within the boundaries of the track, the robot’s
distance from the track center line must be smaller than the
(constant) track width wτ ∈ R+, i.e.∣∣n(si)

T [pi − τ (si)]
∣∣ ≤ wτ

where si ∈ [0, lτ ] is the robot position along the track, i.e. the
arch length of the point on the track that is closest to pi

si(pi) = arg min
s

1
2 ‖τ (s)− pi‖

2
. (4)

In order to avoid potential collisions, each robot always
maintains a minimum distance di ∈ R+ with respect to its
opponent, i.e. ∥∥pi − pj∥∥ ≥ di. (5)

Note that here, as well as in the rest of the paper, we always
use i (= 1 or 2) to refer to a generic robot and j (= 2 or 1
respectively) to refer to its opponent.

Since we exploit a receding horizon control approach, the
objective for each robot is to have a more advanced position
along the track, with respect to the opponent, at the end of the
planning horizon N . The final position is given by:

di = Nilτ + si(p
N
i )



where Ni is the number of completed track loops and si is
computed as in (4). Neglecting the constant terms, the objec-
tive function of player i is then to maximize the difference

fi = si(p
N
i )− sj(pNj ). (6)

Defining θi = (p1
i , . . . , p

N
i ,u

1
i , . . . ,u

N
i ) and neglecting

the second term in (6), which does not depend on player
i’s actions, the optimization problem for each robot can be
rewritten as

max
θi

si(p
N
i ) (7a)

s.t. pki = pk−1
i + uk

i (7b)∥∥pkj − pki ∥∥ ≥ di (7c)∣∣∣n(pki )
T

[pki − τ (pki )]
∣∣∣ ≤ wτ (7d)∥∥uk

i

∥∥ ≤ ui. (7e)

Because of the collision avoidance constraints (5), in order
to calculate its optimal trajectory, each robot needs access
to its opponent’s strategy. However, since the robots are
competing against each other, we do not expect them to
share/communicate their plans. Instead, each robot needs to
model the opponent and predict its actions. We believe that
game theory [17] is the correct framework to describe this
non-cooperative scenario. In particular, drone racing can be
seen as a zero-sum differential game because clearly from (6)
one has f1 + f2 = 0.

III. GAME THEORETIC FORMULATION

For simplicity of notation let us rewrite problem (7) in a
more compact and general form

max
θi

si(θi) (8a)

s.t. hi(θi) = 0 (8b)
gi(θi) ≤ 0 (8c)
γi(θi,θj) ≤ 0 (8d)

where:
• hi represents the equality constraints (7b) involving a

single player;
• gi represents the inequality constraints (7d) and (7e)

involving a single player;
• γi represents the inequality constraints (7c) involving

both players.
Let us also define Θi ⊆ R4N as the space of admissible
strategies for player i, i.e. strategies that satisfy (8b) to (8d).
Note that, due to (7c) and (8d), one has Θi = Θi(θj),
i.e. the strategy of one player determines the set of admissible
strategies of its opponent and, as a consequence, can influence
this latter’s behavior.

A Nash equilibrium (see [17]) is a strategy profile
(θ∗1,θ

∗
2) ∈ Θ1 ×Θ2 such that no player can improve its own

outcome by unilaterally changing its own strategy, i.e.

θ∗i = arg max
θi∈Θi(θ∗

j )
si(θi),∀i. (9)

An alternative definition of Nash equilibria can be given by
defining a best reply map

Ri(θj) = {θi ∈ Θi(θj) : si(θi) = s∗i (θj)}

where
s∗i (θj) = max

θi∈Θi(θj)
si(θi) (10)

is player i’s best-response return to player j’s strategy θj . One
can show that a Nash equilibrium is a fixed point of the best
reply map, i.e. such that θ∗i ∈ Ri(θ

∗
j ).

Unfortunately, since problem (7) is not convex due to (7c),
in general multiple Nash equilibria may exist (e.g. left vs
right side overtaking). Additionally, computing the exact value
of some Nash equilibrium generally requires numerical algo-
rithms whose computational complexity makes them still not
well suited for online robot control. Therefore, the next section
describes an iterative algorithm that allows to approximate
Nash equilibria in real time.

A. Numerical resolution of Nash equilibria

In order to approximate Nash equilibria in real time, we
use an iterated best response algorithm (IBR). Starting from
an initial guess of the Nash equilibrium strategy profile, we
update each player’s strategy, alternatively, to the best-response
to the current opponent’s strategy. This is done by solving a
standard optimization problem in which one player strategy
is allowed to change while the opponent’s one is kept con-
stant. Intuitively, if the resulting sequence of strategy profiles
converges, it follows that each player is best-responding to
its opponent. If this is the case, then no profitable unilateral
change of strategy exists as required by the Nash equilibrium
definition (9).

From our perspective, in the aim of developing a real time
planner, IBR has the advantage that one can finely tune how
much each player takes into account the reactivity of its
opponent. By limiting the number of iterations per planning
step, one can cover a spectrum of behaviors ranging from a
very efficient, but naïve, classical optimal control problem
(with a fixed guess for the opponent strategy) to a more
computationally expensive but fully game theoretic approach.

Unfortunately, a direct application of IBR to (7) does
not allow to fully capture the implications of the collision
avoidance constraints (7c). As already mentioned, in fact, since
player i has no direct influence over the final position of player
j (i.e. sj), the second term in (6) can be neglected in (7).
However, since player j is calculating its strategy by solving an
optimization problem similar to (7), due to the presence of the
joint constraints (7c), player i does have an effect on s∗j (θ∗i )
(see the counterpart of (10) for player j). In other words, while
player i does not affect player j’s final position in general, it
does affect it at the Nash equilibrium. To capture these effects,
we substitute (8a) with the following cost function

si(θi)− αs∗j (θi)

where α ≥ 0 is a free parameter.
A closed form expression for s∗j (θi) is hard to obtain.

Inspired by [24], we can, however, exploit sensitivity analysis



to calculate a linear approximation around the current guess
for the Nash equilibrium strategy profile.

Let us assume that, at the l-th iteration, a guess θl−1
i

for player i’s strategy is available to player j. Given this
strategy for its opponent, player j can solve the optimal control
problem (7) with θi = θl−1

i (fixed). This step will result
in a new best-responding strategy for player j, θlj , with the
associated payoff s∗j (θl−1

i ). Assuming player i is now given
the opportunity to modify its own strategy, we are interested
in characterizing the variations of s∗j (θi) for θi in the vicinity
of θl−1

i using a first-order Taylor approximation

s∗j (θi) ≈ s∗j (θl−1
i ) +

ds∗j
dθi

∣∣∣∣
θl−1
i

(θi − θl−1
i ). (11)

Exploiting the Karush–Kuhn–Tucker (KKT) necessary op-
timality conditions associated to player j’s optimal control
problem (8) one can prove the following result.

Lemma 1. If s∗j is the optimal value of an optimization
problem obtained from (8) by exchanging subscripts i and j,
then

ds∗j
dθi

∣∣∣∣
θl−1
i

= −µl
j

∂γj

∂θi

∣∣∣∣
(θl−1

i ,θl
j)

(12)

where θlj ∈ Rj(θ
l−1
i ) is the best-response of player j to θl−1

i

and µl
j is the row vector of Lagrange multipliers associated

to the joint inequality constraints (8d).

Proof. A full discussion on sensitivity analysis can be found
in [25]. A brief proof, specific to the case at hand, is reported
in Appendix A.

Neglecting any term that is constant with respect to θi,
we then propose that the ego vehicle solves the following
optimization problem alternatively for itself and its opponent:

max
θi∈Θl

i

si(θi) + αµl
j

∂γj

∂θi

∣∣∣∣
(θl−1

i ,θl
j)

θi (13)

where Θl
i respresents the space of strategies θi that satisfy (8b)

to (8d) with θj = θlj .

Theorem 1. If γ1(θ1,θ2) = γ2(θ1,θ2) and the iterations
converge to a solution (θl1,θ

l
2), then the strategy tuple (θl1,θ

l
2)

satisfies the necessary conditions for a Nash equilibrium.

Proof. Applying Karush-Kuhn-Tucker conditions to (8) one
obtains the following set of necessary conditions for a Nash
equilibrium (θ∗1,θ

∗
2) and the associated Lagrange multipliers

∂si
∂θi

(θ∗i )− µ∗i
∂γi

∂θi
(θ∗i ,θ

∗
j ) (14a)

− λ∗i
∂hi

∂θi
(θ∗i )− ν∗i

∂gi
∂θi

(θ∗i ) = 0

hi(θ
∗
i ) = 0 (14b)

gi(θ
∗
i ) ≤ 0 (14c)

ν∗i gi(θ
∗
i ) = 0,ν∗i ≥ 0 (14d)

γi(θ
∗
i ,θ
∗
j ) ≤ 0 (14e)

µ∗iγi(θ
∗
i ,θ
∗
j ) = 0,µ∗i ≥ 0 (14f)

Now assume that the iterative algorithm described in
Sect. III converges to a solution (θl1,θ

l
2), i.e. θl+1

i = θli
for both players. Then, by applying the KKT conditions to
problem (13), (θl1,θ

l
2) must satisfy

∂si
∂θi

(θli) + αµl
j

∂γj

∂θi
(θli,θ

l
j)− µl

i

∂γi

∂θi
(θli,θ

l
j) (15a)

λl
i

∂hi

∂θi
(θli)− νl

i

∂gi
∂θi

(θli) = 0

hi(θ
l
i) = 0 (15b)

gi(θ
l
i) ≤ 0 (15c)

νl
igi(θ

l
i) = 0,νl

i ≥ 0 (15d)

γi(θ
l
i,θ

l
j) ≤ 0 (15e)

µl
iγi(θ

l
i,θ

l
j) = 0,µl

i ≥ 0 (15f)

If one additionally has ∂γi

∂θi
(θli,θ

l
j) =

∂γj

∂θi
(θli,θ

l
j) (as it is

the case for our problem), then one can see that (θl1,θ
l
2) satisfy

(14a) to (14e) with λ∗i = λl
i,ν
∗
i = νl

i and µ∗i = µl
i − αµl

j .
In order to satisfy (14f), however, one also needs to impose
that:

(µl
1 − αµl

2)γ1(θl1,θ
l
2) = 0 (16a)

µl
1 ≥ αµl

2 (16b)

(µl
2 − αµl

1)γ2(θl1,θ
l
2) = 0 (16c)

µl
2 ≥ αµl

1. (16d)

Using (15f), (16a) and (16c) reduce to

αµl
2γ1(θl1,θ

l
2) = 0

αµl
1γ2(θl1,θ

l
2) = 0.

Exploiting, again, (15f), this condition is satisfied if
γ1(θl1,θ

l
2) = γ2(θl1,θ

l
2) for all active constraints and if

the sets of active constraints are the same for both players
(i.e. µl

1 > 0 ⇐⇒ µl
2 > 0). Both these conditions are

satisfied if, as it is the case for our application, γ1(θl1,θ
l
2) =

γ2(θl1,θ
l
2). As for (16b) and (16d), instead, if γi(θi,θj) =

γj(θi,θj), one can enforce them by making α sufficiently
small. Alternatively, one could also monotonically decrease α
as the iterative best-response scheme progresses.

In the drone racing scenario, in particular, using (4) and (5)
after some straightforward calculation, (13) reduces to

max
θi∈Θl

i

[
arg min

s

1
2

∥∥τ (s)− pNi
∥∥2

+ α

N∑
k=1

µk,l
j β

k,l
ij

T
pki

]
(18)

where

βk,l
ij =

pk,lj − p
k,l−1
i∥∥∥pk,lj − p
k,l−1
i

∥∥∥ .
To obtain a more intuitive interpretation of this result, let

us assume that the track is linear and aligned to a unit vector
t so that the first term in (18) can be rewritten as tTpNi
(see Sect. III-B for details). Since player i cannot modify
the strategy of player j, the following problem has the same
solutions as (18)

max
θi∈Θl

i

tTpNi − α
N∑

k=1

µk,l
j β

k,l
ij

T
(pk,lj − p

k
i ) (19)



We can then notice the following insightful facts. First of
all, if none of the collision avoidance constraints (7c) were
active in the l-th instance of problem (7), i.e. if µk,l

j = 0,
then (19) reduces to (7). This has an intuitive explanation: if
the collision avoidance constraints are not active, the optimal
control problems for the two players are independent of each
other and the original dynamic game reduces to a pair of
classical optimal control problems. Clearly, in this case, the
only sensible strategy for a player is to advance as much as
possible along the track.

The problem becomes much more interesting when the
collision constraints are active (µk,l

j > 0). In this case, indeed,
the cost function optimized in (19) contains additional terms
with respect to (7c). By inspecting these terms, one can easily
notice that they have a positive effect on player i’s reward if
robot i reduces its distance from player j’s predicted position
(pk,lj ) along the direction of βk,l

ij . The intuition behind this is
that, when the collision avoidance constraints are active, player
i can win the race by either going faster along the track or by
getting in the way of player j, thus obstructing its motion.

Isolating the last term in the summation, one can also rewrite
the problem as

max
θi∈Θl

i

(
t+ αµk,N

j βk,N
ij

)T
pNi + α

N−1∑
k=1

µk,l
j β

k,l
ij

T
pki .

From this alternative expression it is clear that, depending
on the value of αµk,N

j , player i might actually find it more
convenient to move its last position in the direction of player
j (βk,N

ij ) rather than along the track (t). One can then also
interpret the free scalar gain α as an aggressiveness factor.
Note that player i can exploit this effect only so long as
it does not cause a violation of its own collision avoidance
constraint (7c).

Using (7b) one can also substitute pNi = pni +
∑N

k=n+1 u
k
i

and draw similar conclusions for any intermediate position pni .
Before concluding this section, we want to stress the fact

that, since the players do not communicate with each other,
each of them must independently run the iterative algorithm
described above and alternatively solve the optimization prob-
lem (18) for themselves and for their opponent. In order to
generate control inputs in real time, in our implementation we
do not wait until convergence to a Nash equilibrium. Instead,
we perform a constant number of iterations L, which can
be set depending on the available computational resources.
Since updating the opponent’s strategy is only useful if this is
exploited for recomputing a player’s own strategy, we conclude
each player’s iterations with an extra resolution of its own
optimal control problem. This also ensures that the resulting
strategy profile satisfies the player’s own constraints.

As for the resolution of each player’s optimal control prob-
lem (18), we use an iterative algorithm described in Sect. III-B.

B. Numerical resolution of players’ optimization

The resolution strategy described in Sect. III-A relies on
the assumption that, at each iteration l, an optimal solution
to problem (18) can be found given the current guess for the
opponent strategy at the equilibrium.

Note that (18) is a well posed problem. Indeed, due to
the system dynamic constraints (7b), the input boundedness
imposed by constraints (7e), and assuming that the sam-
pling time is finite, the set Θl

i is bounded. On the other
hand Θl

i is also never empty because the solution θi =
(p0

i , . . . ,p
0
i ,02, . . . ,02) is always feasible, assuming that the

robots do not start from a position that violates (7c) and (7d).
Persistent feasibility is, therefore, guaranteed.

Unfortunately, problem (18) is also non-linear and non-
convex. A source of non-convexity, in particular, is the recip-
rocal collision avoidance constraint (7c). For example, player i
can potentially overtake player j by passing on the left or right
side and, in some situations, these two solutions might even
result in an equivalent payoff. Because of the aforementioned
non-convexity, local optimization strategies might, in general,
result in suboptimal solutions. In this work, however, we
must calculate solutions to (18) in a very limited amount of
time for online control. We then opt for a local optimization
strategy thus potentially sacrificing optimality for increasing
computational speed.

Assume that player i is at the l-th iteration of the Nash
equilibrium search. The predicted strategy for player j is then
θlj and it remains fixed while player i is solving problem (18),
again, iteratively. In order to simplify the notation, in this
section we drop the superscript l that indicates the Nash equi-
librium search iteration and, instead, we use the superscript to
indicate the internal iterations used to solve (18). Moreover, to
clarify the notation even further, we use a · accent to indicate
all quantities that remain constant across all inner iterations
used to solve a single instance of (18). Therefore, assume
that player i’s current guess of its optimal strategy is θmi . We
use θmi to compute a convex Quadratically-Constrained Linear
(QCLP) approximation of problem (18).

Constraints (7b) and (7e) can be used as they are because
they are either linear or quadratic and convex. The linear
approximation of (7c) and (7d) is also straightforward and
it results in the following constraints

βk,m
ij

T
(pkj − pki ) ≥ di∣∣∣nk,m

i

T
(pki − τ

k,m
i )

∣∣∣ ≤ wτ ,
with βk,m

ij =
pk
j−p

k,m
i

‖pk
j−p

k,m
i ‖

, nk,m
i = n(pk,mi ), and τ k,m

i =

τ (pk,mi ).
The only term that requires some attention is the linear

approximation of the cost function in (13) and, in particular, of
its first term because we do not have a closed form expression
for si as a function of pNi . However, since pNi is a constant
parameter in the optimization problem that defines si, we can
exploit sensitivity analysis again to compute the derivative of
si with respect to pNi . To this end, let us rewrite

si = arg min
s
d(s,pNi ),with d(s,pNi ) = 1

2

∥∥τ (s)− pNi
∥∥2
.

Then, as shown in [25] (and summarized in Appendix B for
the case at hand) the derivative of si with respect to pNi can
be calculated as

dsi
dpNi

= −
(
∂2d

∂s2

)−1
∂2d

∂s∂pNi
=

τ ′

‖τ ′‖2 −
(
pNi − τ

)T
τ ′′
. (20)



Exploiting the arc length parameterization and the relations (2)
and (3) we conclude

dsi
dpNi

=
tT

1− κ
(
pNi − τ

)T
n

:= σ(pNi )

where t,n and τ must be computed for s = si(p
N
i ).

Neglecting any term that does not depend on θi, the cost
function can then be approximated around θmi as

σ(pN,m
i )pNi + α

N∑
k=1

µk
jβ

k

ij

T

pki .

The solution θm+1
i to the approximate QCLP problem can

then be used to build a new approximation of problem (18).
The sequential QCLP optimization terminates when either a
maximum number of iterations has been reached or the differ-
ence between two consecutive solutions, r =

∥∥θm+1
i − θmi

∥∥,
is smaller than a given threshold.

C. Alternative control strategies

In order to asses the effectiveness of our approach, in the
simulations of Sect. IV, we let our controller compete with
the following alternative control strategies.

1) Model predictive control (MPC): This strategy is based
on the common, but naïve, assumption that player i’s op-
ponent will follow a straight line trajectory at (constant)
maximum linear velocity along the local direction of the
track, i.e. vjt(s(p0

j )). Based on this assumption, player i can
predict player j’s strategy and solve (7) as a single classical
optimal control problem. The numerical optimization scheme
described in Sect. III-B can be used also in this case to
efficiently compute a locally optimal solution.

2) Reciprocal velocity obstacles (RVO): This second
benchmark strategy is based on the multi-agent collision
avoidance library proposed in [26] and implemented in the
open-source library RVO21. We approximated the boundaries
of the track with a set of polygonal obstacles. For each robot,
RVO uses a reference linear velocity with maximum norm vi
and direction computed as t(p0

i )+ρ(τ (s0
i )−p0

i ) where ρ > 0
is a free parameter that allows to trade off between the first
term, which makes the robot follow the local direction of the
track, and the second one, which keeps the robot close to the
center line.

IV. RESULTS
A. Simulations

In order to validate our approach, we performed an extensive
simulation campaign. We used the open-source RotorS pack-
age [27] to simulate the full quadrotor dynamics. Our planning
algorithm was implemented in C++ and interfaced with the
simulator using ROS. We used a simulation time step of 10 ms,
but we run our planners at 20 Hz. We also used state-of-the-
art nonlinear controllers [28] to drive our quadrotors along the
optimal trajectory resulting from the solution of (18).

The two simulated robots have a radius of 0.3 m and
maintain a minimum relative distance d of 0.8 m from their

1http://gamma.cs.unc.edu/RVO2/

opponent. The simulated track is represented in Fig. 2. The
track fits into a 15 m × 11 m rectangle and its half-width wτ
is 1.5 m. The origin of the world frame was set at the center
of the longest straight segment of the track.

We let our game-theoretic planner and the alternative strate-
gies described in Sect. III-C compete against each other over
multiple races differing by the robots initial positions. In
order to enforce some interaction, we set the maximum linear
velocities of the two robots to 0.5 m/s and 0.6 m/s and we
made the faster robot always start behind the slower one. In
particular, for each race, we sampled the initial position of
the faster robot from a uniform distribution in the rectangle
[−0.1, 1.5]× [−0.7, 0.7]. Similarly, the position of the slower
robot was sampled from the rectangle [1.6, 1.7]× [−0.7, 0.7].
We discarded any pair of sampled initial positions that would
violate the collision avoidance constraints (5).

We ran a total of 900 simulations in which the same 150
sampled initial conditions were used for each of the following
scenarios:

case I: fast GTP vs. slow MPC;
case II: fast MPC vs. slow GTP;
case III: fast GTP vs. slow RVO;
case IV: fast RVO vs. slow GTP;
case V: fast MPC vs. slow RVO;
case VI: fast RVO vs. slow MPC.

Here, and in the rest of this section, the acronym GTP indicates
the Game Theoretic Planner developed in this paper. We
terminated each simulation as soon as one robot completed
an entire track loop and reached the finish line positioned at
x = 2.32 m.

In Fig. 3, we report an histogram representation of the final
distance along the track (i.e. the arch-length difference (6))
between the two robots. In cases I to IV, the distance is
calculated in such a way that it is positive when the robot
controlled using GTP wins the race and negative otherwise. In
cases V and VI, instead, a positive distance indicates a victory
for the MPC planner over RVO. A green and red coloring
is also used to highlight positive and negative parts of the
histogram.

In Fig. 4, we report the position traces for the two competing
robots for all of the simulations. The traces are divided by case
and we used the following color code: GTP – green, MPC –
blue, RVO – red.

First of all, as it can be seen from Figs. 3c to 3f, the
RVO strategy is clearly the least effective one among the three
alternatives considered in this paper. Regardless of the initial
placing and of the possible advantage in terms of maximum
speed, the robots controlled with this strategy lost all races.
We believe that the main reason for this poor performance is
the fact that RVO is a reactive (instantaneous) control strategy
while both GTP and MPC use an extended planning horizon.
Because of the lack of planning, RVO does not anticipate
(and appropriately cut) the curves and ends up following a
longer trajectory. This can clearly be noticed by looking at
Figs. 4c to 4f. The performance could possibly be improved
by considering alternative heuristics in the calculation of the
reference/desired velocity for the RVO algorithm.

http://gamma.cs.unc.edu/RVO2/


(a) Case I: fast GTP vs. slow MPC (b) Case II: fast MPC vs. slow GTP

(c) Case III: fast GTP vs. slow RVO (d) Case IV: fast RVO vs. slow GTP

(e) Case V: fast MPC vs. slow RVO (f) Case VI: fast RVO vs. slow MPC

Figure 3: Histogram representation of the final arch-length difference
(as in (6)) between the two robots for all of the simulations. The
simulations are divided by case as indicated in the captions. In (a)
to (d), the distance is calculated in such a way that it is positive when
the robot controlled using GTP wins the race and negative otherwise.
In (e) and (f), instead, a positive distance indicates a victory for the
MPC planner over RVO. A green and red coloring is also used to
highlight positive and negative parts of the histogram.

The comparison between GTP and MPC is somewhat more
fair because both strategies effectively follow the track and the
only difference between the two lies in the way they interact
with the opponent (the two algorithms are perfectly identical
when the two robots do not interact). A direct comparison
between the two strategies is provided by Figs. 3a and 3b.
From Fig. 3a, we can notice that, when the drone running
the GTP planner is faster than the MPC one, it manages to
overtake the MPC planner, which starts from an advantageous
position, in approximately 30% of the races. A closer look
at the simulations reveals that, in this scenario, the GTP
planner often tends to "overestimate" its opponent (it assumes
the opponent is using GTP as well). Consequently, when
attempting to overtake, it expects the opponent to block its
motion and ends up following an overly cautions trajectory
moving sideways along the track more than necessary.

On the other hand, when the GTP is slower, it manages to
defend its initial advantage for the vast majority of the races
(see Fig. 3b). Looking at Fig. 4b, we can clearly visualize the
strategy adopted by the GTP planner to defend its position,
especially towards the end of the race (the bottom straight
part of the track). The GTP planner clearly moves sideways
along the track to block the MPC planner thus exploiting the
collision avoidance constraint to its own advantage. The MPC
planner, instead, cannot adopt a similar strategy because it
does not properly model the reactions of its opponent. On the

−5 0 5
−2

0

2

4

6

8

10

(a) Case I: fast GTP vs. slow MPC

−5 0 5
−2

0

2

4

6

8

10

(b) Case II: fast MPC vs. slow GTP

−5 0 5
−2

0

2

4

6

8

10

(c) Case III: fast GTP vs. slow RVO

−5 0 5
−2

0

2

4

6

8

10

(d) Case IV: fast RVO vs. slow GTP

−5 0 5
−2

0

2

4

6

8

10

(e) Case V: fast MPC vs. slow RVO

−5 0 5
−2

0

2

4

6

8

10

(f) Case VI: fast RVO vs. slow MPC

Figure 4: Position traces for the two competing robots for all of the
simulations. The simulations are divided by case as indicated in the
captions and the following color code was used for the planners: GTP
– green, MPC – blue, RVO – red.

contrary, by assuming that the opponent will move straight
along the path, completely careless of possible collisions, the
MPC planner is often forced to make room to the opponent
because of its own collision avoidance constraints (see, for
example, the blue traces in the top right part of Fig. 4a).

An indirect comparison between GTP and MPC can also
be done by analyzing how they both perform against RVO in
similar situations. Both when competing against a slower robot
(see Figs. 3c and 3e) and against a faster one (see Figs. 3d
and 3f) the GTP planner tends to win with a slightly larger
separation in average and a much more narrow distribution
of final distances. The improvement is more significant when
the GTP is playing in a "defensive" role, i.e. it is controlling
a slower robot with an initial advantage. We believe that
this is due, once again, to an overly cautious behavior when
attempting to overtake the opponent in cases I and III.

To fully appreciate the interactions between the robots, we
encourage the reader to watch the video available at [16]
showing a simulated race. In this simulation, both robots were
running the game-theoretic planner described in this paper.
Finally, we have conducted preliminary hardware experiments
with two quadrotor UAVs in the Robotics and Perception
Group at the University of Zurich (see Fig. 1). The UAVs
use onboard monocular vision to estimate their opponent’s
relative position, and compute their racing trajectories online
using our algorithm. A video is available at [16], and a more
detailed paper with comprehensive hardware experiments is
forthcoming.



V. CONCLUSIONS

In this paper we described a novel online motion planning
algorithm for two-player drone racing. By exploiting sensi-
tivity analysis within an iterated best response algorithm, our
planner can effectively model and even exploit the opponent’s
reactions.

From a theoretical point of view, we showed that, if the
iterative resolution strategy converges to a solution, then this
latter satisfies necessary conditions for a Nash equilibrium.
Moreover, we demonstrated the effectiveness of our approach
through an extensive set of simulations in which our planner
was let to compete against two alternative, and well estab-
lished, approaches. Finally, our planning strategy can run in
real time and we are currently conducting some experimental
tests on real hardware. Some videos are available at [16].

Despite the encouraging results, our planner still presents
some weakness. First of all, because of the non-convexity of
our problem, the optimization algorithm can converge to local
minima. In the future, we want to investigate the use of mixed
integer approaches to better handle the non-convex constraints
of our problem. In addition to this, our planner assumes
that the opponent is using a similar planning strategy with
a known cost function. Even if our algorithm already shows
very good performance when competing against alternative
strategies (which clearly violate this assumption), it would be
interesting to couple our strategy with an online approach for
learning the opponent policy and/or cost function. Finally, we
also plan to extend our results to races involving more than
two players. A first possibility, in this case, would be to simply
introduce an additional sensitivity term and an optimal control
problem for each of the added opponents and iterate over
all players until convergence. Another alternative would be
for each player to consider all of the opponents as a single
agent. This would reduce computation but possibly induce
more conservative behaviors due to the underlying assumption
of cooperation among the opponents.

APPENDIX

A. Proof of Lemma 1

In order to simplify the notation as much as possible, in this
subsection we consider a streamlined form for the optimization
problem of the form

max
x

s(x) s.t. γ(x, c) = 0 (21)

where c is a scalar parameter and s and γ are scalar dif-
ferentiable functions of their arguments. For each value of
c, let us indicate with x∗(c) the solution of (21) and with
s∗(c) = s(x∗(c)) the associated optimal outcome. We want to
study how the optimal cost s∗ changes when c changes around
a point c, i.e.

ds∗(c)
dc

∣∣∣∣
c

=
ds(x∗(c))

dc

∣∣∣∣
c

=
ds(x)

dx

∣∣∣∣
x∗(c)

dx∗(c)
dc

∣∣∣∣
c

(22)

Since, for all c, x∗(c) is an optimal solution to (21), it must
satisfy the KKT necessary optimality conditions associated
to (21), i.e.

ds(x)

dx

∣∣∣∣
x∗
− µ ∂γ(x, c)

∂x

∣∣∣∣
x∗

= 0 (23)

γ(x∗(c), c) = γ∗(c) = 0 (24)

where µ is the Lagrange multiplier associated to the equality
constraint. Isolating the first term in (23) and substituting it
in (22) we obtain

ds∗(c)
dc

∣∣∣∣
c

= µ
∂γ(x, c)

∂x

∣∣∣∣
x∗(c)

dx∗(c)
dc

∣∣∣∣
c

. (25)

Note that, since (24) must remain true for all c, its total
derivative w.r.t. c must also be zero, i.e.

dγ∗(c)
dc

=
∂γ(x, c)

∂x

∣∣∣∣
x∗

dx∗(c)
dc

+
∂γ(x, c)

∂c

∣∣∣∣
x∗

= 0. (26)

Isolating the first term from (26) and substituting it in (25),
we finally conclude that

ds∗(c)
dc

∣∣∣∣
c

= −µ ∂γ(x, c)

∂c

∣∣∣∣
x∗(c)

,

which reduces to (12) for x = θj , c = θl−1
i , and x∗ = θlj .

This proof can trivially be extended to problems with
multiple joint constraints or with additional constraints that
do not depend on c (their derivatives with respect to c will
simply be null). If the problem contains inequality constraints,
instead, under the assumption that, in the vicinity of c, the set
of active constraints remains the same, the proof can readily
be applied by just considering an equivalent problem in which
any active inequality constraint is transformed into an equality
constraints and any inactive constraint is ignored.

B. Proof of (20)
Consider the following optimization problem:

min
s
d(s,pNi ).

We can interpret pNi as a constant parameter and study how the
solution si to the above problem changes when pNi changes
around a point pNi . Under the optimality assumption, for each
value pNi , the corresponding solution sNi = si(p

N
i ) must

satisfy the following necessary condition

∂d(s,pNi )

∂s

∣∣∣∣
sNi

= 0. (27)

Note that the left hand side of (27) is a function of pNi only
and it must be zero for all pNi . Therefore, its derivative with
respect to pNi must also be zero

0 = d
dpN

i

∂d(s,pN
i )

∂s

∣∣∣
sNi

=
∂2d(s,pN

i )
∂s2

∣∣∣
sNi

dsNi
dpN

i
+

∂2d(s,pN
i )

∂s∂pN
i

.

We can, then, conclude that:

dsNi
dpNi

= −

[
∂2d(s,pNi )

∂s2

∣∣∣∣
sNi

]−1
∂2d(s,pNi )

∂s∂pNi

q.e.d.



REFERENCES

[1] “World drone prix,” Dubai, UAE, Mar. 2016. [Online]. Available:
https://youtu.be/gc3_wEB9wnI

[2] H. Moon, Y. Sun, J. Baltes, and S. J. Kim, “The IROS 2016 competitions
[competitions],” IEEE Robotics and Automation Magazine, vol. 24,
no. 1, pp. 20–29, 2017.

[3] S. Jung, S. Cho, D. Lee, H. Lee, and D. H. Shim, “A direct visual
servoing-based framework for the 2016 IROS autonomous drone racing
challenge,” Journ. of Field Robot., vol. 35, no. 1, pp. 146–166, 2018.

[4] N. R. Kapania, J. Subosits, and J. C. Gerdes, “A sequential two-step
algorithm for fast generation of vehicle racing trajectories,” Journ. of
Dynamic Systems, Measurement, and Control, vol. 138, no. 9, pp.
091 005–091 005–10, 2016.

[5] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in 2016
IEEE Int. Conf. on Robotics and Automation, Stockholm, Sweden, May
2016, pp. 1433–1440.

[6] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic MPC for model-based
reinforcement learning,” in 2017 IEEE Int. Conf. on Robotics and
Automation, Singapore, May 2017.

[7] Yamaha Motor and SRI International, “Yamaha MOTOBOT 2,” 2017.
[Online]. Available: https://youtu.be/BjZPvXKewFk

[8] R. Stelzer and T. Pröll, “Autonomous sailboat navigation for short course
racing,” Robotics and Autonomous Systems, vol. 56, no. 7, pp. 604–614,
2008.

[9] A. A. Maciejewski and C. A. Klein, “Obstacle avoidance for kinemati-
cally redundant manipulators in dynamically varying environments,” Int.
Journ. on Robotics Research, vol. 4, no. 3, pp. 109–117, 1985.

[10] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. Journ. on Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

[11] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” Int. Journ. on Robotics Research, vol. 17,
no. 7, pp. 760–772, 1998.

[12] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning for
agile autonomous vehicles,” Journ. of Guidance, Control, and Dynamics,
vol. 25, no. 1, pp. 116–129, 2002.

[13] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. Journ. on Robotics Research, vol. 30, no. 7, pp.
846–894, 2011.

[14] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1:43 scale RC cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, 2015.

[15] F. Feurtey and T. Chikayama, “Simulating the collision avoidance
behavior of pedestrians,” Master’s thesis, University of Tokyo, 2000.

[16] “Multi-robot Systems Lab (MSL) at Stanford
University.” [Online]. Available: https://msl.stanford.edu/
game-theoretic-planning-autonomous-drone-racing

[17] T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory,
2nd ed. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 1998.

[18] T. Başar and P. Bernhard, H-Infinity Optimal Control and Related
Minimax Design Problems: A Dynamic Game Approach. Boston, MA,
USA: Birkhäuser Boston, 2008.

[19] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
Hamilton-Jacobi formulation of reachable sets for continuous dynamic
games,” IEEE Transactions on Automatic Control, vol. 50, no. 7, pp.
947–957, 2005.

[20] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for
autonomous cars that leverage effects on human actions,” in Robotics:
Science and Systems, Cambridge, MA, USA, Jul. 2016, p. n/a.

[21] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan, “Information
gathering actions over human internal state,” in 2016 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, Daejeon, Korea, Oct. 2016,
pp. 66–73.

[22] A. Dreves and M. Gerdts, “A generalized Nash equilibrium approach
for optimal control problems of autonomous cars,” Optimal Control
Applications and Methods, Jul. 2017, to be published.

[23] A. Liniger and J. Lygeros, “A non-cooperative game approach to
autonomous racing,” arXiv preprint arXiv:1712.03913, 2017.

[24] T. Raivio and H. Ehtamo, “On the numerical solution of a class of
pursuit-evasion games,” in Advances in Dynamic Games and Appli-
cations, ser. Annals of the International Society of Dynamic Games.
Birkhäuser Boston, 2000, pp. 177–192.

[25] A. V. Fiacco, Introduction to Sensitivity and Stability Analysis in
Nonlinear Programming. Academic Press, 1983.

[26] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body
collision avoidance,” in 14th Int. Symp. on Robotics Research, Lucerne,
Switzerland, Aug. 2011, pp. 3–19.

[27] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Robot operating
system (ros),” Studies Comp.Intelligence Volume Number:625, vol. The
Complete Reference (Volume 1), no. 978-3-319-26052-5, p. Chapter 23,
2016, iSBN:978-3-319-26052-5.

[28] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and
D. Scaramuzza, “Autonomous, vision-based flight and live dense 3D
mapping with a quadrotor MAV,” Journ. of Field Robot., vol. 33, no. 4,
pp. 431–450, 2016.

https://youtu.be/gc3_wEB9wnI
https://youtu.be/BjZPvXKewFk
https://msl.stanford.edu/game-theoretic-planning-autonomous-drone-racing
https://msl.stanford.edu/game-theoretic-planning-autonomous-drone-racing

	INTRODUCTION
	PRELIMINARIES
	GAME THEORETIC FORMULATION
	Numerical resolution of Nash equilibria
	Numerical resolution of players' optimization
	Alternative control strategies
	Model predictive control (MPC)
	Reciprocal velocity obstacles (RVO)


	RESULTS
	Simulations

	CONCLUSIONS
	Appendix
	Proof of Lemma 1
	Proof of (20)

	References

