
Department of Informatics, University of Zürich

Software Project Report

Development of a student-
friendly code editor

Luka Lapanashvili
13-934-062

luka.lapanashvili@uzh.ch

June 10, 2017

supervised by
Prof. Dr. Prof. Dr. Michael Böhlen

and
Katerina Papaioannou

Software Project Report Luka Lapanashvili
13-934-062

1

Table of Contents

1 Introduction ... 2

2 Monolith Code Implementation .. 3

3 New Features ... 4

3.1 Backup System .. 4

3.2 Update Installer & Downloader .. 5

3.3 Custom Commands ... 6

3.4 Native Console Options ... 7

4 Testing .. 7

5 Conclusion .. 8

6 Bibliography ... 9

Software Project Report Luka Lapanashvili
13-934-062

2

1 Introduction

Monolith Code is a light weight, fast and intuitive code editor that allows the user to tinker around

with small algorithms efficiently. It provides a set of powerful feature while maintaining a low-profile

user interface that is not intimidating for beginners. In its simplest form, it looks like a stock text editor

provided by the operating system manufacturers (Lapanashvili, GithHub, 2017).

There are many integrated development environments like Eclipse or Intellij that contain a rich feature

set and integrated tools for productivity. Unfortunately, none of those IDEs are tailored to tinkering

projects, which are especially important for beginners. The main problem with the big IDEs is, that

while providing a variety of tools, they take a long time to boot up. Furthermore, for every code

snippet that a user wants to test, a new project, packet and class needs to be created. Even when

creating a dedicated project for testing standalone scripts, most IDEs will not run the code if the

project contains other non-compiling classes.

On the other hand, the alternative option would be to use a combination of a plain text editor with a

terminal. Even though this is the preferred working environment for most professional programmers,

a lot of beginners are missing some key features with this workflow. Syntax highlighting is very

important for programmers regardless of the skill level. Also, working with a terminal can be

intimidating for certain novice programmers.

Monolith Code aims to bridge the gap between the bare minimum text editor terminal setup and a

fully fleshed out IDE. The idea is to provide the most useful and important tools of an IDE while

maintaining the simplicity of a plain text editor, which makes it great for educational purposes. The

main features of Monolith Code towards this direction are: syntax highlighting, support for multiple

languages, code completion, code compilation, inline math calculation, search and replace and

customizable themes.

In this project, I enhance Monolith Code with: (a) a backup system, (b) automated updates, (c)

custom execution commands and (d) native console integration. The rest of this report is structured

as follows: In Section 2 I describe the structure and implementation behind Monolith Code. In

section 3, I will describe in detail the changes required to the base application to achieve a successful

implementation of the new features. Section 4 contains a brief description of the carried-out testing

to ensure the stability and reliability of Monolith Code. The end of the report is marked by the

conclusion in section 5.

Software Project Report Luka Lapanashvili
13-934-062

3

2 Monolith Code Implementation

The class hierarchy of Monolith Code is very flat because there is no real need for inheritance.

Instead, it is based on a component based architecture. There is one main class

MonolithFrame.java that initializes different subcomponents like the

LanguageFactory.java and StatusBar.java. This modular structure allows for new

features to be developed independently from the core as well as selective activation of features.

Additionally, the architecture allows for modding support to be implemented further down the road.

MonolithFrame.java is the core component of the entire code editor. The class extends from

JFramePlus.java which is a slightly modified subclass of java’s GUI library “Java Swing”. It

defines a window containing all graphical as well as logical components.

Graphical components are as follows:

- Built in menu bar JMenu.java on top of the window with a range of menu items

(JMenuItem.java)

- Different kinds of panels (JPanel.java) which are used to display information about the

current open file as well as modified panels that are used to display status messages

(StatusBar.java)

- Hidden inside a divider (JSplitPaneWithZeroSizeDivider.java) is the integrated

console (Console.java) which is used to inform the user about important notifications as

well as errors. The console also accepts a limited range of commands that activate certain

features.

- The main component of MonolithFrame.java is the text field

(RSyntaxTextArea.java). It is derived from the built-in swing component

JTextArea.java, but extends it with powerful features like syntax highlighting, code

completion and other functionalities that are common in modern IDEs.

RSyntaxTextArea.java is distributed in the RSyntaxTextArea library developed by

“bobbylight” since 2005 (bobbylight, 2008). After trying out different libraries like jsyntaxpane

(Unknown, 2008), SyntaxPane by Sciss (Sciss, 2011) and a self-attempt to create a parser, I

came to the conclusion that RSyntaxTextArea was the best library to use in this project for the

following reasons: It is open source, it is still actively developed and the developer is active on

GitHub fixing issues, reacting to reports and accepting merge requests.

Logical Components:

- The LanguageFactory.java is a component responsible for everything related to the

different programing languages. On initial start, it generates a list of strings and definitions

that correspond to the operating system and language, like the extension filter and the

compile and run commands for the languages.

- Monolith Code stores all user settings on the hard drive, which allows persistent configuration

of the editor throughout sessions. This is managed by the Settings.java class.

- CodeBuilder.java is the class responsible for assembling a command and executing it

via the integrated Runtime executer. A command alongside with the language reference is

passed from MonolithFrame.java to the CodeBuilder.java. It is determined, if the

Software Project Report Luka Lapanashvili
13-934-062

4

passed language supports execution. Following the proper command according to the

operating system is chosen and executed.

- Alongside with the CodeBuilder.java there needs to be a second class that handles the

In and Out streams of the created process. This task is realized by BuildConsole.java. It

is derived from the previously mentioned Console.java and extends it with an additional

toolbar for quickly accessing the most important process relevant functionality.

- Expression.java is an external math library that handles evaluations of mathematical

equations. It is directly integrated into MonolithFrame.java. The currently selected line

in the code editor can be directly sent to be evaluated. The result is directly appended to the

end of the selection. Therefore, the user can do mathematical calculations directly inline.

Expression.java is part of the GitHub repository EvalEx created by uklimaschewski

(uklimaschewski, 2012).

3 New Features
During the software project, I implemented crucial functionality according to the scheduled task list

as well as some additional features that were necessary for a public release. All these features are

essential for Monolith Code to be a viable tool for computer science students. Among other things,

the task list includes a backup system, an application updater and most importantly the possibility to

provide custom compile and run commands alongside, with the option to bypass the provided

terminal and instead utilize the native terminal.

3.1 Backup System
From the beginning of the development, there were multiple instances of unexpected crashes. Even

though this is to be expected for a software in development, it is nevertheless very frustrating to

experience. A clean code structure and many fail safes can reduce the occurrence of crashes, but

unfortunately there is no way to guarantee a bug free application. The backup system is designed to

further mitigate the severity of loss of important documents by automatically managing backups

without any specific input from the user. Upon application start, a separate thread is spawned and the

backup system is allocated to that thread. This approach grants multiple advantages, such as a

seamless experience while the backups are written to the hard drive and it also makes sure that in

case of an unexpected problem on another application thread, the backup will still be executed due

to the nature of multithreading.

The BackgroundSave.java class defines an integer SAVE_INTERVAL which defines in what

interval the backups should be generated. To avoid unnecessary write actions, the system checks the

last saved file against the current file to be saved. If there are no changes, the backup is not triggered

for this interval. All backup files are written to a local directory of the java application called

“autosave”. The name of the backup file is made up by the exact timestamp of the occurred save and

the name, that was defined by the user. To avoid a large number of old backups, the system checks

on every application start the “autosave” folder and determines which files are older than the maximal

allowed days (DEF_BACKUP_MAX_SAVE_DAYS) and deletes them if necessary. This setting can be

accessed by the user in the settings file and is set to 30 days by default. To avoid a total erase of

Software Project Report Luka Lapanashvili
13-934-062

5

backups after an extended period of inactivity, for example a holiday season, there is an override that

protects the latest few files from being erased. This value is controlled by MIN_KEEP_NUMBER.

3.2 Update Installer & Downloader
A key aspect of an application that is in rapid development, while being publicly available, is the

possibility to automatically update the application. Often it is very crucial to deploy critical hotfixes to

maintain an overall satisfied userbase. The update system prompts the user on application start for

the installation of a recent version. After the confirmation, the update is automatically downloaded

and installed. Fortunately, due to the small size of the application, this process does not take longer

than a few seconds.

The updater system works by comparing the BUILD number against a remote file on a webserver. A

VERSION number is displayed alongside the BUILD number, but serves purely for decorative

purposes. The BUILD number is a unique id and is incremented on every build. This approach allows

to circumvent complicated parsing of the version numbers and implementation of custom comparison

functions and works with simple integer comparison. If the update prompt is confirmed by the user,

the Updater.jar starts up. A big advantage of Java is that it does not block the .jar files even when

executing them. This allows the Updater process to delete the old jar files including the source files

and replace them with the updated ones, while the application is still running.

The update process itself is fairly simple. A zipped container with the updated jar files and resources

is downloaded and unzipped, which causes the old files to be overwritten. Finally, the zip file gets

deleted. As mentioned previously, this process takes no longer than a few seconds. To engage the

update, the user simply needs to restart the application.

The Updater can also act as a standalone installer. Since it is a separate application, it hast no

information about the version of the main application. When looking for updates, the main application

passes its version number to the Updater via an Inter Process Communication (IPC) call. If no

arguments are passed to the updater, it acts as a first-time installer.

Software Project Report Luka Lapanashvili
13-934-062

6

3.3 Custom Commands
The alpha version of Monolith Code was missing an essential component to be an effective tool not

only for students, but for every user in general. This component being an interface to set user defined

commands for building and executing code. Even though the feature itself was always present in the

application and was set to a meaningful default setting, it was inaccessible for the user. The ability to

customize the command, has many advantages. For once, it gives the user a way to adjust the default

command, in cases where the default command would not work on that specific instance of hardware

or the specific configuration of the operating system. Furthermore, it allows more advanced users to

set up automated procedures. For example, a user can specify a build command for the HTML

language. Even though HTML is internally marked as a non-compliant language, the user can still

activate the compilation. While the compile code does not necessarily have to be a real compile code,

but instead can be any sort of process script. In the example with the HTML project, the compile code

could be misused to upload the html document to an ftp server. Finally, the most obvious application

case of the custom command, is to pass arguments to the compiled executable.

As mentioned above, the basic architecture for compilation of code was already present in the

application. The procedure was as follows: The user requests to build and run the current document

via a shortcut or by the menu bar. MonolithFrame.java first checks if the file already has a path

and name assigned to it. If not, a save file prompt is displayed. At this point, the prompt also suggests

a name according to a customizable algorithm defined for each language in the

LanguageFactory.java. This is especially useful for languages, where the class name must

correspond to the filename, like in Java. After the save procedure is successfully completed, an

instance of CodeBuilder.java and BuildConsole.java is created where the current text

and language is passed. The Code Builder would then determine according to the constants

established in the LanguageFactory.java, what command needs to be executed, to compile

the current code.

This procedure has now changed to allow for user defined commands. The main difference is, that

now the code builder doesn’t directly access the constants from the LanguageFactory.java,

but instead gets the appropriate command from the Settings.java class. This change allows for

users to define their own default commands. Further down the pipeline, the command will be

overridden, if a custom command is declared by the newly introduced

CustomCommandEntity.java. This class is a container for custom commands and is initialized

by the CustomCommandSerializer.java. The idea being, that via a dialog screen, the user can

define custom commands, that are stored on disc in a xml format. The

CustomCommandSerializer.java is responsible for writing and reading the xml file and

creates a set of custom command objects. All these changes give the user the chance to define default

commands as well as togglable custom commands which persist throughout the sessions.

Software Project Report Luka Lapanashvili
13-934-062

7

3.4 Native Console Options
For convenience and consistency reasons, I have decided to create a simple class similar to a terminal,

that would serve as a hub for Input/Output of all streams that the Code Builder process generates. It

contains basic functionality and some convenient features such as the ability to change the output

color according to the type of stream that is displays. This makes system output, output of the

compiled application and error outputs easier to distinguish. Unfortunately, as I discovered later,

there is a big hurdle when implementing terminal like applications. Every programming language and

every compiler implement their output streams differently. For example, a simple Java system print:

System.out.println(“Hello World”);

creates a normal output stream, that can be read without issues. On the contrary, a basic C print code:

printf("Hello World");

does not result in any signal flow in the stream, since the print command in C is buffered. Meaning, it

must be explicitly flushed (fflush(stdout);) and post fixed with a “\n”, to generate any output

in the stream. This inconsistency in behavior makes it nearly impossible to create one unified terminal,

that results in correct behavior. I was able to work out an approach that works for 90% of all use cases,

but unfortunately couldn’t entirely solve the issue.

For this reason, the decision was made to give the user the option to execute the commands in a

native terminal of the operating system. The native terminal was realized by inserting an escape

branch from the previously mentioned code building pipeline. Additionally, the custom command

prompt interface got an additional checkbox to enable the native terminal option. Furthermore, a

NativeConsole.java class was created. Its purpose it to assemble a command, which when

executed in a native terminal, prints all the necessary information. The goal was to create a similar

experience with the native terminal to the integrated terminal of Monolith Code. This involved the

detection of the operating system and adjustment of the command according to it. For windows and

Linux based operating systems, this was an easy task, since windows and Linux allow to start a terminal

with command argument. For the Mac operating system, this task was a bit more complex, since

MacOS does not allow to start the terminal with arguments. I was able to formulate a workaround,

that involved Osascript and an abuse of the password mode in the Mac terminal.

4 Testing
To ensure a flawless experience for the upcoming courses, the application was tested for multiple

course exercises, including:

- Multiple exercises of Informatics I – Exercises in Java

- All tasks of Informatics II: Algorithms and Data Structures – Exercises is C

- A handful of exercises of Informatik und Wirtschaft – Exercises in Python

- A small sample of multi class projects from my personal code collection – Code in Java

The execution of the tasks worked in all cases. However, a small amount of C exercises resulted in

unexpected behavior because of the already mentioned limitation of the integrated terminal. The

issues were resolved by explicitly using the native terminal. Alternatively, inserting a

fflush(stdout); after every print, resolved the issue as well.

Software Project Report Luka Lapanashvili
13-934-062

8

5 Conclusion
In this report, I presented you the "Monolith Code” and I described how I extended it with features

such as the backup system, the automated update system, custom commands and native console

integration. The editor is now a very stable, simple to use and approachable base platform for

students and programmer in general. Future work will include a smarter detection of the languages

alongside with automated imports for libraries.

Software Project Report Luka Lapanashvili
13-934-062

9

6 Bibliography

bobbylight. (2008, August 16). GitHub. Retrieved from GitHub:

https://github.com/bobbylight/RSyntaxTextArea

Lapanashvili, L. (2017, April 6). GithHub. Retrieved from GitHub: https://github.com/Haeri/Monolith-

Code

Sciss. (2011, December 24). GitHub. Retrieved from GitHub: https://github.com/Sciss/SyntaxPane

uklimaschewski. (2012, December 15). GitHub. Retrieved from GitHub:

https://github.com/uklimaschewski/EvalEx

Unknown. (2008, June 18). Google Code. Retrieved from Google Code:

https://code.google.com/archive/p/jsyntaxpane/

