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Abstract

This paper proposes a category- and selection-enabled nearest neighbor join
(NNJ) between relation r and relation s, with similarity on T and support for
category attributes C and selection predicate θ. Our solution does not suffer
from redundant fetches and index false hits, which are the main performance
bottlenecks of current nearest neighbor join techniques.

A category-enabled NNJ leverages the category attributes C for query eval-
uation. For example, the categories of relation r can be used to limit relation
s accessed at most once. Solutions that are not category-enabled must process
each category independently and end up fetching, either from disk or memory,
the blocks of the input relations multiple times. A selection-enabled NNJ per-
forms well independent of whether the DBMS optimizer pushes the selection
down or evaluates it on the fly. In contrast, index-based solutions suffer from
many index false hits or end up in an expensive nested loop.

Our solution does not constrain the physical design, and is efficient for row-
as well as column-stores. Current solutions for column-stores use late material-
ization, which is only efficient if the data is clustered on the category attributes
C. Our evaluation algorithm finds, for each outer tuple r, the inner tuples that
satisfy the equality on the category and have the smallest distance to r with
only one scan of both inputs. We experimentally evaluate our solution using a
data warehouse that manages analyses of animal feeds.
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1. Introduction

In most real world applications with nearest neighbor joins (NNJs), the
nearest neighbors of a tuple r ∈ r must be determined for a subset of the tuples
in relation s. As an example, consider a data warehouse with a fact table s that
stores analyses of animal feeds. If an application asks for the ‘Vitamin A’ value
of ‘Soy’ on 2014-05-01, we must find the analyses in s with the timestamp closest
to 2014-05-01, but only among the tuples that i) satisfy predicate Nutrient =
‘Vitamin A’, and ii) have the same category value (i.e., we want a value for
‘Soy’). Towards this end, we propose a category- and selection-enabled NNJ
operator, which, for each tuple in relation r, returns the tuple(s) in s with the
most similar value for T that have the same category C and satisfy predicate θ.

In the past, efficient solutions have been developed for computing NNJs.
These solutions are neither category- nor selection-enabled and become ineffi-
cient if C or θ is present. This is a non-trivial problem in NNJ queries since the
equality on C and the evaluation of θ cannot be postponed until after the NNJ
[1]. For example, a NNJ might select as nearest neighbor of (‘Soy’, 2014-05-01)
the tuple (‘Pea’, 2014-05-02). Clearly, this pair is filtered out after evaluating
the equality on C since the categories are different. Thus, no nearest neighbor
for (‘Soy’, 2014-05-01) would be returned, which is incorrect.

Our approach is the first NNJ solution that is category- and selection-enabled.
It efficiently deals with selective predicates and multiple categories, without con-
straining the physical organization of the input relations. Our category-enabled
algorithm is run once independent of the number of categories. As a result, our
query tree copes well with any optimization on the category attributes to reduce
the runtime. For example, in a data warehouse context, when the DBMS uses
the categories in the query to limit the tuples of the fact table, our approach
still fetches each block of the fact table at most once. This is not the case when
a SortMerge NNJ [2], in combination with the SegmentApply operator [3] to
handle different categories, is used. For such an approach, if a disk or mem-
ory block stores tuples of different categories, it is fetched multiple times. Our
selection-enabled approach stays robust if either the DBMS optimizer pushes
down the evaluation of the predicate below the NNJ (e.g., if θ is selective), or if
it evaluates the selection on the fly (e.g., in case θ is often true). Current B-Tree
solutions [4] deteriorate if the selection is evaluated on the fly since, if the closest
tuple fetched does not satisfy the selection predicate, then the second closest
must be retrieved, then the third closest, and so on until a tuple satisfying the
predicate is fetched.

Our approach does not suffer if a given block stores tuples of different cat-
egories since the blocks of the input relations are accessed at most once, inde-
pendent of the number of categories that are stored on a block. Our solution
also does not suffer if θ is selective since, in such a case, the tuples that do
not satisfy θ are filtered out before the NNJ. The robustness of our solution is
independent of the physical design. For example, column-stores perform well
only if a primary (or clustered) index on the relations is available: if the data is
not clustered by (C, T ), redundant fetches are computed on C, T , and on every
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column involved in θ. Our approach does not require any clustering or index
structure, but indexes are leveraged to directly access the tuples. The indepen-
dence of the physical design is a key property of category- and selection-enabled
NNJs for two reasons: first, only one clustering can exist; and second, the cat-
egory and similarity attributes are query dependent and change for each query
(one NNJ query might compute the similarity on the price, another one on the
time, and yet another on the quantity). In our experiments, we show that our
approach is up to two orders of magnitude faster than state of the art solutions
for computing real world queries on the Swiss Feed Data Warehouse [5] and on
the GREEND dataset [28] if no primary index for the category and similarity
attributes is available.

Our technical contributions are as follows:

• We introduce and define the category- and selection-enabled NNJ opera-
tor.

• We introduce an efficient query tree to compute queries with category- and
selection-enabled NNJs. Our query tree can be integrated both in row-
and column-stores. Independent of the clustering of the input relations,
our solution does not suffer from redundant fetches and false hits.

• We provide roNNJ , a sort-merge-based algorithm that, for each tuple of
the left subtree, finds the tuples in the right subtree that have the same
category and the closest values of the similarity attribute, with a single
scan of both inputs.

• We describe the seamless integration of NNJ queries with predicates and
categories into PostgreSQL.

• We use the Swiss Feed Data Warehouse and the GREEND dataset to
experimentally evaluate the performance of our approach and compare it
with the state of the art techniques implemented on disk, main memory,
and column-stores.

This paper extends the work in Cafagna et al. [9]. Beyond the contributions
of this work we explore the advantages of a query tree with our category-enabled
NNJ, and we show that the drawbacks of related approaches are independent
of the physical design of the input relations. Towards this goal we implemented
and evaluated our solution on column-stores. We show how category- and
selection-enabled NNJs can be integrated into the query trees of a column-
store (e.g., MonetDB). The experimental evaluation compares the runtime on
column-stores against ours. Due to an increase of the size of our dataset (new
analyses have been added to the Swiss Feed Data Warehouse during the last
year), the absolute numbers in the experiments differ from the ones in [9], es-
pecially for the B-Tree since the number of look-ups to compute (two per outer
tuple) has increased.

The paper is organized as follows. In Section 2 we present our running
example. Section 3 discusses related work. Section 4 defines the category-
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and selection-enabled NNJ. In Section 5 we describe our algorithm. Section 6
introduces NNJ query trees and offers an analytical evaluation of our approach.
Section 7 reports the result of an empirical evaluation on the Swiss Feed Data
Warehouse and the GREEND dataset. Section 8 draws conclusions and points
to future work.

2. Running Example

As a running example, we use the Swiss Feed Data Warehouse [5], i.e., a
data warehouse that stores lab analysis of animal feeds, using a fact table with
a vertical design where each value of the analysis is stored in a different row [7],
[8]. Figure 1 shows selected tuples of fact table s. Animal feeds C, such as ‘Soy’,
‘Pea’, or ‘Hay’, are sampled in the field at an altitude A and analyzed at time
T in a lab where the value V of various nutrients N is measured with reliability
R. For instance, tuple s0 records that for feed ‘Soy’, grown at an altitude of
1030 meters, the nutrient content of ‘CP’ (Crude Protein) at time 2014-06-15
is 1.40 with reliability 0.9. Since lab analyses are expensive and more than 600
nutrients exist, not all nutrients N are measured on a daily basis (e.g., no ‘CP’
value has been measured for ‘Soy’ on 2014-06-19).

r
C T

r0 Soy 2014-06-15
r1 Soy 2014-06-21

r2 Pea 2014-06-20

s
C T A R N V

s0 Soy 2014-06-15 1030 0.9 CP 1.40
s1 Soy 2014-06-20 1000 1.0 CP 1.08
s2 Soy 2014-06-21 1020 0.5 CP 0.93
s3 Soy 2014-06-27 1110 0.9 CP 1.23

s4 Pea 2014-06-19 1000 0.8 CP 4.20
s5 Pea 2014-06-20 1000 0.3 CP 4.10
s6 Pea 2014-06-21 1100 0.9 CP 4.03

s7 Hay 2014-06-19 1000 0.8 OM 0.32

Figure 1: Outer Relation r; Fact Table s with Lab Analyses of the Nutrients of Feeds.

Relation r in Figure 1 illustrates the outer tuples for which the nearest
neighbors in s must be retrieved: attributes C and T correspond to the feed
and day for which a measurement is needed. In the web application of the Swiss
Feed Data Warehouse (http://www.feedbase.ch), the users (farmers, domain
experts, etc.) use the result of the NNJs to compute graphical interpolations
that represent the evolution of a given nutrient in different feeds to pick the feed
that best suits the desired characteristics (e.g., the cereal that has the most
stable protein content in the animal feeding process). Attribute C typically
covers up to 5% of the feeds stored in the fact table (e.g., all cereals), while
attribute T represents the days for which the nutritive values must be computed.
Note that it is not possible to precompute the join off-line since the result
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depends on predicate θ, which is defined over a combination of attributes that
change for each query, e.g., θ ≡ (N = ‘CP’ ∧R > 0.7).

Table 1 summarizes the notation we use in this paper.

Table 1: Notation.

Symbol Meaning Example
r tuple r, ri, s, sj , z1
r relation r, s, z
|r| cardinality |r|, |s|, |z|
C set of category attributes C
T similarity attribute T
θ predicate R > 0.7

sel(θ) predicate selectivity |σR>0.7(s)|
|s|

sel(C) category selectivity
|σC∈πC(r)(s)|

|s|
rnT s NNJ rnT s

rnT [C, θ] s category- and selection-enabled NNJ rnT [C,R > 0.7] s

3. Related Work

In this section, we introduce the state of the art NNJ solutions and explain
the problems they face when dealing with categories and predicates.

3.1. B-Tree

Yao et al. [4] proposed an implementation for rnT s, i.e., a NNJ without
categories and selections, using a B-tree. The solution can easily leverage cate-
gories and compute a NNJ with a B-tree on (s.C, s.T ). This approach performs,
for each r ∈ r, two index look-ups in s using (r.C, r.T ) as search key (Figure
2.a). One lookup fetches the first tuple to the left (using a MAX subquery), and
one lookup fetches the first tuple to the right (using a MIN subqery). The closer
of the two tuples is the nearest neighbor of r. The approach is elegant since
it does not require any change in the DBMS engine and can be implemented
using SQL statements. As for any indexed method, this approach performs
particularly well if |r| � |s|. However, as shown in Figure 2(b), this approach

Figure 2: B-Tree implementation where, for r ∈ r, the nearest neighbor is found with
a MAX and a MIN query using a B-Tree on (s.C, s.T ). The second figure highlights
in grey the false hits of the tuples that do not satisfy predicate θ.

suffers from index false hits if a predicate θ is present. For example the MAX
subquery:

SELECT MAX(T) AS sMax

FROM s
WHERE s.C = r.C AND s.T < r.T AND θ
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no longer guarantees that the maximum is the first tuple that is reached through
the index. The index must be scanned to the left until a tuple satisfying θ is
found. The higher the selectivity of θ, the higher the number of false hits.

This drawback is even more pronounced in column-stores. Although column-
stores do not fetch an entire tuple that does not satisfy θ, a single false hit affects
each column involved in θ, i.e., for each column a different block must be fetched
to evaluate the corresponding predicate. This means that in a column-store each
index false hit results in multiple block fetches (and not just in one as for row-
stores). We show in our experiments that, while Apache Cassandra [10] adopts
this plan if a primary index on (C, T ) exists1, MonetDB [11] chooses a different
plan: it first fetches the OIDs of the tuples with the same category as r; then
T (and each column involved in θ) is scanned and only the OIDs of the entries
satisfying s.T < r.T (or predicate θ) are kept; afterwards, the intersection of
the OIDs returned from the previous selections is computed; finally, the MAX
on the returned tuples is computed. We show in our experiments that this plan,
although it avoids the index false hits, is similar to a nested-loop since for a
given r ∈ r it fetches from s all the entries with the same category, and it is
therefore expensive.

3.2. SegmentApply

Silva et al. [2] proposed a NNJ operator that is not category-enabled, i.e.,
it computes rnT s, using SortMerge. This approach sorts r and s by T , and
computes the merge step with a single scan of the relations by taking advantage
of the order of the tuples. Opposite to indexed methods, this approach scales
to large datasets. However, as shown in [1], the equality on the categories
cannot just be evaluated after a category-unaware NNJ2. To manage multiple
categories, the SegmentApply operator [3] must be used. It is implemented in
DBMSs as lateral subqueries that fetch, for each category c ∈ πC(r), the input
tuples with category c and run a SortMerge NNJ:

SELECT *

FROM (SELECT DISTINCT C FROM r) c,
LATERAL (SELECT * FROM r WHERE C = c.C) r
NNJ

LATERAL (SELECT * FROM s WHERE C = c.C AND θ) s
ON T

This approach suffers from redundant fetches since it requires a scan of the
input relations for each category in r. Note that also in the presence of an index
on s.C redundant fetches happen since, if a block stores tuples of m required
categories, this block is fetched redundantly m times, once for each category.

1In Cassandra the previous query needs to be rewritten as SELECT C, T FROM s WHERE

C = r.C AND T ≤ r.T AND θ ORDER BY T LIMIT 1 ALLOW FILTERING in order to take advan-
tage of the primary index.

2The computation of SELECT * FROM r NNJ s ON T WHERE r.C = s.C is not correct, since
it first joins each r ∈ r with its nearest neighbor in s (independently on its category), and
then filters out the joined tuples with different categories.
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In column-stores, for each category c ∈ πC(r), s.C is accessed and the OIDs
of the tuples of category c are returned. The OIDs are joined with the (OID,
Value) pairs of each column involved in θ, to select only the tuples that satisfy
θ. Finally, their T value is fetched and a category-unaware sort-merge NNJ is
run. Without a primary index, i.e., when the input relations are not clustered
on C, redundant fetches occur since, if m (OID, Value) pairs are stored in the
same block and refer to tuples of different categories, then this block is fetched
m times. The remaining columns are sequentially scanned and joined to the
result after the NNJ for every category is computed, and incur no redundant
fetches. If a primary index on s.C is present, the redundant fetches are almost
eliminated, since the (OID, Value) pairs of each column are clustered based
on category C. This means that, for each column, the entries of the same
category are placed in contiguous blocks. While processing the i-th category,
only the first processed block of each column (storing also tuples of the (i− 1)-
th category) will be read redundantly. Note that the category attributes C are
query-dependent: for example, in the Swiss Feed Database, depending on the
query, the category attributes might specify a biological column (feed type, feed
name, stage of maturity, etc.), a geographical column (country, region, postal
code, etc.), etc. We include both scenarios in our experiments, and show that
our category- and selection-enabled NNJ is the only technique that is robust in
cases where no clustered index for the category attribute exists.

3.3. Category-Based Optimization Rules

Kimura et al. [12] introduced the SortedIndexScan to efficiently compute
indexed selections on the categories of the query points, i.e., σC∈πC(r)(s). This
technique traverses the index on s.C for each needed category (i.e., πC(r))
and keeps a list of the block IDs that store matching tuples. The block IDs
are sorted and deduplicated to avoid fetching multiple times the same block.
An equivalent technique has been introduced in the Orca query optimizer [13].
The Orca query optimizer reduces the number of partitions to fetch, i.e., the
relevant blocks, in multi-level partitioned fact tables [14]: for each dimension
table involved in the join, a PartitionSelector scans it and keeps a list of IDs of
the partitions of s with join matches. At the end, the intersection of the lists
is passed to the DynamicScanner, which reads the relevant blocks. We show
that our category-enabled query tree can fully leverage such optimizations. As
a result, it fetches only the blocks that store tuples with relevant categories (i.e.,
the categories of r), and it does so once.

3.4. Similarity Joins

During the last few years, different similarity join operators have been pro-
posed [15]: k-nearest neighbor joins (k-NNJ) where each outer tuple is joined
with the k closest inner tuples, ε joins where each outer tuple is joined with
all tuples within a given distance range ε [16], k-distance joins where the k
closest pairs are retrieved, join around where the result is the intersection of an
ε join and a k-nearest neighbor join, and a reverse k-nearest neighbor join [17]
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which determines the tuples that have the query points as one of their k-nearest
neighbors. None of those operators integrates categories and predicates.

Works on the evaluation of query trees combining two k-NNJ queries, have
been studied by Aly et al. [18]. Note that our implementation assumes k = 1 for
simplicity but, if many tuples are found at the same minimum distance, returns
all of them. Our implementation can be easily adapted to a k-NNJ by using a
fixed-size window (of length k) of nearest neighbors.

Partition-based solutions for computing similarity joins have been proposed
in the context of Quickjoin and D-Index. Quickjoin [19] partitions the data
space according to pivot points and creates windows to bind adjacent partitions.
Partitions are recursively sub-partitioned until they are small enough to be
processed in a memory nested loop. D-Index [20] partitions according to a set
of mapping functions ρ and uses the D-Index and its extension called eD-Index
[21] to access a small portion of data within which the closest pairs are searched.
Quickjoin focuses on ε joins and requires a rebuild of the index for each different
ε value; D-Index has been introduced for computing self-joins. Both approaches
do not consider categories and predicates, and have not been integrated into a
DBMS.

4. A Category- and Selection-Enabled Nearest Neighbor Join

We assume a multidimensional schema S = [C, T,V] with attributes
C1, ..., Cm, T, V1, ..., Vn. We write s to indicate a relation over schema S, and |s|
for the number of tuples in s. For a tuple s ∈ s and an attribute Vi, s.Vi denotes
the value of attribute Vi. We assume a totally ordered similarity attribute T .
The concatenation operator r ◦ s appends to r the attributes of s.

Definition 1. Assume relation r with schema R = [C, T ] and relation s with
schema S = [C, T,V]. Let θ be a predicate on S. The Category- and Selection-
Enabled Nearest Neighbor Join, rnT [C, θ] s, returns, for a given tuple r ∈ r, the
tuples s ∈ σθ(s) with the same category C that have the closest T value:

rnT [C, θ] s =
{
r.R ◦ s.V | r ∈ r ∧ s ∈ σθ(s) ∧ r.C = s.C ∧

@ t ∈ σθ(s)
(
r.C = t.C ∧ |r.T − t.T | < |r.T − s.T |

)}
Example 1. Consider in Figure 1 relations r with schema R = [C, T ] and s
with schema S = [C, T,A,R,N, V ], and predicate θ ≡ (N = ‘CP’ ∧R > 0.7).
We apply Definition 1 with C = C and V = A,R,N, V to compute
z = rnT [C,N = ‘CP’ ∧R > 0.7] s. Thus, we join each outer tuple in r with
the temporally closest ‘CP’ measure having reliability greater than 0.7. Result
relation z is shown in Figure 3. For example, the nearest neighbor of tuple r0 is
tuple s0 since it is the closest. For tuple r1, s1 is its nearest neighbor. Even if
temporally closer, s2 has not been chosen as nearest neighbor since it does not
satisfy R > 0.7. For tuple r2, two tuples (s4, s6) that satisfy R > 0.7 exist at
the same minimum distance, and therefore two join matches are returned.
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z = rnT [C,N = ‘CP’ ∧R > 0.7] s
C T A R N V

r0s0 Soy 2014-06-15 1030 0.9 CP 1.40
r1s1 Soy 2014-06-21 1000 1.0 CP 1.08

r2s4 Pea 2014-06-20 1000 0.8 CP 4.20
r2s6 Pea 2014-06-20 1100 0.9 CP 4.03

Figure 3: NNJ Result z.

The NNJ in our example uses the feed name as a category attribute and the
time as similarity attribute. For the similarity attribute T any attribute whose
domain is totally ordered can be used (e.g., similarity on the price, the quantity,
the time, etc.)

5. The Robust NNJ Algorithm

This section describes the roNNJ algorithm, i.e., the implementation of our
category- and selection-enabled NNJ into the kernel of PostgreSQL. We give the
details of the extension, and present an efficient algorithm that: 1) computes the
join with a single access of the input relations, i.e., without redundant fetches;
and 2) does not suffer from false hits, i.e., each tuple that is not a nearest
neighbor is not read more than once.

5.1. Algorithm Properties

Sort merge has been proposed as a method for computing equijoins [26]
and as a method for computing nearest neighbor joins [2]. We describe an
implementation that efficiently combines these two approaches (equijoin on the
category, and nearest neighbor join on the similarity attribute), and that does
not do unnecessary backtracking. As reference point for the input relations we
use the tree in Figure 6(b), which applies selection push-down to s as a DBMS
optimization on C and θ.

r

5 6 2 6

sC,θ

1 3 4 6 7 9 10 1 3 5 8 2 4 5

‘Hay’ ‘Pea’ ‘Soy’

Figure 4: Relations r and sC,N=’CP’ ≡ σC∈πC(r)∧N=’CP’(s) are sorted by category C
(represented by the colour) and similarity attribute T (represented by the number).
No tuple may be available for a given timestamp: for example, a gap between (‘Pea’,1)
and (‘Pea’, 3) shows that no ‘Pea’ tuple is available for T = 2.
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The algorithm takes the two input relations r and sC,θ ≡ σC∈πC(r)∧θ(s),
and sorts them by (C, T ). The sorting by C guarantees that the tuples are
grouped according to their category value. Thus, as illustrated in Figure 4, all
tuples of feed ‘Hay’ (as well as all ‘Pea’ and ‘Soy’) are adjacent. This means
that, while processing an outer tuple r ∈ r with category ‘Pea’, no backtracking
in s to the tuples of category ‘Hay’ is needed since the nearest neighbors must
satisfy the equality on the categories. The sorting by T makes sure that tuples
in sC,θ that have been read previously but that were not nearest neighbors do
not have to be read again. For example, for r = (‘Hay’, 5), the inner relation
sC,θ is scanned until its nearest neighbors (‘Hay’, 4) and (‘Hay’, 6) are reached.
For the following r tuple, no tuple before (‘Hay’, 4) has to be considered from
sC,θ since it will have a higher distance than (‘Hay’, 4) itself. We now prove
that our algorithm does not fetch more than once any tuple that is not nearest
neighbor.

Lemma 1. (No Unnecessary Backtracking) The computation of rnT [C, θ] sC,θ

reads each tuple that is not a nearest neighbor at most once.

Proof. In the merge phase of a sort-merge computation, tuples might be read
more than once only during backtracking (i.e., going back to a previously scanned
row). We now show that backtracking, when applied, fetches only the nearest
neighbors. Let {ri−1, ri} ⊆ r, ri be the current tuple for which the nearest
neighbors have to be found, and d(ri, s) = |ri.T − s.T | be the absolute distance
between tuples ri and s. Since the input relations are sorted by C, T three cases
are possible:

1. ri−1.C < ri.C: straightforward. Since the nearest neighbors of ri must
have its same category, then they will, for sure, be in s after all tuples of
category ri−1.C. No backtracking needs to be applied.

2. ri−1.C = ri.C ∧ ri−1.T < ri.T . Let sj be the first nearest neighbor
of ri−1: since ri succeeds ri−1, then d(ri, sj) = d(ri−1, sj) + d(ri−1, ri).
For any k < j such that sk has the same category as ri (if sk has a
different category, case 1 re-applies), ri.C = sk.C⇒ d(ri, sk) = d(sk, sj)+
d(sj , ri−1)+d(ri−1, ri). Since sk.T < sj .T , we get d(sk, sj) > 0: any tuple
sk preceding the first nearest neighbor (sj) of ri−1 will have a bigger
distance to ri than sj itself, i.e., d(ri, sk) > d(ri, sj). No backtracking
needs to be applied.

3. ri−1.C = ri.C∧ ri−1.T = ri.T . Tuples ri−1 and ri share the same nearest
neighbors, and backtracking to the nearest neighbors of ri−1 has to be
applied. Let sj and sk be, respectively, the first and the last nearest
neighbors of ri−1. In order for Lemma 1 to hold, we must make sure that
between sj and sk no tuple exists that is not a nearest neighbor for ri.
Since sj and sk are nearest neighbors, they must have the same (minimum)
distance from ri, i.e., d(ri, sj) = d(ri, sk). However, this is true only if
d(ri, sj) = d(ri, sk) ⇔ sj .T = (ri.T - ε) ∧ sk.T = (ri.T + ε), with ε ≥ 0.
A tuple s ∈ s such that ri.T − ε < s.T < ri.T + ε cannot exists, otherwise
it would be nearest neighbor itself, instead of sj and sk.
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The above Lemma proves that our approach computes a NNJ with only one
scan of the input relations. The only tuples that our algorithm rescans through
backtracking are the nearest neighbors (if two outer tuples ri and ri+1 have the
same result tuples). For example, for tuple r2 of our main example, s4 and s6
are the nearest neighbors. Removing s5 before the sorting, ensures that s4 and
s6 will be adjacent elements in s. Backtracking would only be needed if a tuple
r3 existed with s4 and s6 as its nearest neighbors.

5.2. The roNNJ Algorithm

We now describe the roNNJ implementation of the NNJ operator. The
SortMerge roNNJ has been implemented as a set of states (cf. Figure 5), similar
to the traditional sort merge joins in commercial DBMSs.

FetchInnerJoinTuples

End FetchOuter

Initialize

No n.n. exists for r

last n.n. of r found

output all n.neighbors else

no more n.n. exist for r

find n.n. for r

else

!Null(r)

Figure 5: State diagram of Exec roNNJ

If the actual node to compute is a NNJ, the executor of the DBMS calls a
procedure Exec roNNJ(NNJObj ), where NNJObj is an object shared by all
states, storing, among others: *OuterPlan (a reference to the outer tuples),
*InnerPlan (a reference to the inner tuples), C (the position of the category
attributes in the schema of r and s), T (the position of the similarity attribute),
r (the current outer tuple for which the nearest neighbors have to be found), sc
(the current inner tuple), sn (the next inner tuple), nextState (the state to be
executed in the next iteration of the algorithm). Thus, opposite to an equijoin
node where only the current tuples are stored, for a NNJ both the current and
the next s tuples are needed. This is so since, after the sorting, we can decide
if sc is the nearest neighbor of r only after comparing its distance with the one
of sn.

The procedure is shown in Algorithm 1: it consists of a loop in which, at each
iteration, one state is executed and the object NNJObj is modified. NNJObj is
initially set to (r, sC,θ,C, T, null, null, null, 1), where sC,θ ≡ σC∈πC(r)∧θ(s), i.e.,
the right subtree of Figure 6. In each state tuples are fetched, joined, etc., and
the next state to be executed is set. For conciseness, we omit the name of the
object NNJObj in front of each variable, e.g., we write r instead of NNJObj.r.
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Algorithm 1: Exec roNNJ

Called as: Exec roNNJ(r, sC,θ,C, T, null, null, null, 1)
Input : NNJObj.{*OuterPlan, // r sorted by C, T

*InnerPlan, // s sorted by C, T
C, // category attribute

T, // similarity attribute

r, // current r tuple

sc, // current s tuple

sn, // next s tuple

nextState} // state to perform next

1 begin
2 while nextState ≤ 4 do
3 switch nextState do
4 case 1: Initialize(NNJObj )
5 case 2: FetchInner(NNJObj )
6 case 3: JoinTuples(NNJObj )
7 case 4: FetchOuter(NNJObj )

The following subsections describe the four states of roNNJ . For a given
r ∈ r, roNNJ returns all its nearest neighbors, i.e., all tuples minimizing their
distance to r, independent of their number.3

5.2.1. Initialize

In this state, we start the scan of the two relations. We initialize r with the
first outer tuple, and sc and sn with the first inner tuple. The next state to be
computed is FetchInner.

State 1: Initialize(NNJObj )

1 r ← fetchRow(OuterPlan)
2 sc ← fetchRow(InnerPlan)
3 markPosition(s)
4 sn ← sc
5 nextState = 2 // Go to FetchInner

5.2.2. FetchInner

In this state we fetch the next inner tuple. First, in lines 1-2 we check if an
inner tuple with the same category as the actual outer tuple exists at all: if not,
no join match exists for r, and we go to FetchOuter. In lines 4-8 we fetch a new

3For k-NNJ queries, joining r with the k closest tuples, a similar implementation with a
window of k s tuples from sc to sn can be used. The window is moved until sn is more far
than sc to r or has a different category.
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inner tuple: if r is closer to sn than to sc, then sn might be its (first) nearest
neighbor. Therefore we mark its position. In lines 9-12, as soon as the next
tuple sn has a higher distance to r or belongs to a different category, we are
sure that the previously marked tuple is its first nearest neighbor and no more
nearest neighbors exist. We, therefore, restore sc to the first nearest neighbor
and we go to state JoinTuples.

State 2: FetchInner(NNJObj )

1 if r.C < sc.C then
2 nextState = 4 // No NN exists for r

3 else
4 if !Null(sn) then
5 if r.C = sn.C ∧

(
d(r, sc) > d(r, sn) ∨ r.C 6= sc.C) then

6 markPosition(InnerPlan) // May be first NN of r

7 sc ← sn
8 sn ← fetchRow(InnerPlan)

9 if r.C = sc.C ∧
(
Null(sn) ∨ d(r, sc) < d(r, sn) ∨ r.C 6= sn.C

)
then

10 sc ← restorePosition(InnerPlan) // Fetch first NN of r
11 sn ← fetchRow(InnerPlan)
12 nextState = 3 // GoTo JoinTuples

13 else
14 nextState = 2 // Last NN of r not yet reched

5.2.3. Join Tuples

In this state we join r with all its nearest neighbors (for a given outer tuple,
multiple nearest neighbors might exist). We scan the inner relation from the
position marked in the state FetchInner, and we join r with sc. If sn has a
bigger distance to r than sc, then sc was the last nearest neighbor of r and we
go to FetchOuter. If sn does not have a bigger distance than sc, then sn is also
a nearest neighbor for r, and we do not change state.

State 3: JoinTuples(NNJObj )

1 Output(r ◦ sc) // Output Result Tuple

2 if Null(sn) ∨ d(r, sn) > d(r, sc) ∨ r.C 6= sn.C then
3 nextState = 4 // All NNs of r are found

4 else
5 sc ← sn
6 sn ← fetchRow(InnerPlan)
7 nextState = 3 // Still NNs to fetch

13



5.2.4. Fetch Outer

In this state, we first fetch a new outer tuple. Then, in case r shares the
same join matches of the previous outer tuple (lines 3-5), we go back in the
inner relation to its first nearest neighbor: this is the only backtracking that
our algorithm performs. We then jump to state FetchInner. In case no more
outer tuples exist, the algorithm ends.

State 4: FetchOuter(NNJObj )

1 r ← fetchRow(OuterPlan)
2 if !Null(r) then
3 if d(r, sc) ≤ d(r, sn) ∨Null(sn) then
4 restorePosition(InnerPlan)
5 sn ← fetchRow(InnerPlan)

6 nextState = 2 // Search the NNs of r

7 else
8 nextState = 5 // No more tuples to process

5.3. SQL Syntax Extension

Our NNJ operator can be used similar to the standard join operators, ex-
cept that since our operator is category-embedded, a second argument (i.e., the
category C) must be specified. The concrete SQL syntax for r nT [C, θ] s is:

SELECT *

FROM r NNJ s ON T USING C
WHERE θ

The keyword NNJ specifies the join type, ON specifies the similarity attribute
T , and USING the category attribute C. Condition θ can be specified along with
any other condition in the WHERE clause of the SQL query.

As an example consider an SQL query from the Swiss Feed Data Warehouse
that computes the derived nutrient ‘GE’ (Gross Energy). The Gross Energy
value of the feed samples in r is calculated as follows: i) one NNJ to retrieve the
closest measurement of nutrient ‘CP’ (Crude Protein) in s, i.e., N = ‘CP’; ii)
one NNJ to retrieve the closest measurement of nutrient ‘OM’ (Organic Matter)
in s, i.e., N = ‘OM’; and iii) evaluation of the formula 0.8 ∗ CP + 2 ∗ OM on
the join result.

SELECT C, T , ‘GE’, 0.8 ∗ CP + 2 ∗ OM

FROM (SELECT z1.∗, V AS OM

FROM (SELECT r.*, V AS CP

FROM r NNJ s ON T USING C
WHERE N = ‘CP’) AS z1 NNJ s ON T USING C

WHERE N = ‘OM’) AS z2

Note that no materialization of intermediate join results is needed. As soon
as an output tuple of z1 is produced, it can be pipelined to compute z2.
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6. The roNNJ Query Tree

In DBMSs regular joins are category- and selection-enabled, since they
support category attributes C and selections θ. For example, for a join
r ./r.C=s.C∧θ s, each joined pair must satisfy the equality on C and selec-
tion θ. A category- and selection-enabled join offers two important guarantees:
first, the join is computed once, independent of the number of categories in the
data; second, the DBMS can take advantage of any optimizations on C and θ to
improve performance. For example, if θ is selective, its evaluation can be pushed
down before the join to reduce the number of tuples to process. Ours is the first
NNJ solution that remains efficient when combined with other DBMS optimiza-
tions. Current solutions are not robust and easily degenerate with many index
false hits and redundant fetches.

6.1. The roNNJ Query Tree in Row-Stores

The query tree in Figure 6(a) illustrates the base case of our approach. The
top node nT [C, θ] Merge of the tree is category- and selection-enabled, and rep-
resents our roNNJ algorithm (cf. Section 5). For each tuple of the left subtree
the nT [C, θ] Merge node finds in the right subtree the nearest neighbors accord-
ing to T among the tuples that satisfy the equality on C and condition θ. The
category-enabled NNJ node, nT [C, θ] Merge, computes its left and right sub-
trees only once, independent of the number of categories, and can fully leverage
other optimizations.

nT[C, θ] Merge

sortC,T

r

sortC,T

s

s

(a)

nT[C, true] Merge

sortC,T

r

sortC,T

σFilter
C∈πC(r)∧θ

s

(b)

nT[C, true] Merge

sortC,T

r

sortC,T

σFilter
θ

σSortedIdxScan
C∈πC(r) (s)

(c)

Figure 6: A Category- and Selection-Enabled Nearest Neighbor Join Tree accesses
the input data only once. It can take advantage of all optimizations offered by the
DBMS.

For example, the tree in Figure 6(b), prior to computing the NNJ, applies
selection pushdown [22]. The right subtree makes an additional scan on r (for
reading the categories stored in it) and selects from s only the tuples with the
categories of r. Similarly, it pushes down the evaluation of θ. The selection
node passes to the sortC,T node only the portion of table s that contributes to
the NNJ result, i.e., the tuples that have the same categories as the tuples in r
and satisfy θ. This allows to avoid to sort all data.
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In Figure 6(c) we show that, if an index on s.C is present, the selection on C
allows the DBMS to fetch only the blocks of s that are relevant to the join. The
indexed selection σC∈πC(r)(s) is implemented using a SortedIndexScan4 [12]. It
does not fetch blocks that do not store a tuple with the categories of r since they
will not contribute to the result. After the relevant blocks have been fetched,
only the tuples with a matching category are kept. The tree in Figure 6(c)
also shows how to efficiently combine the push-down of selections on θ with a
SortedIndexScan on C. In such a case, condition θ must be evaluated before
the join, but after the selection on the categories C. This allows to compute
the selection on C using the index, i.e., without a full scan of table s; and it
allows to compute σθ on the fly (almost) for free when the relevant portions of
sare retrieved. Such optimizations can similarly be applied to the left subtree
using the groups of s.

Current NNJ solutions for nT are not category- and selection-enabled, which
limits the scope of the query optimizer. A category-unaware NNJ will join tuples
of different categories, which is wrong. Solutions based on the SegmentApply [3]
operator process categories individually, and fetch for each category the blocks
storing tuples of that category. If a block stores tuples of different categories,
the block is fetched multiple times. This is inefficient for big datasets. Solutions
based on a B-tree [4], suffer from index false hits if θ is evaluated on the fly.

6.2. The roNNJ Query Tree in Column-Stores

This subsection shows that category- and selection-enabled NNJs can also
be efficiently integrated into column-stores. In column-stores, our query tree5

combines both early materialization [23] and late materialization [24]: the for-
mer, since for computing sortC,T before the NNJ, columns6 C and T need to
be combined; the latter, since the rest of the columns from s are fetched only
after the NNJ has been computed. In general, column-stores try to avoid early
materialization to keep the data small. For example, in a NNJ query, for each
c ∈ ΠC(r) they select the oid of the entries with category c, fetch their T value
and compute the NNJ just using T . The other attributes are only fetched at
the very end to construct the result tuples. Such an approach incurs redundant
fetches when the relations are not clustered on C (remember that C is not fixed
and changes for different NNJ queries) and makes NNJ queries slow.

Figure 7 illustrates our query tree. In the left subtree of Figure 7, first r.C
is joined to r.T . This is not expensive because the columns of C and T are
stored with the same oid order, and the join can be performed with a scan (i.e.,

4A sorted index scan, when all values of an IN-subquery are known up-front (i.e., πC(r)),
performs for each value an index look-up on s and collects a list of the IDs of the (relevant)
blocks storing matching tuples. It then sorts and deduplicates the list, and fetches each of the
relevant blocks once in sorted order.

5We use MonetDB 11.21.5 [11] as a reference point.
6When we draw a node operating on an attribute set (e.g., C = C1, . . . , Cg), the node is

intended to be replicated for each attribute of the set.
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./Merge
oid

nT[C, true] Merge

sortC,T

./Merge
oid

r.C r.T

sortC,T

./Merge
oid

./Merge
oid

∩oid

σFilter
C∈πC(r)

s.C

σFilter
θ

s.Sθ

s.C

s.T

all remaining columns
from r and s

Figure 7: Each node in a Robust Nearest Neighbor Join Tree for column store DBMSs
returns only oids (e.g., the selections σ) so that the parent node can take advantage of
the order with which the (oid, value) pairs are physically stored. The actual column
values are returned by a join ./ node to the parent node only when the are needed.

a merge) of two columns. Afterwards, the join result is sorted by the values of
(C,T ).

In the inner subtree, s.C is accessed and the oids of the tuples with the
categories of r are returned. Column-stores implement such a condition as an
invisible join [25], which rewrites the semijoin between r and s, as a selection
predicate. It is implemented by scanning s.C and comparing it with the entries
of πC(r), which have been stored in a hash-table. Note that if the NNJ was
not category-enabled, such an optimization would be useless since, in order to
ensure the correctness of the result, only one category at a time may be passed
to the NNJ node. Subsequently, each column used in the θ condition (we refer
to them as Sθ) is accessed, and the oids of the tuples satisfying θ are returned.
They are intersected with the oids of the tuples of the selected categories. In
column-stores the order of the oids of a selection is preserved. Thus, the lists of
oids of the two selections come in the same order, and their intersection can be
performed by the parent node ∩oid with only a scan of the two lists. Afterwards
the values of s.C and s.T are fetched and joined to the previous oids (again,
the join is performed with a scan). Finally, roNNJ is applied as a SortMerge
procedure, and the remaining columns are concatenated to the result through
a join. Thus, late materialization is used for all attributes apart from C and T .

Summarizing, our approach is independent of the physical layout of the
relations: it avoids index false hits and redundant fetches also in column-stores.
Essentially, each column is read only once.
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6.3. Complexity of Query Tree

This section computes the number of operations for computing a category-
and selection-enabled NNJ in terms of disk I/Os, memory I/Os and CPU oper-
ations. While current approaches tend to become quadratic when dealing with
many categories or with selective predicates, we prove that our approach, inde-
pendent of the category and of the predicate selectivities, is upper bounded by
a complexity of n log n. As usual, we exclude the cardinality of the result from
our analysis.

6.3.1. Disk I/O Complexity

Lemma 2. (Disk) Let r be a relation with schema R = [C, T ], s be a relation
with schema S = [C, T,V], and θ be a predicate on S. The number of disk
I/Os for computing rnT [C, θ] s is independent of the category and predicate
selectivities, and is upper bounded by a linearithmic complexity.

Proof. Consider the number of Disk I/Os for computing each operation in
Figure 6(b).

Disk(read(r)) = Br

Disk(read(s)) = Bs

Disk(sort(r)) = Br logM Br

Disk(sort(σ(s)) =
(
sel(θ) ∗ sel(C) ∗Bs

)
logM

(
sel(θ) ∗ sel(C) ∗Bs

)
Disk(merge(r, σ(s)) = Br + sel(θ) ∗ sel(C) ∗Bs.

M = max(mem size,B) is the memory available for a relation with B blocks,

sel(θ) = |σθ(s)|
|s| is the predicate selectivity, with 0 ≤ sel(θ) ≤ 1, and sel(C) =

|σC∈πC(r)(s)|
|s| is the category selectivity, with 0 ≤ sel(C) ≤ 1.

As shown in Figure 6(b), the selection σ(s) is evaluated on the fly while
reading the Bs blocks of s and incurs no additional I/Os. This selection returns
sel(θ) ∗ sel(C) ∗ Bs blocks: sel(θ) ∗ Bs are needed for the tuples satisfying
θ, and sel(C) ∗ Bs blocks are needed for the tuples with the categories of r.
Disk(merge(r, σ(s))) is the cost of one scan done from our algorithm and it is
irrelevant compared to the sorting. The dominant Disk I/O of our approach is
therefore:

Disk 'Disk(sort(r) +Disk(read(s)) +Disk(sort(σ(s))

=Br logM Br +Bs +
(
sel(θ) ∗ sel(C) ∗Bs

)
logM

(
sel(θ) ∗ sel(C) ∗Bs

)
�

We analyze the cost for two typical scenarios. The first is the scenario when
the number of query points in r is negligible compared to the size of s (e.g., in
a data warehouse environment, the size of r is small compared to the size of
the fact table s). The second scenario is for the case when the number of query
points gets large.
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• Scenario 1: |r| � |s|
From |r| � |s| we get Br � Bs, i.e., the cost for sorting r is negligible.

1. In the best case, either θ is always false, i.e., sel(θ)→ 0, or all tuples
in r belong to the same category, i.e., sel(C)→ 0:

sel(θ)→ 0 ∨ sel(C)→ 0⇔ Disk(sort(σ(s))) = 0

For sel(θ)→ 0 or sel(C)→ 0, the number of Disk I/Os on s provides
the lower bound for our approach: since Disk(sort(σ(s))) = 0, from
the result of Lemma 2 we get Disk ' Disk(s) = Bs.

2. In the worst case, all tuples satisfy predicate θ, i.e., sel(θ) = 1, and
there exists a tuple in r for any possible category of s, i.e., sel(C)→ 1.

sel(θ)→ 1 ∧ sel(C)→ 1⇔Disk(sort(σ(s)) = Bs logBs

For sel(θ)→ 1 and sel(C)→ 1 the number of Disk I/Os on s is the
upper bound of our approach: since Disk(sort(σ(s))) = Bs logM Bs,
we get Disk ' Disk(s) = Bs logM Bs.

• Scenario 2: otherwise.
Since sel(θ) ≤ 1 and sel(C) ≤ 1, the cost for sorting r dominates the
cost for sorting σ(s). Since Disk(sort(r)) = Br logM Br, we get Disk '
Disk(sort(r)) ' Br logM Br.

Opposite to current approaches, which suffer from false hits and redundant
fetches, the number of Disk I/Os for our approach does not deteriorate in the
presence of θ and C. In fact, since 0 ≤ sel(θ) ≤ 1 and 0 ≤ sel(C) ≤ 1,
our approach benefits from the predicate and category selectivities because the
number of blocks to sort shrinks. Current solutions based on B-Tree indexes,
instead, suffer since they have a 2|r| × 1

sel(θ) complexity, and, in the presence

of a selective predicate, end up in fetching many blocks of s for each single r
tuple. Note that the cost of our approach is independent of any clustering: we
fetch each block only once independent of the number of categories stored on
the block. Current solutions based on Segment Apply, instead, fetch a block m
times if the block stores tuples of m categories.

6.3.2. Memory I/O Complexity

Lemma 3. (Memory) Let r be a relation with schema R = [C, T ], s be a
relation with schema S = [C, T,V], and θ be a predicate on S. The number
of memory I/Os for computing r nT [C, θ] s is independent of the category and
predicate selectivities, and is upper bounded by a linearithmic complexity.

Proof. Similar to Lemma 2. The memory I/O in the general case is:

Mem. 'Mem.(sort(r)) +Mem.(read(s)) +Mem.(sort(σ(s)))

= Br log2Br + 0 +
(
sel(θ) ∗ sel(C) ∗Bs

)
log2

(
sel(θ) ∗ sel(C) ∗Bs

)
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Since the relations are initially read from disk, there is no memory I/O for the
first read of s. For the sorting, given B blocks, B logMB I/Os are done on
disk: B log2B −B logMB I/Os are done in main memory. Since B log2B −
B logMB = B log2B ∗ (1 − 1

log2M
) ' B log2B, the cost of sorting is given by

substituting B with the number of blocks to sort, i.e., Br for the left input, and
sel(θ) ∗ sel(C) ∗Bs for the right input.
�

We analyze the cost for the two typical scenarios.

• Scenario 1: |r| � |s|
Remember that the cost for sorting r is negligible.

1. In the best case:

sel(θ)→ 0 ∨ sel(C)→ 0⇔Mem.(sort(σ(s))) = 0

For sel(θ) → 0 or sel(C) → 0, the number of Memory I/Os on s is
the lower bound for our approach, which is zero since no sorting is
computed: since Mem.(sort(σ(s))) = 0, from the result of Lemma 3
we get Mem. 'Mem.(s) = 0.

2. In the worst case:

sel(θ)→ 1 ∧ sel(C)→ 1⇔ Mem.(sort(σ(s))) = Bs log2Bs

For sel(θ) → 1 and sel(C) → 1 the number of Memory I/Os
on s corresponds to the upper bound of our approach: since
Mem.(sort(σ(s))) = Bs log2Bs, we get Mem. = Mem.(s) =
Bs log2Bs.

• Scenario 2: otherwise.
Since sel(θ) ≤ 1 and sel(C) ≤ 1, then the cost for sorting r, i.e.,
Mem.(sort(r)) = Br log2Br, is always dominant, and we get Mem. '
Mem.(sort(r)) = Br log2Br.

The memory I/O of our approach benefits from the predicate selectivity
and the category selectivity since 0 ≤ sel(θ) ≤ 1 and 0 ≤ sel(C) ≤ 1. It is
independent of the overlapping of the categories in the blocks. In the best case,
our approach has no memory I/O at all.

6.3.3. CPU Complexity

Lemma 4. (CPU) Let r be a relation with schema R = [C, T ], s be a relation
with schema S = [C, T,V], and θ be a predicate on S. The number of CPU op-
erations for computing rnT [C, θ] s is independent on the category and predicate
selectivities, and is upper bounded by a linearithmic complexity.

20



Proof. (CPU) From the tree of Figure 6(b), the CPU costs of each operation
are:

CPU (σ(s)) ' |s|
CPU (sort(r)) ' |r| log2|r|
CPU (sort(σ(s)) '

(
sel(θ) ∗ sel(C) ∗ |s|

)
log2

(
sel(θ) ∗ sel(C) ∗ |s|

)
CPU (merge(r, σ(s))) ' |r|+ sel(θ) ∗ sel(C) ∗ |s|

For the selection σ(s), each tuple of s must be evaluated against condition
C ∈ πC(r) ∧ θ. The SortMerge procedure consists of a sort and of a merge
step. The merging is negligible compared to the sorting. All CPU costs are
approximated (symbol ') since each CPU operation for sorting or merging has
actually cost 3: 1 for comparing the category attribute, 1 for comparing the
similarity attribute, and 1 for the logical ∧ between the two comparisons. The
dominant CPU cost for our approach is:

CPU 'CPU (sort(r)) + CPU (σ(s)) + CPU (sort(s))

'|r| log2|r|+ |s|+
(
sel(θ) ∗ sel(C) ∗ |s|

)
log2

(
sel(θ) ∗ sel(C) ∗ |s|

)
�

We analyze the CPU cost for the two typical scenarios.

• Scenario 1: |r| � |s|

1. In the best case:

sel(θ)→ 0 ∨ sel(C)→ 0⇔ CPU (sort(σ(s))) ' 0

For sel(θ)→ 0 or sel(C)→ 0, the number of CPU operations has its
lower bound: since CPU (sort(σ(s))) ' 0, from the result of Lemma
4 we get CPU ' CPU (s) ' |s|, which is linear.

2. In the worst case:

sel(θ)→ 1 ∧ sel(C)→ 1⇔ CPU (sort(σ(s))) ' |s| log2 |s|

For sel(θ)→ 1 and sel(C)→ 1 the number of CPU operations corre-
sponds to the upper bound of our approach: since CPU (sort(σ(s)))=
|s| log2 |s|, we get CPU ' CPU (s) ' |s| log2 |s|.

• Scenario 2: otherwise.
Since sel(θ) ≤ 1 and sel(C) ≤ 1, then the cost for sorting r is always dom-
inant: since CPU (sort(r))' |r| log2 |r|, we get CPU ' CPU (sort(r)) =
|r| log2 |r|.

Example 2. We use the Swiss Feed Data Warehouse (cf. Figure 1) to compute
rnT [C,N = ‘CP’ ∧ R>0.7] s with the following parameters: 20 categories in r
(i.e., the number of cereals); a fact table s with Bs = 10M blocks and |s| = 1G
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tuples; the predicate selectivity sel(N = ‘CP’ ∧ R> 0.7) is 3% (i.e., among all
lab analysis 3% are crude protein measurements and have a reliability greater
than 0.7); the category selectivity sel(C) is 5% (i.e., among all possible animal
feeds 5% are cereals); mem size = 4k (the default buffer size in PostgreSQL in
terms of number of blocks). The size of r is negligible compared to the size of
the fact table s, and from the result of Lemmas 2, 3, and 4 we get:

Disk ' 15k log4k 15k + 10M ' 10M

Mem. ' 15k log2 15k ' 200k

CPU ' 1.5M log2 1.5M + 1G ' 1G

Thus, the sorting has only a low impact for our approach since we take
direct advantage from the predicate and the category selectivities, and reduce
the amount of data to sort. This can be easily verified in our experiments in
Figure 8(c) and Figure 8(d) where, respectively, for any predicate selectivity
and any category selectivity below 20%, roNNJ stays stable.

7. Experiments

This section empirically compares our approach with the state of the art
techniques for computing NNJs. We consider: i) the Antijoin [27] (Antijoin)
that, for a pair (r,s) checks via a NOT EXISTS subquery that no closer tu-
ple t with the same category exists in s; ii) the B-Tree [4] (B-Tree), using
indexed MIN and MAX subqueries; iii) the SegmentApply [2],[3] (SegApply),
implemented as a Lateral query running multiple (one per category) category-
unaware SortMerge NNJs; iv) the robust NNJ (roNNJ). We compute NNJs
using the Swiss Feed Data Warehouse [5]. As for our running example, we use
the animal feed as category attribute and the time as similarity attribute. In
the average case, we have 20 categories in r (i.e., the number of different cereals
in the Swiss Feed Data Warehouse), |r| = 60k (since we have 3k timestamps per
feed on average), |s| = 1G, a predicate with selectivity sel(θ) = 0.05, and an
index on the category attribute. Throughout Sections 7.1 - 7.5, we vary each
of those variables and show how the approaches behave. Finally, we compute
NNJs using the GREEND [28] dataset.

Due to its high runtime, the Antijoin will just be shown in scenarios where
its performances are competitive. All approaches are implemented using Post-
greSQL 9.3.4, Apache Cassandra 3.4, and MonetDB 11.21.5.

For the experiments on disk, we used a 2.66 GHz Intel Core i7 machine
with 4GB main memory and a 480 GB Solid State Drive, running Mac OS X
10.9. The PostgreSQL cache (shared buffers parameter) and the memory used
for sorting (work mem parameter) have been set to their default value, i.e.,
respectively, 32MB and 1MB.

For the experiments in main memory, we used a 2 x Intel(R) Xeon(R) CPU
E5-2440 (6 cores each) @ 2.40GHz with 64GB main memory, and running Cen-
tOS 6.4 (L1 cache: 192 KB, L2 cache: 1536 KB, L3 cache: 15360 KB). The
PostgreSQL cache has been set to 10 GB and the memory used for sorting is 10

22



GB. All indices and all data are kept in memory and no disk I/O for reading or
sorting is done.

For the experiments on column-store DBMSs, we use MonetDB and Cas-
sandra. Specifically, MonetDB has been used for the computation of SegApply
(Cassandra does not support subqueries), while Cassandra for the computation
of Antijoin and B-Tree (MonetDB is not robust for computing Antijoin and
starved the memory of our machines; it never takes advantage of the B-Tree for
computing Min/Max queries).

7.1. Scalability on Disk

Figure 8 shows that roNNJ is the most robust technique on disk since it
fetches each block of the fact table only once, independent of the predicate and
category selectivities.

The Antijoin (Figure 8(a)) quickly deteriorates since it first builds all (r, s)
pairs with the same category, and then checks in s that no closer tuple than
s exists. This has a cubic complexity, and is only efficient when the predicate
(Figure 8(c)) selects very few tuples (e.g., sel(θ) = 10−6% selects only one tuple
in our scenario).
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Figure 8: Scalability on Disk by varing the size of r (a), the size of sC,θ (b), the
predicate selectivity (c), and the category selectivity (d).

Although the B-Tree does not require any sorting and its performances are
almost independent on the size of the fact table (Figure 8(b)), it becomes ex-
tremely inefficient in the presence of a selective predicate (Figure 8(c)). Fur-
thermore, it does not scale well if the size of r grows (Figure 8(a)), and becomes
one order of magnitude slower than roNNJ for more than 200k outer tuples.
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For this approach, the number of index look-ups to compute does not depend
on the number of categories stored in r, but just on its cardinality. However,
in Figure 8(d) we show that with few categories the index false hits point al-
ways to the same blocks that, once fetched, are cached in memory; with many
relevant categories, instead, the false hits fetch different blocks and the runtime
increases.

Figure 8(a) shows that, between 0 and 260k outer tuples, SegApply is stable
since the main cost (fetching and sorting the relevant blocks of the fact table)
stays the same. The jump after 260k outer tuples is because the sorting of
r is done first in main memory using Quicksort, then on disk using external
sorting. The same happens after 60k tuples for roNNJ , because it sorts the r
tuples all together (and not just one segment at the time). The reader can see
in Figure 8(b) that SegApply does not scale well when the size of the fact table
increases, since the number of blocks to fetch redundantly increases. For more
than 900k inner tuples, the blocks to read redundantly cannot all be cached in
memory anymore and have to be refetched from disk. In Figure 8(d) we show
that, the higher the category selectivity, the higher is the number of times that
the blocks of the fact table are read redundantly.

For completeness, in Figure 8(b) and Figure 8(c), we show that non-indexed
approaches (such as SortMerge, SM ) are slower than their indexed counterpart
since they fetch all blocks of s rather than just the ones storing tuples with the
categories of r.

7.2. Scalability on Main Memory

Also in main memory, roNNJ is the most robust approach. For an in-
memory execution, Quicksort is used by both roNNJ and SegApply, and no
jump in the runtime occur when the size of r increases (Figure 9(a)). As shown in
Figure 9(b), when the number of inner tuples increases SegApply reduces its gap
to roNNJ since the latency of reading the blocks redundantly from memory is
smaller than the one from disk. However it still suffers from redundant memory
fetches when the category selectivity increases (Figure 9(d)).

In Figure 9(c) we show that, in the presence of an extremely selective predi-
cate (e.g., sel(θ) = 0.000001 selects only one tuple in our scenario), the Antijoin
performs better than the B-Tree because it fetches from memory each relevant
block |r| = 60k times rather than 1

0.000001 = 1M times. However, the reader
can see in Figure 9(d) that, opposite to the experiments on disk, the runtime of
the B-Tree is pretty stable when the number of categories to process increases:
it is constant up to a category selectivity of 12%, and it then slightly increases
since the buffering effect of the operating systems has less impact when many
categories are processed.

7.3. Scalability Without Indexes Availability

In this subsection we evaluate the approaches when no index is available on
the category attribute, and we show the state of the art solutions are two order
of magnitude slower than roNNJ since they are not category-enabled.
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Figure 9: Scalability on Memory by varying the size of r (a), the size of sC,θ (b), the
predicate selectivity (c), and the category selectivity (d).

In Figure 10(a), SegApply must performs 20 scans on the fact table (since 20
categories are stored in r), and is thus 20 times slower than roNNJ . When the
category selectivity increases, the number of scans of the fact table increases,
too, making the approach inefficient (cf. Figure 10(b)).

When only an index on T is available, the B-Tree checks the equality on
C similar to the selection θ. This increases the number of index false hits
computed. If the closest tuple fetched does not have the same category as the
outer tuple, a false hit has been computed, and the index must be scanned
until a tuple with the same category satisfying θ is found. This is extremely
inefficient.
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Figure 10: Scalability when an index on C is not available, varying the predicate
selectivity (left) and category selectivity (right).
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7.4. Scalability in Column-Store DBMSs

Figure 11(a) shows that the B-Tree is competitive only for a small r relation
(e.g., less than 1k tuples). This is so because, when a secondary index is present,
Cassandra finds the nearest neighbor of r by first selecting in the fact table all
the tuples of category r.C, and then computing the Min and Max on the selected
tuples. Retrieving all the tuples of the same category makes this approach slow
for a large outer relation. However, in the presence of a very selective predicate
(Figure 11(c)), such an approach takes advantage of the predicate selectivity
and performs opposite to its row-store counterpart. It avoids the false hits since
it scans each column involved in θ and filters out all the entries not satisfying
it on the fly. The approach is, at its best, 2 order of magnitude slower then
roNNJ .
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Figure 11: Scalability in Column-Stores by varying the size of r (a), the size of sC,θ

(b), the predicate selectivity (c), and the category selectivity (d).

Similarly, Antijoin quickly deteriorates since it has a cubic complexity even
if just C and T have to be accessed for computing the distances.

By comparing Figure 11(a) with Figure 9(a), the reader can see that SegAp-
ply suffers much more when it is implemented in column-store DBMSs because
every column accessed before the NNJ (i.e., C, T , and the ones involved in
θ) is affected by redundant fetches. In our experiments redundant fetches are
repeated 3 times: for the category attribute (feed name) and for the attributes
involved in θ (nutrient name and reliability). Furthermore, by comparing Fig-
ure 11(b) with Figure 9(b), the reader can see that, since a block stores much
more (OID, Value) pairs than tuples, the probability that a block stores data of
different categories is much higher in column-store than in row-store databases,
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and much more redundant fetches are computed. However, in the presence of
a very selective predicate (Figure 11(c)), SegApply by applying early materi-
alization fetches T only for the (few) entries satisfying θ, and speeds up the
NNJ.

7.5. Scalability on a Clustered Fact Table

In this subsection we evaluate the approaches in the atypical scenario when
a primary index is available, i.e., when the fact table is clustered by (C, T ).
This cannot always be ensured in real world applications, since the category
and similarity attributes change for different queries. In Figure 12(a) we show
that when a primary index is available, the B-Tree suffers less compared to
Figure 8(a) because the data is clustered: each index false hit happens on the
same or on the next block that, once fetched, is cached in main memory. The
approach7 remains however not competitive compared to roNNJ . SegApply
performs the same as roNNJ since no redundant fetches are computed (most
of the blocks store tuples of exactly one category). SegApply implemented on
column-store DBMSs is even faster than roNNJ , for two reasons: i) when the
fact table is clustered by (C, T ) no redundant fetches are done; ii) the value of
every attribute (except T ) is fetched after the NNJ in sort-order, i.e., with just
a scan of the columns.
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Figure 12: Scalability on a Clustered Fact Table, by varying the predicate selectivity
(left) and category selectivity (right).

7.6. Real World Queries in the Swiss Feed Data Warehouse

In this subsection we evaluate how the approaches compute three queries Q0,
Q1, and Q2 computing derived nutrients in the Swiss Feed Data Warehouse.
Derived nutrients are computed thorugh a sequence of NNJs (cf. Section 5.3):

7For the experiment on column-store DBMSs, we use a clustered B-Tree in Apache Cas-
sandra, and we rewrite the Min(T )/Max(T ) queries as ORDER BY T LIMIT 1 statements.
MonetDB does not optimize MIN(T )/MAX(T ) queries when a predicate θ is present, even if
a primary index on T is available. It is therefore less efficient than Cassandra in computing
NNJs with a B-Tree since, for a given r ∈ r, it always fetches all tuples from s with category
r.C.
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Q0, with selectivity sel(θ) = 0.1 and with two NNJs, calculates the Gross Energy
value; Q1, with sel(θ) = 0.05 and with two NNJs calculates the Degradability of
Proteins; Q2, with sel(θ) = 0.1 and with five NNJs, calculates the Absorbable
Proteins. For each of those queries, 20k r tuples of 3 different feeds (categories)
have been used; the predicate θ is not important since, independent of the
condition itself, only its selectivity sel(θ) influences the runtime (in row-store
DBMSs) of the approaches.
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Figure 13: Left Chart: Top Queries in Swiss Feed Data Warehouse: Q0 (sel(θ) = 0.1,
2 NNJs), Q1 (sel(θ)=0.05, 2 NNJs), Q2 (sel(θ)=0.1, 5 NNJs). Right chart: Query on
the GREEND dataset: High Power Consumption (sel(θ) = 0.001,1 NNJ)

The left plot of Figure 13 shows that Q2 is the query taking longest among
the three. This is due to the higher number of joins (5 NNJs) computed. The
B-Tree is two order of magnitude slower than roNNJ since, after each NNJ,
the number of outer tuples for the next NNJ of the sequence gets bigger due to
multiple join matches: the number of index look-ups to compute compared to
the previous join also grows. Comparing Q0 with Q1 (same number of NNJs
but sel(θ) reduced from 0.1 to 0.05), we see that the B-Tree and roNNJ become
slightly better: the former since the number of result tuples of the first join
decreases (this determines the number of outer tuples for the second join of
the sequence), the latter since the number of relevant tuples to sort shrinks.
Overall roNNJ is the fastest for all three queries because it does not fetch
blocks redundantly and it does not suffer from θ.

7.7. Real World Query for the GREEND dataset

The GREEND dataset [28] is publicly available and contains detailed power
usage information obtained through a measurement campaign in households in
Austria and Italy from January 2010 to October 2014. It stores 110M measure-
ments. Tuples are stored as <BuildingId, T,Device1, . . . , Devicem> where T
is the time when the current measurement has been taken at the building iden-
tified by BuildingId, and Devicei stores the amount of energy consumption of
a given device. The right plot of Figure13 shows how the approaches perform
on the GREEND dataset for the following query:

High power usage: For each measurement where Device1 is switched on,
compare its power consumption with the power consumption when all devices
are on:
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• C = {buildingID}, T = T

• |r| = 11M, i.e., the rows where Device1 is larger than 0

• sel(θ) = 1/1000, i.e., θ ≡ Device1 > 0 ∧ . . . ∧Devicen > 0 selects 0.1% of
the tuples

• |πbuildingID(r)| = 9 ⇒ sel(C) = 1, i.e., 9 buildings have been moni-
tored for this dataset, and for each of them measurements exist where the
Device1 is on.

The B-Tree performs worst because of a highly selective θ and a high number
of r tuples: 11M ×2 × 1000 index false hits are computed. SegmentApply
performs also slower than roNNJ because of the redundant fetches: since only 9
categories are present, indices cannot help because the number of tuples of the
same category is too high, and 9 scans (i.e., one per category) of the dataset are
computed. roNNJ performs best because it access the dataset only once and
does not compute index false hits.

8. Conclusion and Future Work

In this work we have introduced a new algebraic operator: the category-
and selection-enabled Nearest Neighbor Join. Its evaluation query tree is not
dependent on the physical organization of the relations, and, opposite to the
state of the art solutions, does not suffer from index false hits and redundant
fetches. We have described the implementation of our query tree both in row-
store and in column-store DBMSs. We have shown that, opposite to the state of
the art solutions, a category- and selection-enabled query tree enlarges the scope
of the query optimizer, which can take full advantage of the optimizations on the
categories and on the predicate. We have implemented an efficient algorithm,
roNNJ , that computes the NNJ in a single scan of the input relations. We
have analytically shown that our approach is upper bounded by a complexity
of n log n. As future work, we intend to introduce a NNJ that computes the
similarity for timestamps with different granularities: in the Swiss Feed Data
Warehouse, for some measurements, only the month, the season or the year are
available instead of the full date. We also intend to apply our findings in nearest
neighbor joins with queries with user-defined distance functions.
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