
Department of Informatics

Event-based Vision for High-Speed Robotics

Dissertation
submitted to the
Faculty of Business, Economics and Informatics
of the University of Zurich

to obtain the degree of
Doktor / Doktorin der Wissenschaften, Dr. sc.
(corresponds to Doctor of Science, PhD)

presented by

Elias Mueggler
from Fischingen TG

approved in July 2017 at the request of
Prof. Dr. Davide Scaramuzza, advisor
Prof. Dr. Tobi Delbruck, examiner
Prof. Dr. Kostas Daniilidis, examiner

The Faculty of Business, Economics and Informatics of the University of Zurich hereby
authorizes the printing of this dissertation, without indicating an opinion of the views
expressed in the work.

Zurich, 19.07.2017

Chairwoman of the Doctoral Board: Prof. Dr. Elaine M. Huang

To my family and Michelle.

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Davide Scaramuzza for
selecting me as a PhD student. Davide’s vision of robotics inspired me, he provided
me with plenty of exciting opportunities, and he also gave me the freedom to pursue
my own ideas. It was a rewarding experience to see the lab grow in the last years from
just a few to more than a dozen staff members.
Collaboration enjoys a very high priority in the Robotics and Perception Group and
indeed, this thesis would not have been possible without the help, fruitful discussions,
and fun distractions from my colleagues. I therefore wish to express my gratitude
to all the current and past members, visitors, and students. I would particularly like
to thank Matthias Faessler, Flavio Fontana, Christian Forster, Davide Falanga, Henri
Rebecq, Titus Cieslewski, Zichao Zhang, Junjie Zhang, Michael Gassner, Alessandro
Simovic, Raphael Meyer, Guillermo Gallego, Jeff Delmerico, Matia Pizzoli, Andras
Majdik, Manuel Werlberger, Antonio Toma, Gabriele Costante, Volker Grabe and Tamar
Tolcachier. I also had the pleasure to work with great students, namely Karl Schwabe,
Nathan Baumli, Basil Huber, Julia Nitsch, Micha Brunner, Beat Kueng, Mathis Kappeler,
Jon Lund, Timo Horstschäfer, Benjamin Keiser and David Tedaldi.
I am very grateful to Chiara Bartolozzi for inviting me to a very inspiring stay at the
Istituto Italiano di Tecnologia in Genoa, Italy, and the NCCR International PhD/Postdoc
Exchange Programme for the scholarship. I would also like to thank Valentina Vasco
and Arren Glover for their great support and interesting discussions.
I would like to thank the agencies funding my research, namely the National Centre
of Competence in Research (NCCR) Robotics, the Swiss National Science Foundation,
the DARPA FLA Program, and Google. I would also like to thank Qualcomm for their
support through the Qualcomm Innovation Fellowship and Gerhard Reitmayr who
was a great mentor throughout this last year. I would like to thank Sim Bamford and
Luca Longinotti from iniLabs for their fast and effective support with event-camera
software and hardware.
I would like to thank Prof. Kostas Daniilidis and Prof. Tobi Delbruck for accepting to
review my thesis and for their valuable feedback.
Last but not least, I am very grateful to my family, Michelle, and my friends who
supported me at all times.

Zurich, July 2017 E. M.

i

Abstract

Cameras are appealing sensors for mobile robots because they are small, passive,
inexpensive and provide rich information about the environment. While cameras
have been used successfully on a plenitude of robots, such as autonomous cars or
drones, serious challenges remain: power consumption, latency, dynamic range, and
frame rate, among others. The sequences of images acquired by a camera are highly
redundant (both in space and time), and both acquiring and processing such an amount
of data consumes significant power. This limits the operation time of mobile robots
and, moreover, defines a fundamental power–latency tradeoff. Specialized cameras
designed for high-speed or high-dynamic–range scenarios are expensive, heavy, and
require additional power, which prevents their use in agile mobile robots.
In this thesis, we investigate event cameras as a biologically-inspired alternative to
overcome the limitations of standard cameras. These neuromorphic vision sensors
work in a completely different way: instead of providing a sequence of images (i.e.,
frames) at a constant rate, event cameras transmit only information from those pixels
that undergo a significant brightness change. These pixel-level brightness changes, called
events, are timestamped with micro-second resolution and transmitted asynchronously
at the time they occur. Hence, event cameras are power efficient because they convey
only non-redundant information, and are able to capture very high-speed motions,
thus they directly address the power–latency tradeoff. Additionally, event cameras
achieve a dynamic range of more than 140 dB, compared to about 60 dB of standard
cameras, because each pixel is autonomous and operates at its own set-point. However,
since the output of an event camera is fundamentally different from that of standard
cameras for which computer-vision algorithms have been developed during the past
fifty years, new algorithms that can deal with the asynchronous nature of the sensor
and exploit its high temporal resolution are required to unlock its potential.
This thesis presents algorithms for using event cameras in the context of robotics. Since
event cameras are novel sensors that are being intensively prototyped and have been
commercially available only recently (ca. 2008), the literature on event-based algorithms
is scarce. This poses some operational challenges as well as uncountable opportunities
to explore in research. This thesis focuses on exploring the possibilities that event
cameras bring to some fundamental problems in robotics and computer vision, such
as localization and actuation. Amongst others, this thesis provides contributions to
solving the localization problem, i.e., for a robot equipped with an event camera to
be able to infer its location with respect to a given map of the environment. Classical
approaches for robot localization build upon lower-level vision algorithms, and so, this
thesis also presents contributions in the topics of detection, extraction, and tracking of

iii

Abstract

salient visual features with an event camera, whose applicability expands far beyond
the localization problem. This thesis also presents contributions in the use of event
cameras for actuation and closed-loop control, i.e., in endowing the robot with the
capabilities to interact with the environment to fulfill a given task. Additionally, this
thesis also presents the infrastructure developed to work with event cameras in a
de-facto standard robotics platform. The following is a list of contributions:

• Software infrastructure, consisting of publicly available drivers, calibration tools,
sensor delay characterization, and the first event camera dataset and simulator
tailored for 6-DOF (degrees of freedom) camera pose estimation and SLAM
(Simultaneous localization and mapping).

• We introduce the concept of event “lifetime” and provide an algorithm to compute
it. The lifetime endows the events with a finite temporal extent for a proper
continuous representation of events in time.

• The first method to extract FAST-like visual features (i.e., interest points or
corners) from the output of an event camera. The detector operates an order of
magnitude faster than previous corner detectors.

• The first method to extract and track features from the output of a DAVIS camera
(an event camera that also outputs standard frames from the same pixel array).
Using these feature tracks, we developed the first sparse, feature-based visual-
odometry pipeline.

• The first two methods to track the 6-DOF pose of an event camera in a known map.
While the first method minimizes the reprojection error of the events and only
works on black-and-white scenes consisting of line segments, the second method
uses a probabilistic filtering framework that allows tracking at high speeds on
natural scenes.

• The first application of a continuous-time framework to estimate the trajectory of
an event camera, possibly incorporating inertial measurements, showing superior
performance over pose–tracking-only methods.

• An application of event cameras to collision avoidance of a quadrotor, showing
how event cameras can be used to control a robot with very low latency.

• An application of the use of an event camera for human-vs-machine slot-car racing,
showing that event-driven algorithms are power efficient and can outperform
human control.

iv

Zusammenfassung

Kameras sind sehr nützliche Sensoren für mobile Roboter, weil sie klein, passiv und
kostengünstig sind sowie reichhaltige Informationen der Umgebung liefern. Obwohl
Kameras erfolgreich in einer Vielzahl von Robotern, wie zum Beispiel autonomen
Fahrzeugen oder Drohnen, verwendet werden, stellen Energiebedarf, Latenz, Dyna-
mikbereich und Bildfrequenz beträchtliche Herausforderungen dar. Die Bildsequenz
von Kameras enthält viel Redundanz (sowohl zeitlich wie räumlich) und sowohl das
Aufnehmen wie das Verarbeiten dieser Datenmenge benötigt viel Leistung. Dies limi-
tiert die Betriebszeit mobiler Roboter und definiert einen fundamentalen Kompromiss
zwischen Energiebedarf und Latenz. Spezialkameras für Hochgeschwindigkeits- und
Hochkontrastanwendungen sind teuer, schwer, und brauchen zusätzliche Energie, was
deren Anwendung in agilen mobilen Robotern verunmöglicht.
In dieser Dissertation untersuchen wir Event-Kameras als bioinspirierte Alternative um
die Limitationen von Standardkameras zu überwinden. Diese neuromorphischen visu-
ellen Sensoren funktionieren auf komplett andere Weise. Anstatt einer Bildsequenz mit
einer konstanten Frequenz zu liefern, senden Event-Kameras nur Informationen von
den Pixeln, bei denen sich die Helligkeit signifikant verändert hat. Solche pixelweise
Veränderungen nennen wir Events, welche mit einem Zeitstempel mit der Genauigkeit
von Mikro-Sekunden versehen und unmittelbar danach asynchron übermittelt werden.
Da nur nicht-redundante Informationen übertragen werden sind Event-Kameras ener-
gieeffizient und in der Lage, sehr schnelle Bewegungen zu erfassen. Damit nehmen
sie den Kompromiss zwischen Energiebedarf und Latenz direkt in Angriff. Zudem
verfügen Event-Kameras über einen Dynamikbereich von über 140 dB (Standardka-
meras verfügen typischerweise um die 60 dB), weil jedes Pixel selbständig ist. Da
das Datensignal einer Event-Kamera fundamental anders ist als dasjenige einer Stan-
dardkamera (für welche über die letzten fünfzig Jahren Algorithmen für maschinelles
Sehen entwickelt wurden) werden neue Algorithmen benötigt, die mit der asynchronen
Funktionsweise klarkommen und die hohe zeitliche Auflösung ausnutzen können.
Diese Dissertation präsentiert Algorithmen für Event-Kameras im Bereich Robotik. Da
Event-Kameras neuartige Sensoren sind und kommerziell erst seit 2008 erhältlich sind,
ist die Literatur über solche Algorithmen spärlich. Dies erschwert die Handhabung
dieser Sensoren, eröffnet aber unzählige Möglichkeiten, die es zu erforschen gilt. Diese
Dissertation untersucht die Möglichkeiten von Event-Kameras für fundamentale Pro-
bleme der Robotik und des maschinellen Sehens wie zum Beispiel Lokalisierung und
Steuerung. Unter anderem bietet diese Dissertation Beiträge zur Lösung des Lokalisie-
rungsproblems, d.h. für einen Roboter, der mit einer Event-Kamera ausgestattet ist, in
der Lage zu sein, seinen Standort bezüglich einer gegebenen Karte der Umgebung zu

v

Abstract

bestimmen. Klassische Ansätze zur Roboterlokalisierung bauen auf untergeordneten
Algorithmen auf, sodass diese Dissertation auch Beiträge zu den Themen Detektion,
Extraktion und Verfolgung von markanten visuellen Merkmalen (Features) mit einer
Event-Kamera präsentiert, deren Anwendbarkeit weit über das Lokalisierungsproblem
hinausgeht. Diese Arbeit präsentiert auch Beiträge zur Verwendung von Event-Kameras
für die Steuerung und Regelung, d.h. der Möglichkeit eines Roboters mit seiner Umge-
bung zu interagieren um ein bestimmtes Ziel zu erreichen. Darüber hinaus präsentiert
diese Dissertation auch die Infrastruktur, die entwickelt wurde, um Event-Kameras in
einer weitverbreiteten Robotikplattform zu verwenden. Es folgt eine Liste der Beiträge:

• Software-Infrastruktur, bestehend aus öffentlich zugänglichen Treibern, Kalibrie-
rungswerkzeugen, Charakterisierung der Sensorlatenz und dem ersten Datensatz
und Simulator von Event-Kameras für Kamerapositionsschätzung und SLAM
(Simultane Lokalisierung und Kartierung) mit sechs Freiheitsgraden (FHG).

• Wir stellen das Konzept der Event-“Gültigkeitsdauer” vor und liefern einen
Algorithmus um diese zu berechnen. Die Gültigkeitsdauer verleiht einem Event
eine endliche zeitliche Ausdehnung und erlaubt eine kontinuierliche Darstellung
von Events in der Zeit.

• Die erste Methode um FAST-ähnliche visuelle Features (d.h. charakteristische
Punkte oder Ecken) aus dem Datensignal einer Event-Kamera zu extrahieren. Der
Detektor läuft eine Grössenordnung schneller als bisherige Detektoren.

• Die erste Methode um Features aus dem Datensignal einer DAVIS-Kamera (eine
Event-Kamera, die nebst Events auch normale Bilder von den gleichen Pixeln
ausgibt) zu extrahieren und zu verfolgen. Mit diesen Features entwickelten wir
das erste Feature-basierte visuelle Odometrie-System.

• Die ersten beiden Methoden, um die Bewegung einer Event-Kamera mit 6 FHG
in einer bekannten Karte der Umgebung zu schätzen. Die erste Methode mi-
nimiert den Reprojektionsfehler der Events und funktioniert nur auf Schwarz-
Weiss-Szenen, die aus Liniensegmenten bestehen. Die zweite Methode hingegen
verwendet einen probabilistischen Filter, der die Verfolgung bei hohen Geschwin-
digkeiten in natürlicher Umgebung ermöglicht.

• Die erste Anwendung einer zeitkontinuierlichen Darstellung der Trajektorie
einer Event-Kamera, die ebenfalls Inertialmessungen beinhaltet kann, die Filter-
basierten Methoden übertrifft was Genauigkeit betrifft.

• Eine Anwendung von Event-Kameras zur Kollisionsvermeidung eines Quadroko-
pters, die zeigt, wie Event-Kameras verwendet werden können um einen Roboter
mit sehr geringer Latenz zu steuern.

• Eine Anwendung von einer Event-Kamera für Mensch-gegen-Maschine-Rennen
auf einer Modellautorennbahn zeigt, dass Event-basierte Algorithmen effizient
sind und die menschliche Leistung übertreffen können.

vi

List of Contributions

Journal Publications

• Guillermo Gallego, Jon E. A. Lund, Elias Mueggler, Henri Rebecq, Tobi Delbruck, and
Davide Scaramuzza. “Event-based, 6-DOF Camera Tracking for High-Speed Applica-
tions”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2017). Under
review.
Links: Appendix H, PDF, Video

• Henri Rebecq, Guillermo Gallego, Elias Mueggler, and Davide Scaramuzza. “EMVS:
Event-based Multi-View Stereo”. In: International Journal of Computer Vision (2017). Under
review.

• Elias Mueggler, Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza. “Continuous-
Time Visual-Inertial Trajectory Estimation with Event Cameras”. In: IEEE Transactions on
Robotics (2017). Under review.
Links: Appendix I, PDF

• Elias Mueggler, Henri Rebecq, Guillermo Gallego, Tobi Delbruck, and Davide Scara-
muzza. “The Event-Camera Dataset and Simulator: Event-based Data for Pose Estimation,
Visual Odometry, and SLAM”. In: International Journal of Robotics Research 36 (2 2017), pp.
142–149. DOI: 10.1177/0278364917691115
Links: Appendix C, PDF, Video, Dataset

• Jeffrey Delmerico, Elias Mueggler, Julia Nitsch, and Davide Scaramuzza. “Active Au-
tonomous Aerial Exploration for Ground Robot Path Planning”. In: IEEE Robotics and
Automation Letters 2.2 (2017), pp. 664–671. DOI: 10.1109/LRA.2017.2651163
Links: PDF, Video

• Matthias Faessler, Flavio Fontana, Christian Forster, Elias Mueggler, Matia Pizzoli, and
Davide Scaramuzza. “Autonomous, Vision-based Flight and Live Dense 3D Mapping
with a Quadrotor MAV”. In: Journal of Field Robotics 33.4 (2016), pp. 431–450. DOI:
10.1002/rob.21581
Links: PDF, Video 1, Video 2, Video 3, Video 4, Software

Peer-Reviewed Conference Papers

• Elias Mueggler, Chiara Bartolozzi, and Davide Scaramuzza. “Fast Event-based Corner
Detection”. In: British Machine Vision Conference (BMVC). 2017
Links: Appendix E, Video

• Valentina Vasco, Arren Glover, Lorenzo Natale, Chiara Bartolozzi, Elias Mueggler, and
Davide Scaramuzza. “Independent motion detection with event-driven cameras”. In:

vii

http://rpg.ifi.uzh.ch/docs/Arxiv16_Gallego.pdf
https://youtu.be/iZZ77F-hwzs
https://arxiv.org/pdf/1702.07389.pdf
http://doi.org/10.1177/0278364917691115
https://arxiv.org/pdf/1610.08336.pdf
https://youtu.be/bVVBTQ7l36I
http://rpg.ifi.uzh.ch/davis_data.html
http://doi.org/10.1109/LRA.2017.2651163
http://rpg.ifi.uzh.ch/docs/RAL16_Delmerico.pdf
https://youtu.be/s2v6TICaukQ
http://doi.org/10.1002/rob.21581
http://rpg.ifi.uzh.ch/docs/JFR16_Faessler.pdf
https://youtu.be/sdu4w8r_fWc
https://youtu.be/3mNY9-DSUDk
https://youtu.be/JbACxNfBI30
https://youtu.be/LssgKdDz5z0
http://rpg.ifi.uzh.ch/software_datasets.html
https://youtu.be/tgvM4ELesgI

List of Contributions

International Conference on Advanced Robotics (ICAR). 2017.
Links: PDF,

• Davide Falanga, Elias Mueggler, Matthias Faessler, and Davide Scaramuzza. “Aggressive
Quadrotor Flight through Narrow Gaps with Onboard Sensing and Computing”. In:
IEEE International Conference on Robotics and Automation (ICRA). 2017
Links: PDF, Video

• Roman Käslin, Péter Fankhauser, Elena Stumm, Zachary Taylor, Elias Mueggler, Jeffrey
Delmerico, Davide Scaramuzza, Roland Siegwart, and Marco Hutter. “Collaborative
localization of aerial and ground robots through elevation maps”. In: IEEE Interna-
tional Symposium on Safety, Security and Rescue Robotics (SSRR). 2016, pp. 284–290. DOI:
10.1109/SSRR.2016.7784317
Links: PDF

• Beat Kueng, Elias Mueggler, Guillermo Gallego, and Davide Scaramuzza. “Low-latency
Visual Odometry using Event-based Feature Tracks”. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2016, pp. 16–23. doi: DOI: 10.1109/IROS.2016.7758089
Links: Appendix G, PDF, Video

• David Tedaldi, Guillermo Gallego, Elias Mueggler, and Davide Scaramuzza. “Feature
Detection and Tracking with the Dynamic and Active-pixel Vision Sensor (DAVIS)”.
In: International Conference on Event-Based Control, Communication and Signal Processing
(EBCCSP). 2016, pp. 1–7. DOI: 10.1109/EBCCSP.2016.7605086
Links: Appendix F, PDF, Video

• Jeffrey Delmerico, Alessandro Giusti, Elias Mueggler, Luca Maria Gambardella, and
Davide Scaramuzza. ““On-the-spot Training” for Terrain Classification in Autonomous
Air-Ground Collaborative Teams”. In: International Symposium on Experimental Robotics
(ISER). 2016. pp. 574–585. DOI: 10.1007/978-3-319-50115-4_50
Links: PDF, Video

• Elias Mueggler, Nathan Baumli, Flavio Fontana, and Davide Scaramuzza. “Towards
Evasive Maneuvers with Quadrotors using Dynamic Vision Sensors”. In: European
Conference on Mobile Robotics (ECMR). 2015, pp. 1–8. DOI: 10.1109/ECMR.2015.7324048
Links: Appendix B, PDF

• Elias Mueggler, Guillermo Gallego, and Davide Scaramuzza. “Continuous-Time Trajec-
tory Estimation for Event-based Vision Sensors”. In: Robotics: Science and Systems (RSS).
2015. DOI: 10.15607/RSS.2015.XI.036
Links: Appendix I, PDF

• Elias Mueggler, Christian Forster, Nathan Baumli, Guillermo Gallego, and Davide Scara-
muzza. “Lifetime Estimation of Events from Dynamic Vision Sensors”. In: IEEE In-
ternational Conference on Robotics and Automation (ICRA). 2015, pp. 4874–4881. DOI:
10.1109/ICRA.2015.7139876
Links: Appendix D, PDF

• Tobi Delbruck, Michael Pfeiffer, Raphaël Juston, Garrick Orchard, Elias Müggler, Alejan-
dro Linares-Barranco, and Mark W. Tilden. “Human vs. Computer Slot Car Racing using
an Event and Frame-Based DAVIS Vision Sensor”. In: International Symposium on Circuits

viii

http://rpg.ifi.uzh.ch/docs/ICAR17_Vasco.pdf
http://rpg.ifi.uzh.ch/docs/ICRA17_Falanga.pdf
https://youtu.be/meSItatXQ7M
http://doi.org/10.1109/SSRR.2016.7784317
http://rpg.ifi.uzh.ch/docs/SSRR16_Kaeslin.pdf
http://doi.org/10.1109/IROS.2016.7758089
http://rpg.ifi.uzh.ch/docs/IROS16_Kueng.pdf
https://youtu.be/RDu5eldW8i8
http://doi.org/10.1109/EBCCSP.2016.7605086
http://rpg.ifi.uzh.ch/docs/EBCCSP16_Tedaldi.pdf
https://youtu.be/nglfEkiK308
http://doi.org/10.1007/978-3-319-50115-4_50
http://rpg.ifi.uzh.ch/docs/ISER16_Delmerico.pdf
https://youtu.be/yVyyhQch6bI
http://doi.org/10.1109/ECMR.2015.7324048
http://rpg.ifi.uzh.ch/docs/ECMR15_Mueggler.pdf
http://doi.org/10.15607/RSS.2015.XI.036
http://rpg.ifi.uzh.ch/docs/RSS15_Mueggler.pdf
http://doi.org/10.1109/ICRA.2015.7139876
http://rpg.ifi.uzh.ch/docs/ICRA15_Mueggler.pdf

List of Contributions

and Systems (ISCAS). 2015, pp. 2409–2412. DOI: 10.1109/ISCAS.2015.7169170
Links: Appendix J, PDF, Video 1, Video 2, Software

• Elias Mueggler, Matthias Faessler, Flavio Fontana, and Davide Scaramuzza. “Aerial-
guided Navigation of a Ground Robot among Movable Obstacles”. In: IEEE Interna-
tional Symposium on Safety, Security and Rescue Robotics (SSRR). 2014, pp. 1–8. DOI:
10.1109/SSRR.2014.7017662
Links: PDF, Video 1, Video 2

• Elias Mueggler, Basil Huber, and Davide Scaramuzza. “Event-based, 6-DOF Pose Track-
ing for High-Speed Maneuvers”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2014, pp. 2761–2768. DOI: 10.1109/IROS.2014.6942940
Links: Appendix A, PDF, Video

• Matthias Faessler, Elias Mueggler, Karl Schwabe, and Davide Scaramuzza. “A Monocu-
lar Pose Estimation System based on Infrared LEDs”. In: IEEE International Conference on
Robotics and Automation (ICRA). 2014, pp. 907–913. doi: DOI: 10.1109/ICRA.2014.6906962
Links: PDF, Video

Awards

• Misha Mahowald Prize for Neuromorphic Engineering ($3.000), 2017

• NCCR Robotics PhD/Postdoc Exchange Grant, 2016

• IROS Best Application Paper Award Finalist, 2016

• Qualcomm Innovation Fellowship Europe ($40.000), 2016

• SSRR Best Paper Award Finalist, 2014

• Winner of KUKA Innovation Award (e20.000), 2014

• Convergent Science Network of Biomimetics and Neurotechnology CapoCaccia Fellow-
ship, 2013

ix

http://doi.org/10.1109/ISCAS.2015.7169170
https://drive.google.com/open?id=0BzvXOhBHjRheRHFscVd1cVFGalk
https://youtu.be/CnGPGiZuFRI
https://youtu.be/AsO1TWS8_VA
https://github.com/tpietzsch/jAER/tree/master/host/java/src/ch/unizh/ini/jaer/projects/virtualslotcar
http://doi.org/10.1109/SSRR.2014.7017662
http://rpg.ifi.uzh.ch/docs/SSRR14_Mueggler.pdf
https://youtu.be/C5I190lzDdQ
https://youtu.be/OFPv3BegbFg
http://doi.org/10.1109/IROS.2014.6942940
http://rpg.ifi.uzh.ch/docs/IROS14_Mueggler.pdf
https://youtu.be/LauQ6LWTkxM
http://doi.org/10.1109/ICRA.2014.6906962
http://rpg.ifi.uzh.ch/docs/ICRA14_Faessler.pdf
https://youtu.be/8Ui3MoOxcPQ

Contents

Acknowledgements i

Abstract iii

List of Contributions vii

1 Introduction 1
1.1 Event Cameras for Mobile Robots . 2

1.1.1 Working Principle . 3
1.1.2 Advantages . 3
1.1.3 Challenges . 5
1.1.4 Historic Development of Event Cameras 6

1.2 State of the Art on Event Cameras . 7
1.2.1 Infrastructure for Event-based Vision for Robotics 7
1.2.2 Event-based Feature Detection . 11
1.2.3 Event-based Tracking . 11
1.2.4 Event-based Motion Estimation 14
1.2.5 Event-based Motion Control . 17

1.3 Summary . 19

2 Contributions 21
2.1 Infrastructure for Event-based Vision . 21

2.1.1 Paper A1: Event Camera Driver and Calibration 22
2.1.2 Paper B1: Event Camera Delay Characterization 23
2.1.3 Paper C: Event Camera Dataset and Simulator 23

2.2 Event-based Feature Detection . 25
2.2.1 Paper D: Lifetime of Events . 25
2.2.2 Paper E: Event-based Feature Detection 26

2.3 Event-based Feature Tracking . 27
2.3.1 Paper A2: Tracking Polygonal Shapes 27
2.3.2 Paper B2: Ball Tracking . 28
2.3.3 Paper F: Event-based Feature Tracking 29

2.4 Event-based Ego-Motion Estimation . 30
2.4.1 Paper G: Sparse Visual Odometry 30
2.4.2 Paper H: Dense 6-DOF Tracking 31
2.4.3 Paper I: Continuous-Time Trajectory Estimation 32

xi

Contents

2.5 Event-based Robot Control . 33
2.5.1 Paper J: Slot-Car Racing . 33

2.6 Unrelated Contributions . 34
2.6.1 Quadrotor Navigation . 34
2.6.2 Heterogeneous Robot Collaboration 34

3 Future Directions 37

A Event-based Pose Tracking 41
A.1 Introduction . 43

A.1.1 Motivation . 43
A.1.2 Related Work . 44
A.1.3 Contributions and Outline . 45

A.2 Dynamic Vision Sensor . 45
A.3 Calibration . 46
A.4 Event-based Pose Estimation . 47

A.4.1 Initialization . 47
A.4.2 Line tracking . 48
A.4.3 Pose estimation . 50

A.5 DVS Simulation . 50
A.6 Experimental Evaluation . 52

A.6.1 Simulated Data . 52
A.6.2 Real Data . 52

A.7 Conclusion . 56

B Towards Evasive Maneuvers with Quadrotors 59
B.1 Introduction . 60
B.2 Related Work . 62
B.3 Dynamic Vision Sensors . 63

B.3.1 Working Principle . 63
B.3.2 Calibration . 64

B.4 Sensor Latencies . 64
B.4.1 Experimental Setup . 65
B.4.2 Results . 66

B.5 Algorithm . 68
B.5.1 Event-based Circle Tracker . 68
B.5.2 Stereo Matching . 69
B.5.3 Sub-Pixel Disparity Estimation . 70
B.5.4 Extended Kalman Filter . 70
B.5.5 Trajectory Propagation . 72
B.5.6 Maneuver Decision . 73

B.6 Experiments . 74
B.6.1 Experimental Setup . 74

xii

Contents

B.6.2 Circle Tracking . 74
B.6.3 EKF Performance . 74
B.6.4 Comparison with Ground Truth 75
B.6.5 Time Margin for Evasive Maneuver 76

B.7 Conclusion . 77

C Event-Camera Dataset and Simulator 79
C.1 Introduction . 81

C.1.1 Related Datasets . 81
C.2 The DAVIS Sensor . 82

C.2.1 DAVIS IMU . 83
C.3 DAVIS Simulator . 83
C.4 Datasets . 85

C.4.1 Data Format . 85
C.4.2 List of Datasets . 87

C.5 Calibration . 88
C.5.1 Intrinsic Camera Calibration . 89
C.5.2 Hand-Eye Calibration . 89

C.6 Known Issues . 91
C.6.1 Clock Drift and Offset . 91

D Event Lifetime 93
D.1 Introduction . 94

D.1.1 Motivation . 94
D.1.2 Related Work . 95
D.1.3 Contributions and Outline . 96

D.2 Dynamic Vision Sensor . 97
D.3 Algorithm . 98

D.3.1 Event-Based Visual Flow and Lifetime 99
D.3.2 Local Plane-fitting Algorithm . 101

D.4 Experimental Evaluation . 104
D.4.1 Experiment 1: Line Pattern at Constant Velocity 104
D.4.2 Experiment 2: Complex Patterns at Constant Velocity 105
D.4.3 Experiment 3: Quadrotor Flips . 106
D.4.4 Experiment 4: Urban Environment 108

D.5 Conclusion . 108

E Event-based Feature Detection 111
E.1 Introduction . 112
E.2 Method . 115
E.3 Evaluation . 117

E.3.1 Ground Truth . 117
E.3.2 Event-based Harris Detector . 118

xiii

Contents

E.3.3 Detector Performance . 119
E.3.4 Computational Performance . 121

E.4 Discussion . 122
E.5 Conclusion . 122

F Event-based Feature Tracking 125
F.1 Introduction . 127
F.2 Related Work . 128

F.2.1 From Frame-based to Event-based Tracking 128
F.2.2 Event-based Tracking Literature 129

F.3 The Dynamic and Active-pixel VIsion Sensor 129
F.4 Feature Detection and Tracking with the DAVIS 130

F.4.1 Feature Detection From Frames 130
F.4.2 Feature Tracking From the Event Stream 131

F.5 Experiments . 133
F.5.1 Large-Contrast Scene (“Star”) . 134
F.5.2 Cartoon Scene (“Lucky Luke”) . 135
F.5.3 Natural Scene (“Leaves”) . 136

F.6 Conclusions . 139

G Sparse Visual Odometry with Feature Tracks 141
G.1 Introduction . 142
G.2 The Dynamic and Active-pixel Vision Sensor 144
G.3 Related Work . 145

G.3.1 Event-based Feature Detection and Tracking 145
G.3.2 Event-based Motion Estimation 146

G.4 Feature Detection and Tracking with the DAVIS 147
G.4.1 Feature Detection using the Frames 147
G.4.2 Feature Tracking using the Events 149
G.4.3 Tracking Improvements . 150

G.5 Visual Odometry . 151
G.5.1 3D Mapping using Depth Filters 151
G.5.2 Pose Tracking by Reprojection Error Minimization 152
G.5.3 Bootstrapping . 153

G.6 Experiments . 153
G.6.1 Feature Tracking . 153
G.6.2 Visual Odometry . 155
G.6.3 Runtime Analysis . 155

G.7 Conclusion . 156

xiv

Contents

H Event-based Dense Tracking 159
H.1 Introduction . 160
H.2 Related work on Event-based Ego-Motion Estimation 162
H.3 Event-based cameras. The Dynamic Vision Sensor (DVS) 163
H.4 Probabilistic approach . 164

H.4.1 Bayesian Filtering . 164
H.4.2 Motion model . 166
H.4.3 Measurement Model . 166
H.4.4 Posterior Approximation and Filter Equations 169

H.5 Experimental Results . 171
H.5.1 Tracking during High-Speed Motions 175
H.5.2 Experiments with Large Depth Variation 176
H.5.3 Computational Effort . 177

H.6 Conclusion . 178

I Continuous-Time Visual-Inertial Trajectory Estimation 181
I.1 Introduction . 183
I.2 Event Cameras . 185
I.3 Related Work: Ego-Motion Estimation with Event Cameras 186
I.4 Continuous-Time Trajectories . 187

I.4.1 Camera Pose Transformations . 187
I.4.2 Cubic Spline Camera Trajectories in SE(3) 188
I.4.3 Visual and Inertial Predictions . 190

I.5 Map Representation . 191
I.6 Trajectory Optimization . 191

I.6.1 Probabilistic Approach . 192
I.6.2 Constrained Optimization in Finite Dimensions 193

I.7 Experiments . 194
I.7.1 Trajectory Estimation in Line-based Maps 195
I.7.2 Trajectory Estimation in Point-based Maps 196
I.7.3 Computational Cost . 199

I.8 Discussion . 200
I.9 Conclusion . 204

J Slot-Car Racing 209
J.1 Introduction . 210
J.2 Hardware and Software Setup . 211

J.2.1 Car Tracking, Track Model, and Track Masking 212
J.2.2 Slot Car Throttle and Braking Hardware 213
J.2.3 Throttle Control . 214

J.3 Results . 216
J.4 Conclusion . 217

xv

Contents

Bibliography 219

Curriculum Vitae 231

xvi

1 Introduction

Conventional scanning techniques require that each node be sampled once
every frame. Since the retina generates output only at areas in the image
where there is spatial or temporal change in the image, most of the nodes
will have almost no output, but are sampled anyway. The address-event
protocol, in contrast, is data driven. Only pixels that have something to
report are transmitting their output over the data bus. Therefore, areas
of uniform illumination do not contribute to the communication load. A
further major advantage of the address-event communications framework is
that it minimizes temporal aliasing by transmitting events as they occur. It
need not introduce the degree of sampling inherent in a sequential scanning
technique.

Misha Mahowald, 1992 [90]

This thesis presents algorithms to process data from event cameras in the context of
high-speed robotics. In contrast to standard cameras that capture images at a fixed
rate, event cameras have independent, asynchronous pixels that report local brightness
changes (called “events”) at the time they occur, thus mimicking the above-mentioned
operating principle of the retina [90]. In addition to the high temporal resolution and
low latency, both in the order of micro-seconds, event cameras also provide a large
dynamic range (140 dB compared to 60 dB of standard cameras). However, since the
output of event cameras is fundamentally different (an asynchronous stream of events
rather than frames), new algorithms are required to deal with these data.

This thesis is split into five parts: first, infrastructure for event cameras in robotics is
provided, such as drivers, a calibration toolbox, sensor characterization, a simulator,
and a large collection of publicly available datasets. Second, event-based feature
detection algorithms are described that augment the event stream with additional
information (e.g., their lifetime or whether they are a corner event). Third, event-based
tracking algorithms for low-level features—such as polygonal shapes, balls, or arbitrary
corners—are presented. Fourth, methods for event-based ego-motion estimation are
presented. Finally, applications of event cameras in closed-loop robotic control are
presented.

1

Chapter 1. Introduction

(a) Traditional architecture (b) Event-based architecture

Figure 1.1: Comparison of the output of a standard camera and an event camera when used
for robot control: the low latency of event cameras allow much faster reactions to changes in
the environment. Figure from [27].

This thesis is structured in the form of a collection of papers. An introductory section
that highlights the concepts and ideas behind the thesis is followed by self-contained
publications in the appendix.

In the next section, the working principle, advantages, and challenges of event cameras
are discussed. Section 1.2 motivates and states the research objectives of this dissertation.
The papers in the appendix are summarized in Chapter 2. Finally, Chapter 3 provides
future research directions.

1.1 Event Cameras for Mobile Robots

Mobile robots need to perceive their environment to navigate safely in it. To make the
robot independent of its environment, it should carry all sensors. For agile and fast
robots, large and heavy sensors such as laser scanners are not suitable. Using vision as
primary sensing modality provides several advantages. Cameras are small, lightweight,
and passive, thus they require little power. Yet, they provide rich information about
the environment. Interpreting these data is, however, a challenging task that consumes
a significant amount of computational resources and power. For comparison, more
than 60 % of the human brain is involved in vision-related tasks. In the past decades,
tremendous progress in computer vision has been achieved, even exceeding human
performance on certain tasks. These algorithms are used for face detection and iden-
tification, image labeling, and many other tasks. In the domain of robotics, we are
primarily interested in mapping and localization.

While standard cameras offer many advantages, severe challenges remain. First, at
high speeds, images suffer from motion blur that will cause subsequent algorithms
to fail. Second, cameras provide a rather low intra-scene dynamic range, thus in
scenes with large illumination variations certain regions in the image will be under-

2

1.1. Event Cameras for Mobile Robots

(a) Basic Analog Circuit (b) Response to Intensity Profile

Figure 1.2: Event Camera Pixels. Figures adapted from [77].

or over-exposed, with faded information. Third, the frame rate of cameras is limited
and thus provides an upper bound on the achievable latency of a robotic system (see
Fig. 1.1). Fourth, the higher the frame rate (a parameter that is independent of the
variability of the visual information in the scene), the more data needs to be processed,
and so, the more power is consumed in, typically, useless operations since images
are highly redundant. To overcome these limitations, we investigate the use of event
cameras in the domain of robotics. Next, we introduce event cameras as well as their
advantages and challenges.

1.1.1 Working Principle

Event cameras have independent, asynchronous pixels that report local brightness
changes at the time they occur. Since they are inspired by the retina of vertebra,
event cameras are also called “silicon retinas”. The circuit of a single pixel is shown
in Fig. 1.2a. Its output is a stream of events, whenever the (logarithmic) brightness
changes by a user-defined threshold (cf. Fig. 1.2b). To illustrate their working principle
for the entire sensor, we compare the output of an event camera to the one of a standard
camera in Fig. 1.3 and in a online video1. Both cameras are observing a rotating disk
with a black circle in its perifery. A standard camera outputs a video, i.e., a series of
frames at a constant rate. Instead, an event camera only reports the brightness changes.

1.1.2 Advantages

In this section, we summarize the main advantages of event cameras compared to
standard frame-based cameras.

1https://youtu.be/LauQ6LWTkxM

3

https://youtu.be/LauQ6LWTkxM

Chapter 1. Introduction

Figure 1.3: Comparison of the outputs of a standard camera and an event camera when
observing a rotating disk with a black circle: the standard camera outputs a series of frame,
while the event camera continuously and asynchronously reports the changes in the scene. Each
dot in space-time represents such a change (called “event”). If the disk stops rotating, no events
are transmitted, whereas a standard camera continues to transmit the same redundant frame.
High-speed rotation of the disk will cause motion blur on the images. However, due to the low
latency of the event camera, the same space-time helix is observed for faster rotation—only
squeezed in the time axis.

Low Latency and High Temporal Resolution. Event cameras provide very low la-
tency to input changes, which are in the order of a few microseconds: the DVS [77] and
DAVIS [19] have latencies of 15 µs and 3 µs, respectively. As comparison, the latency
of frame-based sampling is a uniform distribution between 0 and 1/ f , where f is the
temporal discretization (frame rate). For a standard camera at f = 30 Hz, the temporal
discretization can be as high as 33 ms—four orders of magnitude higher! Therefore,
event cameras allow much faster control loops (see Fig. 1.1).

High Dynamic Range. Since each pixel of an event camera is independent and
chooses its own set-point, event cameras reach very high intra-scene dynamic ranges:
the DVS [77], DAVIS [19], and ATIS [116] achieve dynamic ranges of 120 dB, 130 dB,
and 143 dB, respectively. Machine-vision cameras typically achieve 60 dB. Therefore,
event cameras can still be used in scenes with very bright and very dark regions (see
Fig. 1.4 for an extreme example).

Low Bandwith. Because event cameras only report pixel-level brightness changes, no
bandwidth is required if pixels do not change value, i.e., if there is no relative motion
between the scene and the camera or there are no illumination changes. Furthermore,
the events originate from salient regions (intensity edges) and, therefore, many prepro-
cessing operations needed for frames become unnecessary. This allows fast reaction at

4

1.1. Event Cameras for Mobile Robots

Figure 1.4: Solar eclipse seen by a standard and an event camera. While the image exhibits
both overexposed and underexposed areas, the events can detect the contours of the eclipse
flawlessly. Image courtesy of Mark Osswald, Simeon Bamford and Tobi Delbruck.

low processing cost (see Fig. 1.1b).

Low Power. An event camera requires less power compared to a standard camera.
The main reason is that analog-to-digital converters, which are required for pixel
readout, consume relatively much power. Such converters are not required in event
cameras. However, both event cameras and standard cameras require only power
in the range of a few mW. Much more power can be saved when considering the
entire system (sensor and processing). As Prof. Marc Pollefeys noted regarding an
augmented-reality system based on standard cameras:2 “Most of the energy is spent
moving bits around . . . so it would seem natural that . . . the first layers of processing
should happen in the sensor.” Since event cameras already compute temporal contrast,
much computing power can be saved in the overall system.

Additionally, when the same high temporal resolution (up to several hundred kHz)
is required, standard cameras require much more power than event cameras. Such
high-speed cameras typically also require massive external illumination.

1.1.3 Challenges

Since the data output of event cameras (a stream of events) is fundamentally different
from that of standard cameras (a sequence of images), classical computer vision
algorithms cannot be applied to event cameras, and so, a paradigm shift is needed.
Event-driven algorithms that take into account the sparse and asynchronous nature of
the data must be devised to unlock the advantages that event cameras offer.

From a processing point of view, the challenge consists of dealing with a different

2http://www.eetimes.com/document.asp?doc_id=1331675

5

http://www.eetimes.com/document.asp?doc_id=1331675

Chapter 1. Introduction

represenation of the visual data: (i) sparse, asynchronous measurements (events) in-
stead of dense, synchronous ones (frames), and (ii) brightness differences (i.e., temporal
contrast) instead of absolute brightness.

The major difference is (i), due to a different sampling of the visual content of the scene:
in standard cameras, sampling is based on an external clock that collects synchronous
measurements and form a frame; in contrast, event cameras follow a data-driven
sampling, i.e., based on brightness changes that happen in the scene relative to the
motion of the sensor, and they happen sparsely on the image plane. Hence, event
cameras do not conform to the implicit assumption of most computer-vision algorithms:
the existence of frames.

Challenge (ii), which is based on the fact that each event only provides binary informa-
tion (brightness increase or decrease, represented by the event polarity), is specific of
some event cameras, such as the DVS. The ATIS [116], for example, reports absolute
intensities. In the DVS, dealing with this binary information is challenging; however, it
does not seem to be a problem, since it has been demonstrated that intensity gradients
as well as absolute intensity can be reconstructed from the events [32, 66]. Moreover,
depending on the application, intensity reconstruction may not be needed, and the
binary representation provides sufficient information to design an algorithm that fulfills
the task.

From a practical perspective, some further challenges need to be overcome. The noise
levels of today’s event cameras are still high and their resolution rather low (128× 128
pixels for the DVS, 240× 180 for the DAVIS). However, new sensor prototypes with
higher resolution, more sensitivity, and color filters will overcome these limitations (see
Chapter 3).

Since the events are asynchronous and the event rate depends on the camera motion,
the scene, its texture, and the biases (camera parameters), guaranteeing real-time
performance is challenging. Most algorithms have a constant computation time per
event and, therefore, are “real-time” only up to a certain event rate.

1.1.4 Historic Development of Event Cameras

The first silicon retinas were developed in the early 90’s by Misha Mahowald and
Carver Mead [91, 90, 89]. Similar to the human retina, their silicon retina “reduces
the bandwidth by subtracting average intensity levels from the image and reporting
only spatial and temporal changes.” [90] As noted by [36], “the performance of early
systems suffered because they had to simultaneously combine a new computational
paradigm with tricky delay-insensitive asynchronous logic and massively parallel
analog computation.” For more than a decade, only very little progress was reported,
with the exception of [15]. Only in 2003, a simultaneous spatial contrast and local

6

1.2. State of the Art on Event Cameras

orientation vision sensor was presented [128], showing that is was possible to overcome
sensor mismatch and low performance by innovative circuit design and architecture.
Finally in 2008, the first event camera became commercially available: the Dynamic
Vision Sensor (DVS) [77] that was developed during the CAVIAR project [131] funded
by the European Union. The project aimed at building an event-based hardware system
consisting of sensing, processing, learning, and actuating using the Address-Event
Representation (AER) communication framework. The system enables high-speed
visual object recognition and tracking latencies in the order of milliseconds. The DVS
is a 128× 128 pixel array that responds to temporal brightness changes as described
above and constitutes the sensing layer of the CAVIAR system.

Based on the DVS, several event cameras with additional functionalities have been
developed. The Asynchronous Time-Based Image Sensor (ATIS) [116] combines a DVS
with pulse-width modulated intensity encoding [119] for absolute brightness. Events
by the DVS pixel trigger the readout of the absolute intensity that is encoded using
the time interval between two additional events. The Dynamic and Active-pixel Vision
Sensor (DAVIS) [19] combines a DVS with a standard camera, using the same pixel
array. A more detailed review of silicon retinas is provided in [83, Chap. 3] and [8,
Sec. 1.5].

1.2 State of the Art on Event Cameras

In this section, we describe the state of the art and related work of event cameras for
robotics, discuss their strengths and weaknesses, and motivate the goals of this thesis.
The section is divided in infrastructure, feature detection, feature tracking, ego-motion
estimation, and robot control using event cameras.

1.2.1 Infrastructure for Event-based Vision for Robotics

Software Frameworks and Drivers. In 2006, the open-source software framework
jAER3 was initiated for acquiring, processing, and visualizing data in the Address-Event
Representation. While this framework includes many drivers for neuromorphic sensors
(such as event cameras and silicon cochleas), many filters, and advanced visualization
methods, it is not suitable for embedded computers and high throughput.4 Only very
recently, a version optimized for embedded computers, cAER5, and a standalone driver,
libcaer6, were released.

3https://sourceforge.net/projects/jaer/
4Mostly because it is written in Java.
5https://github.com/inilabs/caer
6https://github.com/inilabs/libcaer

7

https://sourceforge.net/projects/jaer/
https://github.com/inilabs/caer
https://github.com/inilabs/libcaer

Chapter 1. Introduction

In the robotics community, the Robot Operating System (ROS7 [122]) became the de
facto standard for robotic middleware in academia. While it provides many modules
for popular sensors (laser scanners, cameras, GPS, IMU, etc.), no support was provided
for event cameras. We developed an open-source interface8 and basic visualization
tools to make event cameras available on robotic platforms.

Intrinsic Calibration. For many computer-vision such as visual odometry or SLAM,
intrinsic camera calibration is required. Many toolboxes exist and provide robust
calibration routines for standard, frame-based cameras, typically using checkerboard
calibration patterns. While the geometric lens models are the same for standard and
event cameras, detection of the checkerboard is not trivial in the event stream. It was
shown by [27] that LEDs blinking at high frequency can be easily detected by event
cameras. We therefore developed a package that allows intrinsic (and also stereo)
calibration of event cameras using a pattern of blinking LEDs [102] (see Fig. 2.1a). It is
also possible to use a blinking pattern on a regular computer screen for calibration (see
Fig. 2.1b).

Sensor Delay Characterization. To devise state estimation and control laws for a
robot, sensor characterization is required. This includes the update rate and sensor
latency. Due to the asynchronous nature of event cameras, the update rate is almost
continuous and, therefore, we focused on the characterization of the latency. Similarly
to [86], we measured the round-trip delay between triggering an LED and measur-
ing that stimulus. Previous works measured the round-trip delay only on standard
computers [34], while we also evaluated the latencies on embedded computers and
compared it to popular frame-based cameras [97].

Simulators. Only one previous simulator for event cameras9 is known to the author.
It operates by thresholding the difference of the two latest images on a moderate
framerate of around 60 Hz and is therefore unable to provide precise timestamps of the
events. Furthermore, neither are events generated for smooth gradients nor are several
events generated for strong gradients that cross the threshold multiple times.

We developed two simulators for different applications. The first is a sensor-in-the-
loop simulation where a known video is shown to a intrinsically and extrinsically
calibrated camera on a computer screen [102]. This has the advantage that realistic
sensor noise is contained in the data. The second simulator is purely virtual and
allows for arbitrary sensor sizes and parameters [103]. It is based on frames that

7http://www.ros.org/
8https://github.com/uzh-rpg/rpg_dvs_ros
9https://github.com/HBPNeurorobotics/gazebo_dvs_plugin

8

http://www.ros.org/
https://github.com/uzh-rpg/rpg_dvs_ros
https://github.com/HBPNeurorobotics/gazebo_dvs_plugin

1.2. State of the Art on Event Cameras

are rendered at high frequency and, therefore, the simulation is far from real time
operation. However, it additionally allows to include depth measurements and other
sensors into the simulation. We released this simulator as open-source package.10

Datasets. Computer-vision research has repeatedly benefitted from benchmark datasets.
In [137], the benefits of having such a dataset for event cameras were highlighted. Only
few and rather specialized datasets for event cameras existed: In [111], an approach
to convert frame-based datasets to event-based representations. They released neuro-
morphic versions of the MNIST handwritten digit database as well as the Caltech101
object recognition dataset.11 Their method uses an event camera on a pan-tilt unit
and shows images on a computer screen.12 Similarly in [61], conventional datasets for
object tracking, action recognition, and object recognition have been converted to event
streams.13 Since the datasets they converted contain video sequences, the event camera
could be held static as shown in Fig. 1.5. While these datasets allow direct comparison
of event cameras with frame-based cameras, the datasets are based on sampled images.
Since objects easily move more than one pixel per frame, these datasets cannot show
the low-latency capabilities of event cameras or the benefit from the asynchronous
nature of the event stream.

Figure 1.5: Converting conventional datasets to event streams by showing the frames on a
computer screen to an event cameras [61]

In [56], a dataset containing both egomotion and object motion recorded with a DVS is

10https://github.com/uzh-rpg/rpg_davis_simulator
11The datasets can be found on http://www.garrickorchard.com/datasets
12A video of the recordings can be found on https://youtu.be/2RBKNhxHvdw
13The datasets can be found on http://dgyblog.com/projects-term/dvs-dataset.html

9

https://github.com/uzh-rpg/rpg_davis_simulator
http://www.garrickorchard.com/datasets
https://youtu.be/2RBKNhxHvdw
http://dgyblog.com/projects-term/dvs-dataset.html

Chapter 1. Introduction

presented.14 For egomotion estimation, the DVS was mounted on a wheeled robot and,
therefore, consists mostly of forward and backward motion in a plane. The dataset also
contains sequences of single and multiple moving objects shown on a projector. Most
scenes consist of simple shapes such as black-and-white circles. No ground truth for
camera and object motion is provided.

In [127], a dataset for evaluation of optical flow was presented. Ground truth was
computed using an inertial measurement unit.15 They provide datasets with sharp
gradients and low texture, such as checkerboards (see example in Fig. 1.6a).

Synthetic and real datasets of an event and depth camera (a DAVIS and a Microsoft
Kinect) mounted on a mobile ground robot were released by [7].16 The ground robot
was equipped with a pan-tilt unit, resulting in 5 degrees of freedom. They provide
datasets on static scenes with low texture (such as checkerboards) and large objects
(see example in Fig. 1.6b).

(a) Optical-Flow Dataset [127] (b) Mobile Robot Dataset [7]

Figure 1.6: Related Datasets using Event Cameras

We created a dataset that contains handheld motion in a variety of scenarios and
motion speeds, with accurate ground truth from a motion-capture system [103]. Unlike
previous datasets, all six degrees of freedom are excited and contain natural textures.
Example environments are shown in Fig. 2.2 Therefore, they are a realistic benchmark
for robotic and virtual-reality applications.

14The dataset can be found here: http://www.itee.uq.edu.au/cis/projects#dvs
15The dataset can be found here: http://sensors.ini.uzh.ch/databases.html
16The dataset can be found here: https://github.com/fbarranco/eventVision-evbench

10

http://www.itee.uq.edu.au/cis/projects#dvs
http://sensors.ini.uzh.ch/databases.html
https://github.com/fbarranco/eventVision-evbench

1.2. State of the Art on Event Cameras

1.2.2 Event-based Feature Detection

Event Lifetime. Individual events contain very little information and are, therefore,
highly ambiguous. Thus, any event-based algorithm relies on information from past
events, or, sub-optimally, on the information contained in a collection of recent events.
However, it is not trivial how to choose this set of previous events. Ideally, these past
events form 1-pixel wide lines (i.e., edges) in the image plane (since 1 pixel is a natural
measure of the minimum amount of motion of an edge in the image plane). Many
works, however, use one of the two “naive” strategies to select the set of events for
current processing: (i) using a fixed time interval (e.g. [130, 108]), (ii) using a fixed
number of events (e.g. [69, 95, 55, 124]). Both strategies have severe shortcomings. The
first strategy is motion-dependent: if the camera moves slowly, a larger time interval is
required to show the same amount of events. The second strategy is scene-dependent: a
larger number of past events is required for highly textured scenes. However, there exist
situations where neither strategy can achieve the above-stated goal: if two objects in the
scene are moving at different speeds, there are no parameters for either strategy that
will allow sharp rendering of both objects. To overcome this limitation, we introduced
the concept of event “lifetime” [99]. For each event, we compute its current velocity
(apparent motion in the image plane) and use this as a prediction of the time that it
takes for the moving edge to traverse 1 pixel. This allows to render sharp event images
at any point in time.

Corner Detection. Features, such as corners, are a fundamental building block for
many computer-vision applications such as visual odometry or object recognition.
Examples for such features detectors are Harris [58] and FAST [126].

For event cameras, only two methods have been described in the literature. First, the
method of [29] that works by fitting planes and searching for intersections. In [142],
an event-based adaptation of the Harris was proposed. However, both methods are
computationally expensive. We propose the first FAST-inspired method [96] that is
an order of magnitude faster, while only performing slightly worse than previous
methods.

1.2.3 Event-based Tracking

Lines and Circles. In this section, we review event-based tracking algorithms that
estimate the motion from objects on the image plane. In [31], an event-based adaptation
of the Hough transform was presented to track lines using only the events. A similar
approach was presented in [107] that uses the Hough transform to detect circles. More
recently, a line detector was presented in [18]. Event-based particle tracking was
presented in [41], applied to high-speed tracking of particles in fluids.

11

Chapter 1. Introduction

In [102], we present the first method to track a set of lines for 6-DOF pose estimation
for high-speed quadrotor maneuvers. In the experiments, we show that our algorithm
can estimate the quadrotor pose in an event-by-event fashion, even during flips with
rotational speeds of 1,200 ◦/s.

In [97], a ball was tracked using a stereo pair of DVS for evasive maneuvers with
quadrotors. We use circular kernels similar to [72]. Event cameras allow ball detection,
trajectory extrapolation, and collision prediction within 15 ms—less than half of the
time between two frames of a standard 30 Hz camera.

Shapes. A method to track a predefined shape was presented in [108]. The approach
uses an event-based adaptation of the Iterative Closest Point (ICP) algorithm. It is
applied to high-speed stabilization of miniature gripper (see Fig. 1.7). Similarly in [72],
predefined kernels were tracked using the event stream (see Fig. 1.8). However, instead
of ICP, an infinite impulse response filter was used. In [141], the 3D pose of a model
consisting of a set of lines was tracked using event-based updates that combine both
2D and 3D criteria.

Figure 1.7: Event-based Iterative Closest Point Algorithm [108]. The top, middle, and bottom
row shows a standard image, accumulated events, and the overlaid model, respectively. The
model is shown as solid green lines. (a) shows the initial state and the correspondences as
black thin lines, (b) the model is converging towards the real position, (c) convergence, and (d)
the model keeps tracking the real position.

12

1.2. State of the Art on Event Cameras

(a) Pen thrown in the Air. (b) Basic Shapes.

Figure 1.8: Event-based Kernel Tracking [72]

While [72] is restricted to manually-crafted kernels, we present a method [138] that
can track arbitrary features. Using a DAVIS that provides both events and frames, we
initialize features from the frames and track them using the events using event-based
ICP. This allows feature tracking on natural textures that was not possible with previous
methods.

Optical Flow. Several methods to compute optical flow with event cameras have been
presented. In [10], an event-based adaptation of the classical frame-based Lukas-Kanade
method [85] was devised. Estimation using plane fitting on a map with the timestamp
of the latest event per pixel was used in [9]. A comparison of several state-of-the-art
optical flow methods was presented in [127], along with some datasets used for the
comparison. The comparison included a direction selective filter [33], four variants of a
basic Lucas-Kanade algorithm [10] and four variants of local plane fits [9].

Optical flow has been estimated along with image gradient (the spatial derivative
that triggered the events), jointly, in [32] for rotational motion, and in [6] for arbitrary
dynamic scenes. In [32], a distributed message-passing algorithm consisting of local
gradient descent operations is used that jointly estimated image gradient, angular
velocity, and optical flow. The problem is posed in a variational optimisation framework
in [6], with a data term consisting of the event stream and with spatial and temporal
regularizers over a sliding-window time interval. Optimisation was carried out using a
primal-dual algorithm, which required a GPU implementation to run in near real-time.

13

Chapter 1. Introduction

1.2.4 Event-based Motion Estimation

In this section, we review approaches that estimate the ego-motion of an event camera.
Many of them either require additional sensing or restrict the degrees of freedom, the
types of scenes, or both.

Rotation only. In [32], interacting maps were used to estimate the rotation of an event
camera, while at the same time reconstructing an intensity image. Interacting maps are
a network of recurrently interconnected areas that encode different aspects of visual
interpretation (e.g., optic flow, intensity image, etc.) as shown in Fig. 1.9a. Because
each area tries to be consistent with its neighboring areas, they converge towards a
global mutual consistency (see Fig. 1.9b). As information can flow in both ways, this
breaks with the traditional feed-forward processing scheme. In [66], similar output
quantities (G, I, and R) were produced using a pair of Bayesian filters operating in
parallel (see Fig. 1.10a): a particle filter for to track the rotational motion of the camera,
and a per-pixel Extended Kalman Filter (EKF) to compute the image gradient (G) from
which the intensity image (I) was obtained by Poisson integration. The method of [55]
does not require to compute the intensity image to estimate the camera motion and
works by maximizing the contrast of an image of motion-warped events.

2D Estimation. Localization in 2D was presented by [145] and later extended to
Simultaneous Localization and Mapping (SLAM) [146] (see Fig. 1.10b) and explo-
ration [60]. The system design, however, was limited to slow planar motions (i.e., 3
DOF) and planar scenes parallel to the plane of motion consisting of high-contrast
black-and-white line patterns. They used an upward-looking event camera on a ground
robot and created gradient maps from the ceiling using probabilistic updates.

Additional Sensing. In [26], a visual-odometry algorithm is presented that uses an
event camera in combination with a frame-based camera. They track the camera motion
between two frames using the events by incorporating a probabilistic sensor model.
In [144], a 3D SLAM system was presented that uses an event camera with an additional
depth sensor (see Fig. 1.11). Localization in predefined line-based maps was presented
in [149]. They use an inertial measurement unit to align the events with gravity and
propose a fast algorithm to detect vertical lines.

6-DOF SLAM. Only recently, 6-DOF SLAM algorithms were presented. In [67],
three decoupled probabilistic filters were used to estimate 6-DOF camera motion, the
intensity gradient image, and an inverse depth map (see Fig. 1.12). At the same time,
the intensity gradient image is used to reconstruct a video signal. The method is able to

14

1.2. State of the Art on Event Cameras

(a) Figure from [32]. Network architecture, showing the “maps” (represented by ellipsoids)
and the relationships (i.e., per-pixel equations) between them (represented by rectangles). The
distributed algorithm jointly estimates the image gradient (G), absolute intensity (I), optical
flow (F), and angular velocity (R) from the input event stream (V).

(b) Results of [32]. The map V shows the events from the event camera (input to the algorithm)
as it moves above part of a keyboard. Red and blue pixels represent negative and positive
events, respecetively. All other maps (image I, gradient G and optical flow F) are inferred from
V. The hue in G and F represents the direction of the vector at the given pixel (cf. the legend at
the center), and the saturation is proportional to the vector norm. Left: shows the result of a
clockwise rotation of the input around the image center. Right: shows the result of a left to
right rotational motion of the input.

Figure 1.9: Interacting Maps for Fast Visual Interpretation [32]

track a hand-held event camera in unknown and unstructured environments. However,
the method is computationally intense and requires a GPU for computation. In [124],
a geometric approach to 6-DOF parallel tracking and mapping was presented. The
method combines an image-to-model alignment by accumulating events to create an
artificial image and an event-based 3D reconstruction algorithm [123]. In contrast
to [67], the method does not require the reconstruction of the gradient image and can
produce several hundred pose estimates per second on a standard CPU. An example of
a computed map and trajectory is shown in Fig. 1.13.

15

Chapter 1. Introduction

(a) Mosaicing and Tracking [66] (b) 2D SLAM [146]

Figure 1.10: Event-based Motion Estimation

(a) DVS (top) with depth camera (below) (b) Map and camera trajectory

Figure 1.11: Event-based 3D SLAM with an Depth-augmented Event Camera [144].

Sparse Event-Based Visual Odometry. Prior to [67] and [124], we developed a sparse,
feature-based 6-DOF visual-odometry algorithm [70] that was based on low-latency
feature tracks [138]. Our odometry algorithm worked on natural scenes and used
arbitrary features, with arbitrary shapes, defined by the edgemaps in the frames of
the DAVIS and tracked using the event stream. These feature tracks were fed to an
event-based visual-odometry algorithm that interleaved robust pose estimation and
probabilistic mapping.

Probabilistic Dense Tracking. In [54], we presented a probabilistic filter framework to
track the event-camera pose in a known map. This was the first algorithm that allowed
for 6-DOF event-camera tracking in natural environments. The method provided pose
updates upon the arrival of each event and thus virtually eliminated latency.

16

1.2. State of the Art on Event Cameras

Figure 1.12: 3D Reconstruction and 6-DoF Tracking [67]. (a) event visualization, (b) gradient
estimation, (c) intensity reconstruction, (d) depth estimation, and (e) semi-dense point cloud.

Figure 1.13: EVO [124]: geometric approach to 6-DOF semi-dense parallel tracking and mapping
in real time on a CPU.

Continuous-Time Visual-Inertial Trajectory Estimation. Finally, in [101, 100], we
proposed to use a continuous-time trajectory estimation framework. This framework
allows a direct and natural integration of all events and inertial measurements in a
single optimization problem, while using only few optimization parameters.

1.2.5 Event-based Motion Control

The first closed-loop control application using event cameras was presented in [31],
where a pair of DVS was used to balance a pencil on a highly-reactive platform moving

17

Chapter 1. Introduction

in a plane.17 The setup is depicted in Fig. 1.14a. The key was an event-based adaptation
of the Hough transform.

In [34], a robotic goalie was presented that defended incoming balls with very low
latency.18 The setup is illustrated in Fig. 1.14b.

(a) Pencil Balancing [31] (b) Robotic Goalie [34]

(c) Heading Tracking [104] (d) Predator Robot [95]

Figure 1.14: Examples of Event-based Control Applications

In [104], an event-based control algorithm to stabilize yaw of a 1-DOF robot (see
Fig. 1.14c) is presented. Their computationally efficient algorithm performs an approxi-
mation to Bayesian inference that allows event-by-event updates. They show that an
event camera outperforms standard cameras with respect to computational load, data
rate, bandwidth, and latency in this task.

17Video of pen balancing: https://youtu.be/f9UngTdngY4
18Video of robotic goalie: https://youtu.be/PB5vWvT_QAA

18

https://youtu.be/f9UngTdngY4
https://youtu.be/PB5vWvT_QAA

1.3. Summary

These three works demonstrated the low-latency capabilities of event cameras in an
impressive way. Furthermore, the also showed that the algorithms needed are very
efficient: the pen-balancing algorithm was running on an embedded microcontroller,
while the robotic goalie was only using 4 % CPU of a standard desktop. This comes
from the sparse, asynchronous output of event cameras that only reports changes.

In [95], a Convolutional Neural Network (CNN) for a predator robot is trained using
both the events and frames from a DAVIS. The method accumulates a fixed number
of events, thus the sampling rate depends on the speed of the robot. The network
generates four outputs (left, middle, right, and not visible; see Fig. 1.14d) that are used
as steering commands and achieves accuracies of around 90 %.19

In [37], we present a method for high-frequency tracking and control of slot cars,
enabling human-vs-machine races.20 The event camera was placed in “eye-of-god”
view. Throttle and brake commands are computed at 666 Hz, while requiring less than
3 % of CPU load. An image of a human-vs-machine race is shown in Fig. 2.11.

1.3 Summary

In this chapter, we have discussed the working principle of event cameras and given a
historical perspective of their development. We have also mentioned the advantages
of the event cameras over standard cameras (low latency, high speed, high dynamic
range, low power, etc.) and the challenges that the bio-inspired data-driven sampling
scheme poses on developing new computer vision algorithms to unlock the potential
of event cameras.

In the second half of the chapter, we have discussed the state of the art on the five topics
developed in this thesis: infrastructure, feature detection, feature tracking, ego-motion
esimation, and robot control using event cameras. During the literature review, we
have pointed the most relevant works on the above-mentioned topics and we have put
in context several of our contributions, which we will further detail in the next chapter.

19Video of predator robot: https://youtu.be/lPF3Youpmqk
20Video of slot-car racing: https://youtu.be/CnGPGiZuFRI

19

https://youtu.be/lPF3Youpmqk
https://youtu.be/CnGPGiZuFRI

2 Contributions

This chapter summarizes the key contributions of the papers that are reprinted in
the appendix. It further highlights the connections between the individual results
and refers to related work and video contributions. Because Papers A and B contain
two main contributions, they are mentioned in both sections where they are relevant
(Sections 2.1 and 2.3). In total, this research has been published in eight peer-reviewed
conference publications and one journal publication in the International Journal of
Robotics Research (IJRR). Two further journal papers are currently under review at the
IEEE Transactions on Robotics (TRO) and the IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI). These works led to a Qualcomm Innovation Fellowship in
2016 and were awarded the Misha Mahowald Prize for Neuromorphic Engineering in 2017.

2.1 Infrastructure for Event-based Vision

Since event cameras are relatively new, few publicly available tools exist. The commu-
nity was mostly relying on a Java-based framework (jAER)1, which is prohibitive for
small processors as those used on MAVs. We thus first developed a ROS interface for
the DVS [77] and DAVIS [19] event cameras, designed and implemented an intrinsic
camera calibration tool, and characterized the latencies. Further, we released the first
event-camera dataset and simulator for tracking and visual odometry. This dataset
allows researchers without access to expensive hardware to develop algorithms and
test them on real data, and serves as benchmark to compare their performance against
existing algorithms. These contributions are summarized in more detail below.

1https://sourceforge.net/projects/jaer/

21

https://sourceforge.net/projects/jaer/

Chapter 2. Contributions

2.1.1 Paper A1: Event Camera Driver and Calibration

(P1) E. Mueggler, B. Huber, and D. Scaramuzza. “Event-based, 6-DOF Pose Tracking for
High-Speed Maneuvers”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2014,
pp. 2761–2768. doi: 10.1109/IROS.2014.6942940

We developed a driver for the DVS and DAVIS event cameras that allows their direct
integration in the Robot Operating System (ROS) framework. Because for many
computer-vision tasks the intrinsic camera calibration is needed, we also developed
a calibration toolbox. Since traditional methods do not work directly with events, we
used active patterns that blinked at high frequency to generate events. We used both
an LED pattern at 1 kHz and standard computer screens, whose backlight is typically
dimmed with pulse-width modulation at several hundred Hertz. We prefer the first
method as the maximum viewing angle, and thus the calibration accuracy, are typically
higher (60◦ vs 20◦). For the DAVIS, which provides image frames from the same
physical pixels as the event sensor, the frames can be easily used for accurate intrinsic
camera calibration using standard methods. The driver also provides support for
hardware-synchronized stereo setups. We released both the driver and the calibration
tools as open source.

Related Software

(S1) https://github.com/uzh-rpg/rpg_dvs_ros

(a) Array of Blinking LEDs (b) Dimmed Computer Screen

Figure 2.1: Calibration of Event Cameras. (a): Board with blinking LEDs for intrinsic and
extrinsic calibration of the DVS stereo setup. The LEDs are blinking at a frequencies of 1 kHz,
such that they can easily be detected by a DVS. (b): Alternatively, a dimmed computer screen
can be used to show a calibration pattern, since dimming is typically implemented using
pulse-width modulation at high frequency that is detectable by an event camera.

22

http://dx.doi.org/10.1109/IROS.2014.6942940
https://github.com/uzh-rpg/rpg_dvs_ros

2.1. Infrastructure for Event-based Vision

2.1.2 Paper B1: Event Camera Delay Characterization

(P2) E. Mueggler, N. Baumli, F. Fontana, and D. Scaramuzza. “Towards Evasive Maneuvers
with Quadrotors using Dynamic Vision Sensors”. In: Eur. Conf. Mobile Robots (ECMR).
2015, pp. 1–8. doi: 10.1109/ECMR.2015.7324048

To use event cameras for closed-loop, low-latency control (such as evasive maneuvers
with quadrotors [97]), it is crucial to have precise estimates of the sensor latency. While
the latency of the events is in the order of microseconds on the DVS, it is typically
connected via USB to a host computer or robot, which introduces significant latency.
In this work, we evaluated the round-trip delay from both a stimulus (e.g., an LED)
to its detection in the event stream. We measured this round-trip delay for both
a laptop and embedded computer for the DVS, a machine-vision camera, and the
Kinect-like ASUS Xtion. We measured delay below 3 ms and 5 ms for a laptop and
embedded computer, respectively, which is below the typical exposure time of standard
cameras. In addition, since event cameras operate asynchronously, a changing stimulus
is detected immediately (without the delay of 1/ f seconds, where f is the sensor
frequency in Hz). These results suggest that, for most practical robotic applications, a
standard USB interface should be sufficiently fast.

2.1.3 Paper C: Event Camera Dataset and Simulator

(P3) E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza. “The Event-Camera
Dataset and Simulator: Event-based Data for Pose Estimation, Visual Odometry, and
SLAM”. in: Int. J. Robot. Research 36 (2 2017), pp. 142–149. doi: 10.1177/0278364917691115

Publicly available datasets have a long and successful history in the domain of computer
vision, machine learning, and robotics. They serve as benchmark to compare different
algorithms and make the data available to researchers that lack expensive experimental
infrastructure. In [137], the authors address the challenges and state-of-the-art for
neuromorphic vision datasets. They finally remark that “dataset creation should be
prioritized and recognized as a task of utmost importance to the field.” Existing datasets
are either not suited for egomotion estimation [111, 61] or do not excitate all six degrees
of freedom [127, 7]. We present and release the first collection of datasets captured
with a DAVIS in a variety of synthetic and real environments, which we hope will
motivate research on new algorithms for high-speed and high-dynamic-range robotics
and computer-vision applications. In addition to global-shutter intensity images and
asynchronous events, we provide inertial measurements and ground-truth camera
poses from a motion-capture system. The latter allows comparing the pose accuracy
of ego-motion estimation algorithms quantitatively. All the data are released both as
standard text files and as binary files (i.e., rosbag). We additionally release the first
event-camera simulator as open source to create synthetic event-camera data.

23

http://dx.doi.org/10.1109/ECMR.2015.7324048
http://dx.doi.org/10.1177/0278364917691115

Chapter 2. Contributions

Related Software

(S2) https://github.com/uzh-rpg/rpg_dvs_simulator

Related Datasets

(D1) http://rpg.ifi.uzh.ch/davis_data.html

Related Videos

(V1) https://youtu.be/bVVBTQ7l36I

(a) Shapes (b) Dynamic (c) Poster

(d) Boxes (e) Linear Slider (f) Simulator

Figure 2.2: Example Scenes from the Event-Camera Dataset [103]

24

https://github.com/uzh-rpg/rpg_dvs_simulator
http://rpg.ifi.uzh.ch/davis_data.html
https://youtu.be/bVVBTQ7l36I

2.2. Event-based Feature Detection

2.2 Event-based Feature Detection

In this section, the contributions for low-level feature detection and tracking are
described. Such methods act as building blocks for higher-level algorithms, such as
ego-motion estimation, which will be presented in the next section.

2.2.1 Paper D: Lifetime of Events

(P4) E. Mueggler, C. Forster, N. Baumli, G. Gallego, and D. Scaramuzza. “Lifetime Estimation
of Events from Dynamic Vision Sensors”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2015,
pp. 4874–4881. doi: 10.1109/ICRA.2015.7139876

While an event is precisely timestamped upon its generation, it does not contain any
information about the duration it is a valid measurement of the scene, i.e., it does
not encode knowledge for how long the gradient causing the event remains at that
particular pixel location. To overcome this issue, we introduce the concept of event
lifetime, which can be summarized as the time that it takes for the moving edge causing
the event to traverse the distance of 1 pixel, and present an algorithm to compute it
from the event’s velocity on the image plane. The lifetime endows the events with a
finite temporal extent for a proper continuous representation of events in time. A direct
application of this augmented stream (events plus lifetime) is the construction of sharp
gradient (edge-like) images at any time instant, providing a solution to the tradeoff
between completeness and motion blur of integrated event images.

(a) Image of the scene (b) 30 ms (c) 1 ms (d) Our method

Figure 2.3: An event camera is moved in front of a window frame diagonally, from bottom-left
to top-right (a). Since the window frame is much closer than the buildings, its apparent motion
is significantly larger. Thus, if we use a fixed accumulation interval, the images will either
be blurred, if the interval is too long (b), or some structures will not be clearly visible, if the
interval is too short (c). Our method estimates the lifetime of each event independently and
displays the event for that period of time (d).

25

http://dx.doi.org/10.1109/ICRA.2015.7139876

Chapter 2. Contributions

2.2.2 Paper E: Event-based Feature Detection

(P5) E. Mueggler, C. Bartolozzi, and D. Scaramuzza. “Fast Event-based Corner Detection”. In:
British Machine Vis. Conf. (BMVC). 2017

In textured scenes with rapid motion, event cameras output millions of events per
second. Therefore, state-of-the-art event-based algorithms either require massive
parallel computation (e.g., a GPU) or depart from the event-based processing paradigm.
Inspired by frame-based pre-processing techniques that reduce an image to a set of
features, which are typically the input to higher-level algorithms, we propose a method
to reduce an event stream to a corner event stream. Our goal is twofold: extract relevant
tracking information (corners do not suffer from the aperture problem) and decrease the
event rate for later processing stages. Unlike previous works that required convolutions
and matrix multiplications (Harris-like detector [142]) or plane fitting [29], we present
the first method that is inspired by FAST [126]. Our event-based corner detector is
very efficient due to its design principle, which consists of working on the Surface of
Active Events (a map with the timestamp of the latest event at each pixel) using only
comparison operations. Our method asynchronously processes event by event with
very low latency. Our implementation is capable of processing millions of events per
second on a single core (less than a micro-second per event) and reduces the event rate
by a factor of 10 to 20.

Related Videos

(V2) https://youtu.be/tgvM4ELesgI

(a) Raw Event
vs Corner Event
Stream (b) Corners (c) Corners

Figure 2.4: Event-based Corner Detection. (a): The output of our method is a corner event
stream (green), which is here overlaid on the raw event stream (gray) in space-time (time going
upwards). (b, c): Detected corners in the event stream (color indicates polarity) overlaid on
intensity image (only used for visualization purposes).

26

https://youtu.be/tgvM4ELesgI

2.3. Event-based Feature Tracking

2.3 Event-based Feature Tracking

2.3.1 Paper A2: Tracking Polygonal Shapes

(P1) E. Mueggler, B. Huber, and D. Scaramuzza. “Event-based, 6-DOF Pose Tracking for
High-Speed Maneuvers”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2014,
pp. 2761–2768. doi: 10.1109/IROS.2014.6942940

We developed the first 6-DOF pose tracking method using an event camera without any
additional sensing. Our method is able to track a quadrotor’s position and orientation
with respect to a known pattern using an event camera onboard the vehicle. The method
is able to track the pattern even under high-speed motion, such as quadrotor flips
where rotational speeds of up to 1,200 ◦/s are achieved. Our algorithm works in an
event-based fashion, such that the pose is updated asynchronously upon the arrival of
a new event. More specifically, the algorithm minimizes the point-to-line reprojection
error of the events using a model consisting of a set of line segments. Therefore, the
method is limited to black-and-white scenes consisting of straight edges. We show that
despite the low spatial resolution of the DVS, the pose can be tracked accurately.

Related Videos

(V3) https://youtu.be/LauQ6LWTkxM

(a) Quadrotor Flip.

0 32 64 96 128

0

32

64

96

128

1

2

3

4

x

y

(b) Tracking Algorithm.

Figure 2.5: Polygonal Shape Tracking.

27

http://dx.doi.org/10.1109/IROS.2014.6942940
https://youtu.be/LauQ6LWTkxM

Chapter 2. Contributions

2.3.2 Paper B2: Ball Tracking

(P2) E. Mueggler, N. Baumli, F. Fontana, and D. Scaramuzza. “Towards Evasive Maneuvers
with Quadrotors using Dynamic Vision Sensors”. In: Eur. Conf. Mobile Robots (ECMR).
2015, pp. 1–8. doi: 10.1109/ECMR.2015.7324048

In this paper, we estimate the trajectory of a ball thrown towards a quadrotor using a
pair of event cameras in a stereo configuration. The aim of this project is to predict a
collision of the ball with the quadrotor and, if necessary, perform an evasive maneuver.
Our method tracks spherical objects on the image plane using probabilistic trackers
that are updated with each incoming event. The object’s trajectory is estimated using
an Extended Kalman Filter with a mixed state space that allows incorporation of both
the object’s dynamics and the measurement noise in the image plane. Using error-
propagation techniques, we predict a collision if the 3σ-ellipsoid along the predicted
trajectory intersects with a safety sphere around the quadrotor. We experimentally
demonstrate that our method allows initiating evasive maneuvers early enough to
avoid collisions.

(a) Experimental Setup. (b) Ball Tracking.

Figure 2.6: Ball Tracking for Evasive Maneuvers. (a): ball (black) thrown towards a quadrotor.
A leash was attached to the ball to prevent a potential collision. (b): Red and blue points
indicate events with positive and negative polarity, respectively. The active circle trackers are
marked in black and highlighted with an arrow.

28

http://dx.doi.org/10.1109/ECMR.2015.7324048

2.3. Event-based Feature Tracking

2.3.3 Paper F: Event-based Feature Tracking

(P6) D. Tedaldi, G. Gallego, E. Mueggler, and D. Scaramuzza. “Feature Detection and
Tracking with the Dynamic and Active-pixel Vision Sensor (DAVIS)”. in: Int. Conf. Event-
Based Control, Comm. Signal Proc. (EBCCSP). Krakow, Poland, June 2016, pp. 1–7. doi:
10.1109/EBCCSP.2016.7605086

We present the first algorithm to detect and track visual features using both the frames
and the event data provided by the DAVIS. Features are first detected in the grayscale
frames and then tracked asynchronously in the blind time between frames using the
stream of events. To best take into account the hybrid characteristics of the DAVIS,
features are built based on large, spatial contrast variations (i.e., visual edges), which
are the source of most of the events generated by the sensor. An event-based algorithm
is further presented to track the features using an iterative, geometric registration
approach. The performance of the proposed method is evaluated on real data acquired
by the DAVIS.

Related Videos

(V4) https://youtu.be/nglfEkiK308

Figure 2.7: Feature Tracking.

29

http://dx.doi.org/10.1109/EBCCSP.2016.7605086
https://youtu.be/nglfEkiK308

Chapter 2. Contributions

2.4 Event-based Ego-Motion Estimation

In this section, we describe algorithms for ego-motion estimation using event-cameras,
that is, algorithms that estimate the pose of an event camera with respect to a known
map of the environment.

2.4.1 Paper G: Sparse Visual Odometry

(P7) B. Kueng, E. Mueggler, G. Gallego, and D. Scaramuzza. “Low-latency Visual Odometry
using Event-based Feature Tracks”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS).
Daejeon, Korea, Oct. 2016, pp. 16–23. doi: 10.1109/IROS.2016.7758089

We present the first sparse, feature-based visual-odometry algorithm using the events
and frames from the DAVIS sensor. Features are first detected in the grayscale frames
and then tracked asynchronously using the stream of events, as described in Paper F.
The features are then fed to an event-based visual odometry algorithm that tightly
interleaves robust pose optimization and probabilistic mapping. We show that our
method successfully tracks the 6-DOF motion of the sensor in natural scenes.

Related Videos

(V5) https://youtu.be/RDu5eldW8i8

x [cm]
−8 −6 −4 −2 0 2 4 6 8

y [cm]

−2
0

2
4

6
8

10
12

14

z
[c
m
]

−4
−2
0
2
4
6
8
10
12

Estimate Event-based

Estimate Frame-based

Ground Truth

(a) Office Spiral Dataset.

x [cm]

−6 −4 −2 0 2 4 6 8 10

y
[cm

]

−10
−8

−6
−4

−2
0

2
4

6
8

z
[c
m
]

0

20

Estimate Event-based

Estimate Frame-based

Ground Truth

(b) Office Zig-Zag Dataset.

Figure 2.8: Sparse Visual Odometry using Event-based Feature Tracks.

30

http://dx.doi.org/10.1109/IROS.2016.7758089
https://youtu.be/RDu5eldW8i8

2.4. Event-based Ego-Motion Estimation

2.4.2 Paper H: Dense 6-DOF Tracking

(P8) G. Gallego, J. E. A. Lund, E. Mueggler, H. Rebecq, T. Delbruck, and D. Scaramuzza.
“Event-based, 6-DOF Camera Tracking for High-Speed Applications”. In: IEEE Trans.
Pattern Anal. Machine Intell. (2017). under review

We present an event-based approach for ego-motion estimation, which provides pose
updates upon the arrival of each event, thus virtually eliminating latency. Our
method is the first work addressing and demonstrating event-based pose tracking
in six degrees-of-freedom (DOF) motions in realistic and natural scenes, and it is able
to track high-speed motions. The method is successfully evaluated in both indoor and
outdoor scenes with significant depth variation, and under motions with excitations in
all 6-DOFs.

Related Videos

(V6) https://youtu.be/iZZ77F-hwzs

12.9 13 13.1 13.2 13.3 13.4

−20
0

20

40

60

time [s]

or
ie

nt
at

io
n

[d
eg

] EB roll GT roll
EB pitch GT pitch
EB yaw GT yaw

Figure 2.9: High-speed motion sequence. Top left: image from a standard camera, suffering
from blur due to high-speed motion. Top right: set of asynchronous DVS events in an interval
of 3 milliseconds, colored according to polarity. Bottom: estimated poses using our event-based
(EB) approach, which provides low latency and high temporal resolution updates. Ground
truth (GT) poses are also displayed.

31

https://youtu.be/iZZ77F-hwzs

Chapter 2. Contributions

2.4.3 Paper I: Continuous-Time Trajectory Estimation

(P9) E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza. “Continuous-Time Visual-
Inertial Trajectory Estimation with Event Cameras”. In: IEEE Trans. Robot. (2017). under
review

In this paper, we leverage a continuous-time framework to perform trajectory estimation
by fusing visual data from a moving event camera with inertial data from an IMU. This
framework allows direct integration of the asynchronous events with micro-second
accuracy and the inertial measurements at high frequency. The pose trajectory is
approximated by a smooth curve in the space of rigid-body motions using cubic splines.
This formulation significantly reduces the number of variables in trajectory estimation
problems. We evaluate our method on real data from several scenes and compare
the results against ground truth from a motion-capture system. We show superior
performance of the proposed technique compared to non-batch event-based algorithms.
We also show that both the map orientation and scale can be recovered accurately by
fusing events and inertial data. To the best of our knowledge, this is the first work on
visual-inertial fusion with event cameras using a continuous-time framework.

Related Publications

(R1) E. Mueggler, G. Gallego, and D. Scaramuzza. “Continuous-Time Trajectory Estimation
for Event-based Vision Sensors”. In: Robotics: Science and Systems (RSS). 2015. doi:
10.15607/RSS.2015.XI.036

0.00 0.02 0.04 0.06 0.08

time [s]

frames

IMU

events

continuous

(a) Continuous vs. Discrete

SE(3)

Tw,s(t)

Ωi

Ωi+1 Ωi+2

Tw,i−1

Tw,i
Tw,i+1

Tw,i+2

(b) Cummulative Cubic Splines

Figure 2.10: Continuous-Time Trajectories. (a): While the frames and inertial measurements
arrive at a constant frequency, events are transmitted asynchronously and at much higher rates.
We model the camera trajectory as continuous in time, which allows direct integration of all
measurements using their precise timestamps. (b): Geometric interpretation of the cubic spline
interpolation. The cumulative formulation uses one absolute control pose Tw,i−1 and three
incremental control poses Ωi, Ωi+1, Ωi+2 to compute the interpolated pose Tw,s.

32

http://dx.doi.org/10.15607/RSS.2015.XI.036

2.5. Event-based Robot Control

2.5 Event-based Robot Control

In this section, we describe how event cameras can be used in closed-loop for robot
control.

2.5.1 Paper J: Slot-Car Racing

(P10) T. Delbruck, M. Pfeiffer, R. Juston, G. Orchard, E. Müggler, A. Linares-Barranco, and
M. W. Tilden. “Human vs. Computer Slot Car Racing using an Event and Frame-Based
DAVIS Vision Sensor”. In: IEEE Int. Symp. Circuits Syst. (ISCAS). Lisbon, Portugal, May
2015, pp. 2409–2412. doi: 10.1109/ISCAS.2015.7169170

This paper describes an open-source implementation for racing human vs. computer
on a slot car track. A DAVIS is mounted in "eye-of-god" view. Its image frames are
only used for setup and are subsequently turned off because they are not needed.
The dynamic vision sensor (DVS) events are then used to track both the human and
computer controlled cars. The precise control of throttle and braking afforded by the
low latency of the sensor output enables consistent out-performance of human drivers
at a laptop CPU load of <3 % and update rate of 666 Hz. The sparse output of the DVS
event stream results in a data rate that is about 1000 times smaller than that from a
frame-based camera with the same resolution and update rate. The scaled average
lap speed of the 1/64 scale cars is about 450 km/h which is twice as fast as the fastest
Formula 1 lap speed.

Related Software

(S3) https://github.com/tpietzsch/jAER/ ... /virtualslotcar

Related Videos

(V7) https://youtu.be/CnGPGiZuFRI

(V8) https://youtu.be/AsO1TWS8_VA

Figure 2.11: Slot-Car Racing

33

http://dx.doi.org/10.1109/ISCAS.2015.7169170
https://github.com/tpietzsch/jAER/tree/master/host/java/src/ch/unizh/ini/jaer/projects/virtualslotcar
https://youtu.be/CnGPGiZuFRI
https://youtu.be/AsO1TWS8_VA

Chapter 2. Contributions

2.6 Unrelated Contributions

List of contributions that were performed during the Ph.D., but are not related to
event-based vision. They can be divided in vision-based quadrotor navigation and
heterogeneous robot collaboration.

2.6.1 Quadrotor Navigation

These works present methods for visual navigation of quadrotors. We show how stan-
dard cameras can be used for various robotics tasks, such as stabilization, navigation,
autonomous 3D mapping, and passing through narrow gaps.

(U1) M. Faessler, E. Mueggler, K. Schwabe, and D. Scaramuzza. “A Monocular Pose Estimation
System based on Infrared LEDs”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2014, pp. 907–
913. doi: 10.1109/ICRA.2014.6906962

(U2) M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scaramuzza. “Au-
tonomous, Vision-based Flight and Live Dense 3D Mapping with a Quadrotor MAV”. in:
J. Field Robot. 33.4 (2016), pp. 431–450. issn: 1556-4967. doi: 10.1002/rob.21581

(U3) D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza. “Aggressive Quadrotor Flight
through Narrow Gaps with Onboard Sensing and Computing”. In: IEEE Int. Conf. Robot.
Autom. (ICRA). 2017

2.6.2 Heterogeneous Robot Collaboration

These works deal with the collaboration of aerial and ground robots. As these robots
have complementary capabilities (payload, perspective, maneuverability, etc.), using a
heterogeneous team of robots can increase task performance. For example, in a search-
and-rescue scenario, the aerial robot can map the environment and find a fast and
feasible path for the ground robot. Due to its payload and manipulation capabilities,
the ground robot can then deliver aid packages that are too heavy for aerial robots.

(U4) E. Mueggler, M. Faessler, F. Fontana, and D. Scaramuzza. “Aerial-guided Navigation
of a Ground Robot among Movable Obstacles”. In: IEEE Int. Symp. Safety, Security, and
Rescue Robot. (SSRR). 2014, pp. 1–8. doi: 10.1109/SSRR.2014.7017662

(U5) R. Käslin, P. Fankhauser, E. Stumm, Z. Taylor, E. Mueggler, J. Delmerico, D. Scaramuzza,
R. Siegwart, and M. Hutter. “Collaborative localization of aerial and ground robots
through elevation maps”. In: IEEE Int. Symp. Safety, Security, and Rescue Robot. (SSRR).
Oct. 2016, pp. 284–290. doi: 10.1109/SSRR.2016.7784317

(U6) J. Delmerico, A. Giusti, E. Mueggler, L. M. Gambardella, and D. Scaramuzza. ““On-the-
spot Training” for Terrain Classification in Autonomous Air-Ground Collaborative Teams”.
In: Int. Symp. Experimental Robotics (ISER). 2016. doi: 10.1007/978-3-319-50115-4_50

(U7) J. Delmerico, E. Mueggler, J. Nitsch, and D. Scaramuzza. “Active Autonomous Aerial
Exploration for Ground Robot Path Planning”. In: IEEE Robot. Autom. Lett. 2.2 (2017),
pp. 664–671. doi: 10.1109/LRA.2017.2651163

34

http://dx.doi.org/10.1109/ICRA.2014.6906962
http://dx.doi.org/10.1002/rob.21581
http://dx.doi.org/10.1109/SSRR.2014.7017662
http://dx.doi.org/10.1109/SSRR.2016.7784317
http://dx.doi.org/10.1007/978-3-319-50115-4_50
http://dx.doi.org/10.1109/LRA.2017.2651163

2.6. Unrelated Contributions

(a) U1: Monocular Pose Estimation using In-
frared LEDs [46]

(b) U2: Live Dense 3D Reconstruction with an
Autonomous Quadrotor [45]

(c) U3: Quadrotor Flight through Narrow
Gaps [47]

(d) U4: Aerial-guided Navigation of a Ground
Robot among Movable Obstacles [98]

(e) U5: Collaborative Localization of Aerial and
Ground Robots through Elevation Maps [64]

(f) U7: Active Autonomous Aerial Exploration
for Ground Robot Path Planning [40]

(g) U6: “On-the-spot Training” for Terrain Classification [39]

Figure 2.12: Contributions to quadrotor navigation and heterogeneous robot collaboration.

35

3 Future Directions

While algorithms for event-based vision are still in an early stage, several works have
demonstrated their advantages over high-quality standard cameras. The performance
in terms of precision and robustness, however, must increase significantly to compete
with existing approaches based on standard cameras. Partly, this requires increased
sensor performance, where recent prototypes are very promising.

Increasing Sensor Performance. Current event cameras are still advanced prototypes
and are not widely spread in the robotics and computer vision community. Several
recent prototypes already increase the performance of event cameras in various regards.
As is well known, one of the current limitations of event cameras is their limited spatial
resolution (240× 180 pixels, in the case of the DAVIS240C). Newer sensors, such as
those presented in [76, 135] (still not commercially available), have a higher resolution:
VGA (640× 480 pixels). Such a resolution is suitable for robotics applications, but it is
still small compared to the resolution of current standard cameras. Another limitation
of event cameras, in the case of mobile robots such as lightweight quadrotors, is their
size. Future devices, such as the mini-DAVIS from iniLabs, developed in the context
of the DARPA Fast Lightweight Autonomy (FLA) program, aim at reducing the size
of the sensor to be comparable to the size of standard cameras such as those found in
smartphones.

Sensor performance is also expected to increase regarding brightness sensitivity and
chromaticity (color is paramount in several computer vision and robotics applications
such as segmentation and recognition). In [148], an event camera with higher sensitivity
(1 % instead of typically 10–15 %) was presented. In [76], the C-DAVIS was introduced:
a sensor that combines an event camera (QVGA resolution) with a standard color
camera (VGA resolution). Hence, the C-DAVIS is able to capture spatial details with
color and track movements with high temporal resolution while keeping the data
output sparse and with low latency.

37

Chapter 3. Future Directions

Figure 3.1: Detection of Piano String Frequency using an Event Camera

Integrated Processors. An additional advantage of event cameras is their low power
consumption: the DVS requires 23 mW, whereas standard cameras typically require
an order of magnitude more. However, current methods rely on standard processing
hardware (either CPUs or GPUs) and, therefore, require much power for processing.
Powerful processors, as the ones used for today’s vision algorithms, use more than
100 W at full load. The human brain, for comparison, uses only 20 W [42]. Thus, a sig-
nificant challenge will eventually be reducing power consumption of these algorithms.
Neuromorphic processing hardware offers huge potential for low-power, massively
parallel algorithms. Much power and resources are required to transfer data between
two locations (“I/O bottleneck”). Thus, the earlier the data can be processed, the less
energy is spent on it. An extreme form of this is presented in [44], where each pixel is
equipped with an analogue processor. Thus, much computation can be performed with
little power (in their case, they can perform 1.1 giga instructions per second at 40 mW).

Neuromorphic Processing Hardware. Dedicated hardware for neuromorphic pro-
cessing is being developed, such as CAVIAR [131], SpiNNaker [51], IBM TrueNorth [3],
and DYNAP [120]. Neuromorphic processing architectures allow more efficient han-
dling of event-based data. While providing massive parallel compute power, they
require very little power.

Neuromorphic Sensing. Besides event cameras, other sensor modalities are being
researched using neuromorphic design principles. For example, in [84] a silicon cochlea
is presented and event-driven touch sensors are shown in [25]. The iCub [94] is a
neuromorphic humanoid robot equipped with event cameras and touch sensors.

Novel Applications for Vision. Due to its characteristics, event cameras open new
applications for vision. For example, we developed a visual detector of string vibration

38

frequency (see Fig. 3.1).1

Summary

Event cameras offer great potential for many applications such as robotics and virtual
reality because of their low latency, high dynamic range, and sparse output. Processing
the visual input at the earliest possible stage allows reducing the required power.
We believe that event cameras will become key to many applications and that we
have just entered an avenue of endless research opportunities to design event-based
algorithms and systems. The following appendices contain reprints of the papers that
were discussed in Chapter 2.

1A video can be found on https://youtu.be/VgvN5vwXfq8

39

https://youtu.be/VgvN5vwXfq8

A Event-based Pose Tracking

c©2014 IEEE. Reprinted, with permission, from:

E. Mueggler, B. Huber, and D. Scaramuzza. “Event-based, 6-DOF Pose Tracking for
High-Speed Maneuvers”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2014,
pp. 2761–2768. doi: 10.1109/IROS.2014.6942940

41

http://dx.doi.org/10.1109/IROS.2014.6942940

Appendix A. Event-based Pose Tracking

Event-based, 6-DOF Pose Tracking for
High-Speed Maneuvers

Elias Mueggler, Basil Huber and Davide Scaramuzza

Abstract — In the last few years, we have witnessed impressive
demonstrations of aggressive flights and acrobatics using quadro-
tors. However, those robots are actually blind. They do not see
by themselves, but through the “eyes” of an external motion cap-
ture system. Flight maneuvers using onboard sensors are still slow
compared to those attainable with motion capture systems. At the
current state, the agility of a robot is limited by the latency of its
perception pipeline. To obtain more agile robots, we need to use
faster sensors. In this paper, we present the first onboard perception
system for 6-DOF localization during high-speed maneuvers using a
Dynamic Vision Sensor (DVS). Unlike a standard CMOS camera, a
DVS does not wastefully send full image frames at a fixed frame rate.
Conversely, similar to the human eye, it only transmits pixel-level
brightness changes at the time they occur with microsecond reso-
lution, thus, offering the possibility to create a perception pipeline
whose latency is negligible compared to the dynamics of the robot.
We exploit these characteristics to estimate the pose of a quadrotor
with respect to a known pattern during high-speed maneuvers, such
as flips, with rotational speeds up to 1,200 ◦/s. Additionally, we
provide a versatile method to capture ground-truth data using a
DVS.

42

A.1. Introduction

A.1 Introduction

A.1.1 Motivation

In the last few years, impressive demonstrations of aggressive flight and acrobatics
with quadrotors have been presented [93, 87]. Those systems are based on external
motion-capture systems such as Vicon1 or OptiTrack.2 However, these setups are
expensive, need active cameras, and are limited to small, confined workspaces. Thus,
using onboard sensors is preferable for real-world applications. Many different sensor
modalities have been proposed, such as laser scanners [132, 57], stereo cameras [133],
and monocular cameras [147]. However, such systems achieve flight maneuvers that are
still slow—especially in rotational speed—compared to those attainable with motion
capture systems. Such high-speed performance is not achievable with commonly-used
onboard sensors, such as CMOS cameras or laser range rangefinders.

(a) Our quadrotor performing a flip.
(b) Standard CMOS
camera

(c) Integrated DVS
events (2 ms)

Figure A.1: A quadrotor equipped with a standard CMOS camera and a DVS performing a
flip. While the image of a standard CMOS camera suffers from high motion blur, a rendering
of the DVS output shows that it can detect fast motion accurately. Blue and red indicate the
polarity of the events (i.e., negative or positive changes of intensity).

The achievable agility of a robotic platform depends on the accuracy and latency
of perception. The latency depends on the frequency of the sensor data, plus the
time it takes to process the data. At the current state of the art, the latency of a
CMOS-camera–based robot-perception pipeline is at the minimum in the order of
50–250 ms and the sampling rate in the order of 15–40 Hz. This puts a hard bound
on the agility of the platform. We aim to overcome these limitations by exploiting a
Dynamic Vision Sensor (DVS) [77]. Contrarily to standard frame-based CMOS cameras,
which send entire images at fixed frame rates, a DVS only sends the local pixel-level
changes caused by movement in a scene at the time they occur. The DVS output is a
sequence of asynchronous events. Each pixel produces an event whenever it perceives
a change of intensity. While the sensor’s spatial resolution of 128× 128 pixels is still

1http://www.vicon.com/
2http://www.naturalpoint.com/optitrack/

43

http://www.vicon.com/
http://www.naturalpoint.com/optitrack/

Appendix A. Event-based Pose Tracking

low, the temporal resolution is in the order of microseconds. Thus, we can achieve low-
latency pose estimation even during very fast maneuvers, such as flips of a quadrotor
(Figure A.1a). In addition, since a DVS only streams relative brightness changes in the
sensor’s field of view, the computational load can be reduced drastically. However,
to take full advantage of the DVS capabilities, we must rethink the way we interpret
visual data.

The method presented in this paper estimates the 6 Degrees-Of-Freedom (DOF) pose
of a DVS with respect to a known passive pattern. A naïve solution would be to
accumulate the events occurred over a certain time interval and adapt known pose-
estimation algorithms for standard CMOS cameras to these “integrated” images (an
example “integrated” image is shown in Figure A.1c, where we used an integration
time of 2 ms). However, this is not desirable, because it would result in the same latency
of a regular camera. Ideally, to have the lowest latency for the perception pipeline,
one would want each single event to be reflected in small instantaneous changes of
commands to the actuators. Therefore, we want to design methods that make use of
the information contained in each single event. Since a DVS only detects changes of
intensity, only scenes rich in gradient information are relevant. For simplicity, we chose
a black square on a white background. However, our approach can be generalized
to any planar shape or gradient map that is known a priori. Our algorithm starts
by integrating events until the pattern is detected. Then, it tracks the line segments,
which define the borders of the pattern, by updating both the lines and the pose at
microsecond time resolution, as soon as a new event arrives.

A.1.2 Related Work

An impressive demonstration of the low-latency capabilities of a DVS for control
applications was presented in [31]. Using two DVS, the authors implemented a pencil-
balancing system on a highly-reactive platform free to move on a plane. The key
to achieve such high-speed performance lies in an event-based adaptation of the
Hough-transform line-detection algorithm [43] to track the pencil.

Asynchronous, event-based optical flow was presented in [10, 9]. The authors adapted
the Lucas-Kanade tracking algorithm to cope with the event-based nature of the DVS.

An Event-based Iterative Closest Point Algorithm (ICP) was used in [108] for closed-
loop control of a micro gripper. The mean update rate was 4 kHz. However, the
algorithm integrates events over a predefined time interval and only works in 2D.

In our previous work [27], a DVS fixed to the ground was used to recover the pose
of a quadrotor during flight by tracking LEDs mounted on the platform, which were
blinking at very high frequencies. The DVS’ time resolution allowed distinguishing
different frequencies, thus avoiding the need for data association. While this system

44

A.2. Dynamic Vision Sensor

successfully showed low-latency pose-tracking capabilities using a DVS, it required
active markers (i.e., the blinking LEDs). Furthermore, the DVS was not mounted
onboard the quadrotor.

Localization using a DVS on a ground robot was first presented in [145] and later
extended to Simultaneous Localization And Mapping (SLAM) in [146]. However, the
system was limited to planar motion and a 2D map. In their experiments, the authors
used an upward-looking DVS mounted on a ground robot moving at low speed.

In our previous work [26], we presented a visual-odometry pipeline using a DVS in
combination with a standard CMOS camera. We used a probabilistic framework that
updates the pose likelihood relative to the previous CMOS frame by processing each
event individually as soon as it arrives. As in [146], the experiments were performed
at relatively low speeds (up to 30 ◦/s), while the system was limited to planar motion.
Although higher speeds would in principle be possible, this was not feasible with those
settings due to the occurrence of motion blur in the CMOS camera at higher speeds. In
contrast, in this paper we focus on full 6-DOF pose estimation using only DVS input
and demonstrate successful pose tracking at rotational speeds up to 1,200 ◦/s, such as
during quadrotor flips.

A.1.3 Contributions and Outline

The main contribution of this paper is an event-based, low-latency method for 6-DOF
localization that works for high-speed maneuvers, which we demonstrate during
quadrotor flips. Additionally, we provide a versatile method to generate realistic
datasets of simulated trajectories on artificial scenes with ground truth. Since we use
the DVS in the loop, we can generate ground truth with real sensor noise.

The remainder of the paper is organized as follows. In Section A.2, we describe the DVS
and a calibration procedure. Our algorithm is described in Section A.4 and evaluated
in simulation and with real experiments in Section A.6.

A.2 Dynamic Vision Sensor

Standard CMOS cameras send full frames at fixed frame rates. On the other hand,
retinal cameras such as a DVS have independent pixels that generate spike events at
local relative brightness changes in continuous time. These events are timestamped and
transmitted asynchronously at the time they occur using a sophisticated digital circuitry.
Each event is a tuple 〈x, y, t, p〉, where x, y are the pixel coordinates of the event, t
is the timestamp of the event, and p ∈ {−1,+1} is the polarity of the event, which
is the sign of the brightness change. This representation is sometimes also referred
to as Address-Events Representation (AER). The DVS has a resolution of 128× 128

45

Appendix A. Event-based Pose Tracking

Figure A.2: Visualization of the output of a DVS looking at a rotating dot. Colored dots mark
individual events. The polarity of the events is not shown. Events that are not part of the spiral
are caused by sensor noise. Figure adapted from [82].

pixels and is connected via USB. A visualization of the output of the DVS is shown in
Figure A.2.

A.3 Calibration

Since the optics of a DVS is the same as that of a regular camera, we use the standard
pinhole camera model [136] to determine the intrinsic parameters (i.e., focal length,
projection center, and distortion coefficients). For standard cameras, off-the-shelf
calibration toolboxes based on regular patterns are the best choice [150]. However,
it is not straightforward to use passive patterns with a DVS. Since relative motion is
necessary to generate events, one would need to move the pattern in front of the DVS
and integrate a sufficient number of events in order to “see” it.3 Therefore, we calibrate
the DVS using a computer screen with blinking patterns.4 We use two different patterns:
blinking dots (as depicted in Figures A.3a and A.8a) and concentric black-and-white
squares (Figure A.3b). We use the former for intrinsic-parameter calibration (we utilize
a standard calibration tool, such as [17]) and the latter for focus adjustment (we proceed
by manually tuning the focus of the camera until the squares appear sharp). To be
independent of the distance to the screen, we chose the squares to be spaced and scaled
logarithmically.

3Remember that a DVS only generate asynchronous events; therefore, one would have to integrate the
DVS events over a certain time interval in order to render an image that could be used with standard
calibration tools.

4LED screens use pulse-width modulation of the background light for dimming. This high-frequency
blinking generates events; thus, a static image on the screen appears blinking for the DVS.

46

A.4. Event-based Pose Estimation

(a) Intrinsic calibration (b) Focus calibration

Figure A.3: Calibration patterns for the DVS.

A.4 Event-based Pose Estimation

Since a DVS only detects changes of intensity, only scenes rich in gradient information
are relevant. For simplicity, we chose a black square on a white background (Figure
A.1). However, our approach can be generalized to any planar shape or gradient map
that is known a priori. Our algorithm starts by integrating events until the pattern is
detected. Then, it tracks the line segments, which define the borders of the pattern, by
updating both the lines and the pose at microsecond time resolution, as soon as a new
event arrives.

A.4.1 Initialization

Lines are detected using the Hough transform [43]. We chose the polar representation
of lines and discretize the Hough space with equidistant bins of 7.5◦ and 2.5 pixels.
Each event is added to the Hough space as it arrives. If a bin reaches a threshold of 25,
it is considered a line candidate. If at least four distinct candidates are found, events
are then assigned to each candidate based on their distance to the line. Events that are
too far from the candidate line are removed. Then, all the events corresponding to a
candidate line are ordered on the corresponding line (Figure A.4). If the gap between
two consecutive events on the same line is too large (8 pixels), they are considered to
belong to two different line segments. Only segments with a minimum length of 20
pixels are considered for the next step.

We perform an exhaustive search to find 4-sided shapes in the set of detected line
segments. We start with one segment and append additional segments if they can be

47

Appendix A. Event-based Pose Tracking

Figure A.4: Events (squares) belonging to a candidate line (black) detected in the Hough space
(represented by r and θ). Events belonging to this line are ordered by their distance s and then
clustered into line segments (e.g., red and blue). If a line segment is too short (less than 20
pixels), this is rejected by the algorithm (e.g., the blue cluster).

added in clockwise order and the angle is between 45◦ and 135◦. If the fourth segment
connects to the first one, the square is found. Then, we determine the four corners of
the square by intersection of the estimated lines. Finally, we calculate the initial pose P
from the homography relating the planar pattern and its image [59].

A.4.2 Line tracking

Lines are tracked in an event-based manner, which means, each event that arrives is
used to directly update the pose estimate. When a new event arrives, we check whether
it is close to one of the lines. If so, we use it to update that line and, subsequently, the
pose estimate. Otherwise, we treat it as an outlier (i.e., the event was either generated
by another object or by sensor noise) and reject it.

We represent each line with N past events. A new event replaces the closest one, as
illustrated in Figure A.5. Note that always replacing the oldest event would eventually
corrupt the line estimate as illustrated in Figure A.6. The choice of N is a tradeoff
between latency and accuracy. While using many points would result in smoother
trajectories, higher latency would be introduced. We found that N = 8 is good tradeoff
for our setup.

48

A.4. Event-based Pose Estimation

0 32 64 96 128

0

32

64

96

128

1

2

3

4

x

y

Figure A.5: Visualization of the tracking algorithm in the DVS image plane. A line is represented
by 8 events (squares). When a new event (star) arrives, we check whether it is close to any line.
If so, we replace the closest event with the new one. Otherwise, we treat it as an outlier and
reject it. In this illustration, the event marked with the red triangle is replaced by the new event
(represented by the star).

(a) Replacing oldest pixels (b) Replacing closest pixels

Figure A.6: Pixel-level schematics showing the problem of replacing the oldest event of a line
during rotational motion. The true line (black dashed) is rotated (black solid). The line (red)
is estimated by the events marked in gray. a Notice how replacing the oldest event shifts all
events of a line towards one end, thus, corrupting the line estimate. b Instead, replacing the
closest pixels does not suffer from this issue.

49

Appendix A. Event-based Pose Tracking

−1 −0.5
0

0.5
1

−1

0

1
0

1

2

x [m]

y [m]

z
[m

]

Figure A.7: Visualization of the pattern (black square) and the circular trajectory of the virtual
camera.

A.4.3 Pose estimation

We update the pose by minimizing the sum of squared distances between the reprojec-
tion of each line and the events belonging to it, that is

P∗ = arg min
P

4

∑
l=1

N

∑
i=1
‖d (π(Ll , P), el,i) ‖2, (A.1)

where Ll denotes a line belonging to the pattern, π(·, ·) projects a line onto the image
plane, el,i denotes an event i belonging to line l, and d(·, ·) returns the distance between
the point and the line. The lines are updated with the new pose estimate P∗ by
projecting the pattern onto the image plane.

A.5 DVS Simulation

To assess the quality of our pose estimation algorithm, we need datasets with ground
truth. To do this, we generated virtual camera views on a computer screen by simulating
trajectories of a camera moving in front of a pattern, as depicted in Figure A.7. Instead
of simulating a DVS output (which is not trivial given the sophisticated digital circuitry
of a DVS), we placed a real DVS in front the screen and recorded the generated artificial
views (Figure A.8). Having the DVS in the loop has the advantage that the sensor noise
levels are real.

We denote the world frame of the artificial scene with a subscript W, the virtual camera
frame with V, the computer screen frame with S, and the DVS frame with D. A world

50

A.5. DVS Simulation

(a) Calibration (b) Rendered scene

Figure A.8: Setup to simulate artificial scenes with ground truth. a A regular pattern is used to
estimate the perspective transform between the DVS and the screen b The scene is rendered
from a virtual camera that follows a given trajectory.

point XW is mapped onto the virtual camera through a perspective transformation:

XV = KV (RVW XW + TVW) . (A.2)

Since the output of the virtual camera is independent of the screen size, a scale factor α

is introduced,

XS = KSXV =

 α 0 0
0 α 0
0 0 1

XV . (A.3)

Because the screen and the DVS are not aligned, screen points are also mapped through
a perspective transformation:

XD = KD (RDSXS + TDS) . (A.4)

Substituting (A.2) and (A.3) into (A.4) gives

XD = KD (RDSKSKV (RVW XW + TVW) + TDS) , (A.5)

where the virtual camera trajectory with respect to the world frame PVW(t) = [RVW(t)|TVW(t)]
is a continuous function of time t.

We estimated the pose of the DVS with respect to the screen automatically before each
recording, using a blinking pattern as described in Section A.3.

The scene was rendered in real-time using OpenGL.5 For each event from the DVS, we

5http://www.opengl.org/

51

http://www.opengl.org/

Appendix A. Event-based Pose Tracking

evaluated the virtual camera pose [RVW(t)|TVW(t)] at the specific event time. Thus, we
know the ground truth DVS pose for each event.

A.6 Experimental Evaluation

We evaluated our algorithm both with simulated data and real data from a quadrotor
performing flips. In the evaluation, we used the angle of the angle-axis representation
as an error metric for orientation.

A.6.1 Simulated Data

We used the simulation setup described in Section A.5. We simulated a planar scene
containing a single black square on the x− y plane centered in the origin of the world
frame on a white background, as depicted in Figure A.7. We generated a circular
trajectory at constant altitude z and commanded the angular velocity of the virtual
camera such that its optical axis always intersected the origin of the world frame, that
is:

PVW(t) =

 c(α) s(α) 0 0
−s(α)c(γ) c(α)c(γ) s(γ) 0
s(α)s(γ) −c(α)s(γ) c(γ) z

 ,

where s(·) = sin(·), c(·) = cos(·), α(t) = 2πt/T, γ = 200◦, z = 1.7 m, and T = 2 s is
the time it takes to complete a full circle. The square’s side length is 0.9 m.

Figure A.9 shows the error of our pose estimation algorithm. The mean position error
is 1.47 cm with a standard deviation of 0.72 cm. The mean orientation error is 2.28◦

with a standard deviation of 1.08◦.

A.6.2 Real Data

Experimental Setup

We used a DVS with a 2.8 mm S-mount lens. We calibrated it as described in Section A.3
and found its focal length to be 69 pixels. We mounted the DVS on a Parrot AR.Drone
2.0 equipped with an Odroid U2 onboard computer (Figure A.10). The event stream
was recorded onboard and streamed to a laptop over WiFi to visualize data in real-time.
In addition to the DVS output, we also recorded the video of the front-looking standard
CMOS camera.

As a pattern, we used a black square (0.9 × 0.9 m) attached to a white wall, the
origin of the world frame coinciding with the center of the pattern, x being oriented

52

A.6. Experimental Evaluation

−0.1
−0.05

0
0.05
0.1

y
[m

]

−0.1
−0.05

0
0.05
0.1

x
[m

]

1.65
1.7

1.75
1.8

1.85

z
[m

]

0
100
200
300
400

ya
w

[d
eg
]

−20
0

20

p
it
ch

[d
eg
]

0 0.5 1 1.5 2

160

180

200

time [s]

ro
ll
[d
eg
]

Figure A.9: Estimated trajectory (red) compared to ground truth (blue) on a simulated dataset.
The trajectory is the one depicted in Figure A.7, which was generated as described in Section
A.5.

53

Appendix A. Event-based Pose Tracking

Figure A.10: Experimental setup on an AR.Drone. 1) The DVS (top) and a standard CMOS
camera (bottom), 2) Odroid U2 computer for recording and streaming the DVS data over WiFi,
and 3) markers to collect ground truth with a motion capture system.

perpendicularly to the wall and z parallel to the gravity vector.

Ground truth was captured using an OptiTrack motion capture system. Markers were
placed all around the body of the quadrotor to ensure tracking during flips.

Evaluation

We controlled the quadrotor to perform multiple flips around the principal axis of the
camera (roughly aligned with the x-axis of the world frame). The peak angular speed
(i.e., roll rate) during such high-speed maneuvers was measured to be 1,200 ◦/s (cf.
Figure A.15). While this results in severe motion blur effects for the standard CMOS
camera (cf. Figure A.13), for the DVS we can still see very sharp lines if we integrate
the events for an appropriate period of time (cf. Figure A.12). However, our algorithm
does not rely on such integrated images, but updates the 6-DOF pose of the robot by
processing each event individually as soon as it arrives. The estimated trajectory for
three consecutive flips with ground truth is shown in Figure A.14. The mean position
error is 10.8 cm with a standard deviation of 7.8 cm. The mean orientation error is 5.1◦

with a standard deviation of 2.4◦.

During our experimental flight session, we recorded data for a total of 25 flips. Our
algorithm could track the DVS trajectory for 24 of them (96 %). In only one case,
tracking was lost during the flip. Figure A.11 shows the number of events as a function
of the time during the first 15 flips. As observed, the density of events generated during
flips is much larger than during near-hover flights.

Comparison with Theoretical Limit

Since our pose estimate is very noisy, we are interested to determine the accuracy of
the pose estimate that one could achieve with an “ideal” CMOS camera (not a DVS)

54

A.6. Experimental Evaluation

0 20 40 60 80 100 120 140 160
0

1

2

3
·105

time [s]

ev
en
ts
/0
.5
s

Figure A.11: Number of events as a function of time (we counted events in a time interval of
0.5 s) during an experimental session containing 15 flips. This plot clearly shows that during
flips the density of events is much larger than during near-hover flights. During the first and
last 5 s, the quadrotor is resting on the floor; thus, virtually no events are generated.

(a) ∆T = 33 ms (b) ∆T = 15 ms (c) ∆T = 5 ms

(d) ∆T = 1 ms (e) ∆T = 0.5 ms (f) ∆T = 0.1 ms

Figure A.12: Integrated events of the DVS over different time intervals. Blue and red indicate
the polarity of the events.

55

Appendix A. Event-based Pose Tracking

Figure A.13: Standard CMOS camera frames at 30 Hz during a flip (from left to right). Motion
blur is clearly visible in all frames except the first and last one. The violet traces correspond to
the LED lights of the OptiTrack cameras.

characterized by infinite frame rate and no motion blur, but having the same resolution
as the DVS (i.e., 128× 128 pixels). This problem is equivalent to characterize the pose
estimation error of a CMOS camera in static settings in a configuration close to the real
experimental setup (i.e., same intrinsic parameters, same pattern size, and same relative
position between camera and pattern). Clearly, the answer depends on the accuracy
(pixel or sub-pixel) of the edge detector. We addressed this by means of Monte-Carlo
simulation, by adding Gaussian noise with different variances to all image points and
by optimizing the pose by minimizing the reprojection error. We ran this simulation
1,000 times for each variance value.

The resulting error in position and orientation is shown in Figure A.16. The position
and orientation accuracies of the DVS-based pose estimator described in this paper
are indicated with horizontal red lines, corresponding to a mean position error of
10.8 cm and a mean orientation error of 5.1◦ respectively. As observed, these accuracies
corresponds to a standard deviation of the error, which is in both cases smaller than
0.9 pixels. Since this can be considered as reasonably precise, we claim that the error of
our DVS-based pose estimation is mainly caused by the poor resolution of the DVS (i.e.,
128× 128 pixels) and the results would significantly improve with a higher-resolution
DVS.

A.7 Conclusion

In the last few years, we have witnessed impressive demonstrations of aggressive
quadrotor flights and acrobatics using motion capture systems. Flight maneuvers using
onboard sensors are still slow. At the current state, the agility of a robot is limited by
the latency of its sensing pipeline. To obtain more agile robots, we need to use faster
sensors. A Dynamic Vision Sensor (DVS) only transmits pixel-level brightness changes
at the time they occur with microsecond resolution, thus, offering the possibility to
create a perception pipeline whose latency is negligible compared to the dynamics
of the robot. This technology is the most promising candidate for enabling highly

56

A.7. Conclusion

−1
−0.5

0

0.5

1

y
[m

]

−2
−1.5
−1
−0.5

0

x
[m

]

−0.4
−0.2

0

0.2

0.4

−0.4
−0.2

0

0.2

0.4

−0.4
−0.2

0

0.2

0.4

−1
−0.5

0

0.5

1

z
[m

]

−40
−30
−20
−10

0

ya
w

[d
eg
]

−20
−10

0

10

20

p
it
ch

[d
eg
]

0 1 2 3 4 5
−200
−100

0

100

200

time [s]

ro
ll
[d
eg
]

0 1 2 3 4 5
−20
−10

0

10

20

time [s]

−20
−10

0

10

20

−20
−10

0

10

20

Figure A.14: Estimated trajectory (red) with ground truth (blue) and errors (black) for three
consecutive flips with a quadrotor. Notice how the error gets smaller towards the end of the
trajectory. This happens because the quadrotor moves closer to the pattern, which in turn
appears larger in the DVS. Also notice how the density of pose estimates gets higher during
flips. This occurs because the pose is updated whenever a new event arrives and the number of
events increases during faster relative motion (cf. Figure A.11).

57

Appendix A. Event-based Pose Tracking

0 1 2 3 4 5

−1,000

−500

0

time [s]

ro
ll
ra
te

[d
eg
/
s]

Figure A.15: Roll rate of the trajectory shown in Figure A.14. The maximum roll rate is 1,200 ◦/s
during a flip.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

Standard deviation of Gaussian noise [pixels]

P
os
it
io
n
er
ro
r
[m

]

(a) Position error

0 0.2 0.4 0.6 0.8 1
0
2
4
6
8

10

Standard deviation of Gaussian noise [pixels]O
ri
en
ta
ti
on

er
ro
r
[d
eg
]

(b) Orientation error

Figure A.16: Plots of mean pose error (solid) ± one standard deviation (dashed) in world
coordinates for an ideal sensor with Gaussian noise in the image plane. The configuration is
close to the experimental setup presented in Section A.6.2. The mean position and orientation
error of the quadrotor flip experiment is marked in red and corresponds to 0.63 and 0.86 pixels,
respectively.

aggressive autonomous maneuvers with flying robots. The current DVS prototypes
suffer from a relatively poor resolution, which is currently being worked upon. In
this paper, we presented the first onboard perception system for 6-DOF localization
during high-speed maneuvers using a DVS. We demonstrated robust motion tracking
during quadrotor flips with angular speeds up to 1,200 ◦/s. Future work will involve a
generalization of the approach to arbitrary environments and the use of the DVS in
closed-loop control.

Acknowledgement

We gratefully acknowledge the contribution of Flavio Fontana and Matthias Faessler
for helping with the quadrotor experiments. We would also like to thank Tobi Delbruck
and Vicente Villeneuva for helping us making the DVS lightweight enough for our
experiments.

58

B Towards Evasive Maneuvers with
Quadrotors

c©2015 IEEE. Reprinted, with permission, from:

E. Mueggler, N. Baumli, F. Fontana, and D. Scaramuzza. “Towards Evasive Maneuvers
with Quadrotors using Dynamic Vision Sensors”. In: Eur. Conf. Mobile Robots (ECMR).
2015, pp. 1–8. doi: 10.1109/ECMR.2015.7324048

59

http://dx.doi.org/10.1109/ECMR.2015.7324048

Appendix B. Towards Evasive Maneuvers with Quadrotors

Towards Evasive Maneuvers with
Quadrotors using Dynamic Vision Sensors

Elias Mueggler, Nathan Baumli, Flavio Fontana and Davide Scaramuzza

Abstract — We present a method to predict collisions with objects
thrown at a quadrotor using a pair of dynamic vision sensors (DVS).
Due to the micro-second temporal resolution of these sensors and
the sparsity of their output, the object’s trajectory can be estimated
with minimal latency. Unlike standard cameras that send frames at a
fixed frame rate, a DVS only transmits pixel-level brightness changes
(“events”) at the time they occur. Our method tracks spherical objects
on the image plane using probabilistic trackers that are updated with
each incoming event. The object’s trajectory is estimated using an
Extended Kalman Filter with a mixed state space that allows incor-
poration of both the object’s dynamics and the measurement noise
in the image plane. Using error-propagation techniques, we predict
a collision if the 3σ-ellipsoid along the predicted trajectory inter-
sects with a safety sphere around the quadrotor. We experimentally
demonstrate that our method allows initiating evasive maneuvers
early enough to avoid collisions.

B.1 Introduction

Collision avoidance of fast-moving objects requires high-frequency and low-latency
sensors, algorithms, and control strategies. As an example, consider an object that is
thrown at a robot at 30 m/s (i.e., 108 km/h) from a distance of 5 m, only 0.17 s are left
to (i) detect the object, (ii) predict its trajectory, (iii) foresee if a collision will occur,
and if so, (iv) initiate and (v) execute an evasive maneuver. Due to the inertia of the
robot and its actuators, most of this time is required for the evasive action and only a
small fraction (in the order of 10 ms) can be used for sensing and computation. During

60

B.1. Introduction

1

2

34

(a) Quadrotor platform: (1) stereo DVS rig,
(2) smartphone computer, (3) down-looking
camera for vision-based stabilization, and
(4) markers for ground truth with a motion-
capture system. The details of our quadrotor
platform are provided in [45].

1

2 3

4

(b) Experimental setup: (1) thrown ball, (2)
quadrotor, (3) leash to avoid actual collisions,
and (4) motion-capture system for ground-
truth measurements.

Figure B.1: A ball is thrown towards an autonomous, vision-based quadrotor. The ball is
detected and tracked using a pair of Dynamic Vision Sensors in a stereo configuration. Our
algorithm predicts whether a collision will occur and can be used to initiate evasive maneuvers.
The motion-capture system was only used to record ground-truth data of the ball and the
quadrotor.

this time, a high-frequency camera running at 100 Hz would capture only one or two
images, giving very limited data for the subtasks (ii) and (iii).

To achieve higher measurement frequencies while keeping the computational load
small, new vision sensors are required. In this paper, we propose the use of Dynamic
Vision Sensors (DVS) [77]. Contrarily to standard frame-based cameras that send
entire images at fixed frame rates, a DVS only sends the local pixel-level brightness
changes at the time they occur. These changes, which we call “events”, are transmitted
asynchronously and with low latency. While the sensor’s spatial resolution of 128× 128
pixels is still low, the temporal resolution is in the order of micro-seconds.

In the last few years, impressive demonstrations of aggressive flight and acrobatics
with quadrotors have been presented [93, 86]. Among these demonstrations were also
interactions with other, fast-moving objects, e.g. juggling balls [105], pole acrobatics [22],
or flying through thrown circular hoops [92]. However, all these demonstrations are
based on external motion-capture systems that track both the quadrotor and all other
moving objects with very high precision and frequency (typically about 200 Hz). To
bring these capabilities outside of laboratory environments, we cannot rely on external
systems. Therefore, all sensing and computation must be performed onboard the
vehicle. Due to their low weight and power consumption, vision-based approaches
have been successfully demonstrated for autonomous, infrastructure-free flight with
quadrotors [45]. However, due to motion blur at high speeds and computational

61

Appendix B. Towards Evasive Maneuvers with Quadrotors

complexity for high frame rates, current vision-based quadrotor systems fly at relatively
low speeds and only navigate in static environments.

In this paper, we present a method to predict collisions with objects thrown at a
quadrotor using a pair of DVS in a stereo configuration (see Fig. B.1). To avoid a
collision, a series of steps must be executed: (i) the thrown object must be detected, (ii)
it must be tracked precisely to (iii) propagate its trajectory in time. Then, (iv) a decision
on the action must be made to (v) initiate and execute an evasive maneuver. Possible
applications are quick avoidance of other, uncooperative aerial vehicles and the escape
of bird attacks1.

The remainder of the paper is organized as follows. In Section B.2, we review related
work. The DVS is described in Section B.3, followed by an evaluation of the latencies
of both standard frame-based cameras and the DVS in Section B.4. Our algorithm is
described in Section B.5 and experimentally evaluated in Section B.6.

B.2 Related Work

An impressive demonstration of the low-latency capabilities of a DVS for control
applications was presented in [31]. Using two DVS, the authors implemented a pencil-
balancing system on a highly-reactive platform free to move on a plane. A robotic
goalkeeper with a reaction time of 3 ms was presented in [34].

An Event-based Iterative Closest Point Algorithm (ICP) was used in [108] for closed-
loop control of a micro gripper. The mean update rate was 4 kHz. The algorithm
integrates events over a predefined time interval and only works in 2D.

Asynchronous, event-based optical flow was presented in [9]. The authors adapted
the Lucas-Kanade tracking algorithm to cope with the event-based nature of the DVS.
The event-based optical flow was later used [28] for event-based computation of the
time-to-contact [73]. This approach, however, assumes that the trajectories of the robot
and the obstacles are aligned, i.e., when the robot continues to move, a collision is
unavoidable. In this paper, we explicitly estimate the trajectory of the thrown object,
since it might no intersect with the robot and no evasive action is required.

Several approaches of event-based stereo matching can be found in the literature. In
[11], the high temporal resolution of the DVS was exploited for stereo matching. In [74],
event histograms were used for stereo correspondence. The output of the algorithm
was used for gesture recognition. In [24], six synchronized DVS were used for 3D
reconstruction using N-ocular stereo vision.

1See, e.g., http://youtu.be/DzfiLmbhvqg or
http://youtu.be/smv7cBzg-Ok.

62

http://youtu.be/DzfiLmbhvqg
http://youtu.be/smv7cBzg-Ok

B.3. Dynamic Vision Sensors

In our previous work [27], a DVS fixed to the ground was used to recover the pose
of a quadrotor during flight by tracking LEDs mounted on the platform, which were
blinking at very high frequencies. The DVS’ time resolution allowed distinguishing
different frequencies, thus avoiding the need for data association. While this system
successfully showed low-latency pose-tracking capabilities using a DVS, it required
active markers (i.e., the blinking LEDs). Furthermore, the DVS was not mounted
onboard the quadrotor. We use a similar concept for intrinsic and extrinsic camera
calibration.

Localization using a DVS on a ground robot was first presented in [145] and later
extended to Simultaneous Localization And Mapping (SLAM) in [146]. However, the
system was limited to planar motion and a 2D map. In their experiments, the authors
used an upward-looking DVS mounted on a ground robot moving at low speed.

In previous work, we showed how a DVS can be used onboard a flying robot for
localization during high-speed maneuvers [102], where rotational speeds of up to
1,200 ◦/s were measured during quadrotor flips.

B.3 Dynamic Vision Sensors

B.3.1 Working Principle

Standard CMOS cameras send full frames at fixed frame rates. On the other hand,
event-based (retinal) cameras such as the DVS [77] have independent pixels that
generate events at local relative brightness changes in continuous time. These events are
timestamped and transmitted asynchronously at the time they occur using sophisticated
digital circuitry. Each event e is a tuple 〈p, t, p〉, where p = (x, y) are the pixel
coordinates of the event, t is the timestamp of the event, and p ∈ {−1,+1} is the
polarity of the event, which is the sign of the brightness change. This representation is
sometimes also referred to as Address-Events Representation (AER). The DVS has a
resolution of 128× 128 pixels and is connected via USB. A visualization of the output
of the DVS is shown in Fig. B.2.

Due to its low latency and high temporal resolution, both in the range of micro-seconds,
the DVS is a very promising sensor for high-speed mobile robot applications. Since
the data stream from the DVS is sparse (only changes are reported), the bandwidth
and computational load are low. An additional advantage for robotic applications is
the DVS’ high dynamic range of 120 dB (compared to 60 dB of expensive computer-
vision cameras), which allows both indoor and outdoor operation without changing
parameters. Since all pixels are independent, these contrasts can also take place within
the same scene.

63

Appendix B. Towards Evasive Maneuvers with Quadrotors

Figure B.2: Visualization of the output of a DVS looking at a rotating dot. Colored dots mark
individual events. The polarity of the events is not shown. Events that are not part of the spiral
are caused by sensor noise. Figure adapted from [82].

B.3.2 Calibration

We used a board with blinking LEDs for intrinsic and extrinsic calibration of the DVS
stereo setup (see Fig. B.3). While we used computer screens in previous work [102]
for calibration, we found that an LED checkerboard allows for larger viewing angles
and, thus, better calibration results. Since a DVS only responds to changes in the scene,
blinking LED allow us to artificially trigger events without moving the sensor. Due
to its very high temporal resolution, a DVS can easily cope with the LED blinking
frequency of 1 kHz. As shown in [27], this frequency is well above those generated by
moving the sensor or moving objects in the scene. Since the optics are the same for
the DVS as for frame-based cameras, we can rely on standard algorithms for intrinsic
and extrinsic calibration. We released our ROS-compatible2 DVS driver and calibration
suite as open-source software3.

B.4 Sensor Latencies

To motivate the use of DVS for low-latency and high-speed robotic applications, we
compare its latency to frame-based cameras. To do so, we measure the round-trip delay
between toggling an LED and the detection of this change by the different sensors (see
Fig. B.4). This measurement includes sending the command to toggle the LED, the
time to capture an image (in the frame-based case), data transfer to the computer, and
simple computations to detect the change.

2Robot Operating System, http://www.ros.org
3http://www.github.com/uzh-rpg/rpg_dvs_ros

64

http://www.ros.org
http://www.github.com/uzh-rpg/rpg_dvs_ros

B.4. Sensor Latencies

Figure B.3: Board with blinking LEDs for intrinsic and extrinsic calibration of the DVS stereo
setup. The LEDs are blinking at a frequencies of 1 kHz, such that they can easily be detected by
a DVS.

computer
1

LED

sensor
2

Figure B.4: Picture of sensor-latency measurement setup: the LED (1) is triggered by a computer
and observed by a sensor (2). In our case, the sensor is either a DVS, a BlueFOX, or an ASUS
Xtion. We measure the round-trip delay from sending the signal until the change was detected
by the sensor. The experiments were performed for each sensor individually.

B.4.1 Experimental Setup

We compare the DVS with two frame-based cameras: the ASUS Xtion Pro Live and
MatrixVision mvBlueFOX-MLC200w. The ASUS Xtion has a rolling shutter, a resolution
of 640× 480 pixels, and provides RGB-D images at 30 Hz. Exposure and gain are
controlled by the sensor automatically. The BlueFOX camera has a global-shutter, a
resolution of 752× 480 pixels, and provides grayscale images up to 90 Hz. The exposure
time was set to 4 ms and the gain to 0 dB. The bias-generation setting for the DVS were
set to “fast”4. We interfaced all sensors over USB and evaluated the delays both on a
laptop computer (Lenovo W530) and an embedded computer (Hardkernel Odroid U3).

Back-of-the-envelope calculations for the two frame-based cameras show the minimally

4http://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/biasgenSettings/DVS128/DVS128Fast.
xml

65

http://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/biasgenSettings/DVS128/DVS128Fast.xml
http://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/biasgenSettings/DVS128/DVS128Fast.xml

Appendix B. Towards Evasive Maneuvers with Quadrotors

achievable latencies for this setup: USB 2.0 is specified for 480 Mbit/s. An RGB image
from the ASUS Xtion has a raw size of 3× 640× 480× 8 bits = 7.3 Mbit, yielding a
transfer duration of 15.2 ms. A grayscale image from the BlueFOX has a raw size of
752× 480× 8 bits = 2.1 Mbit, yielding a transfer duration of 6.0 ms. This is only a
lower bound on the transfer duration: the exposure time must also be added. An event
of a DVS is encoded in 32 bit, yielding a transfer duration of 0.067 µs. Therefore, the
event rate is bounded by 15 million events per second.

An LED is triggered using a PX4FMU-Autopilot board5, which is the same board that
interfaces the motor controllers on many quadrotor platforms. It is optimized for
reliable and low-latency communication.

To detect the LED on the frame-based cameras, we defined a small region of interest
in which the LED is visible. We then computed the mean intensity in that region and
reported a detection when the mean changed by more than a threshold.

To detect the LED using the DVS, we measured the number of events per time unit.
When nothing changes, only “background-activity” events are transmitted, which are
caused by sensor imperfections. However, as soon as the LED is toggled, many events
are generated.

For each combination of computer, toggle direction, and sensor, we collected more than
1,000 measurements. To avoid aliasing effects, we waited for a random amount of time
after each detection before toggling the LED again. No triggering signal was missed in
all the experiments.

B.4.2 Results

The sensor latency (i.e., capturing the image, transferring it to the host computer, and
performing a simple computation to detect a change) is assumed to be Gaussian. It
is modeled with a random variable X1 = N (µ, σ), where µ is the mean delay and σ

is the standard deviation. Due to the fixed frequency of standard cameras (typically
f = 30 Hz), a uniformly-distributed delay between 0 and ∆t = 1/ f is added to the
sensor latency: X2 = U (0, ∆t), where ∆t is the time between two frames. Therefore, the
expected delay Y is thus a sum of two independent random variables, Y = X1 + X2.
We identify the mean µ and standard deviation σ of X1 in terms of those of Y and X2,
and replacing the mean and variance of Y by their empirical values (sample mean and
sample variance), as detailed in the Appendix. For the DVS, only a Gaussian was fitted
because it works asynchronously.

A histogram comparing the latency distributions of the DVS and the BlueFOX camera
is shown in Fig. B.5. While the delays of the DVS are an order of magnitude lower, it

5http://www.pixhawk.org/modules/px4fmu

66

http://www.pixhawk.org/modules/px4fmu

B.4. Sensor Latencies

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

delay [ms]

DVS
Bluefox

Figure B.5: Round-trip delays for a DVS (red) and a BlueFOX camera (blue) using a laptop
computer. The delays for the BlueFOX camera are wide spread due to the synchronous nature
of the sensor. In our experiments, it ran at 40 Hz, which corresponds to 25 ms. The histograms
were normalized with their maximum value.

Table B.1: Round-trip delays using a laptop computer

Sensor µon σon µoff σoff ∆t Unit

ASUS Xtion 28.0 2.7 50.3 2.8 33 ms

BlueFOX 14.5 0.5 18.0 0.5 25 ms

DVS 2.8 0.3 2.8 0.3 0 ms

Table B.2: Round-trip delays using an embedded computer

Sensor µon σon µoff σoff ∆t Unit

ASUS Xtion 45.0 4.0 67.3 2.8 33 ms

BlueFOX 19.9 0.4 20.5 1.2 25 ms

DVS 4.5 1.2 4.2 0.8 0 ms

can also be seen that the delays of the BlueFOX camera are wide spread due to the
synchronous nature of the sensor. In our experiments, it was running at a framerate of
40 Hz, which corresponds to 25 ms.

In Table B.1, we summarize the round-trip delays for the three vision sensors when
connected to the laptop computer. We report the identified parameters of the histogram
distribution, where the indices on and off indicate measurements when turning on and
off the LED, respectively. Table B.2 provide the same results measured on the embedded
computer. Our results are in line with the results reported in [34] of 2.2(20)ms.

67

Appendix B. Towards Evasive Maneuvers with Quadrotors

B.5 Algorithm

In this section, we describe an algorithm to track spherical objects thrown at flying
quadrotor using two DVS in a stereo configuration (see Fig. B.1a). We first describe an
event-based circle tracker that is similar to the trackers introduced in [72]. Then, we
match trackers from the left and right sensor that fulfill a set of geometric constraints.
We exploit the high temporal resolution of the DVS to measure the disparity with
sub-pixel accuracy using the correlation of spatio-temporal neighborhoods of matching
trackers. These measurements are used to initialize and update an Extended Kalman
Filter (EKF). A mixed state space allows incorporation of both the object’s dynamics
and the measurement noise on the image plane. We then propagate the current state
of the system with its uncertainty in time and check for a collision of the 3σ-ellipsoid
around the predicted trajectory with a safety sphere around the quadrotor. In the
following, we detail these steps.

B.5.1 Event-based Circle Tracker

Our trackers are similar to the ones described in [72], but specialized to track spherical
objects. We describe circular trackers by their mean position µp, radius µr, and uncer-
tainty in radius σr as illustrated in Fig. B.6. For each incoming event, we evaluate its
score pi(p) that belongs to tracker i,

pi(p) =
1√

2πσr,i
exp

(
−1

2

(
di − µr,i

σr,i

)2
)

, (B.1)

where di = ‖p− µp,i‖ is the distance between the event’s position p and the tracker’s
position µp,i. The tracker i = imax with the highest score is then updated using an
Infinite Impulse Response (IIR) filter,

µp(t) = µp(tprev) + αp

(
p− µp(tprev)

)
,

µr(t) = µr(tprev) + αr
(
d− µr(tprev)

)
, (B.2)

σ2
r (t) = σ2

r (tprev) + ασ

(
(d− µr(t))

2 − σ2
r (tprev)

)
,

which corresponds to an exponentially-weighted moving average filter with smoothing
factors {αp, αr, ασ} ∈ (0, 1). Small values indicate more smoothing but also induce more
latency. In our experiments, we empirically set αp = 0.01, αr = 0.002, and ασ = 0.005.

The activity Ai of a tracker indicates when the tracker was last updated by events,

Ai(t) =

{
Ai(t− ∆t) exp

(
−∆t

τ

)
+ pi(p), i = imax,

Ai(t− ∆t) exp
(
−∆t

τ

)
, otherwise.

(B.3)

68

B.5. Algorithm

[µu, µv]
µr

N (µr,i, σ
2
r,i)

p(p)

d
δp

Figure B.6: Illustration of the Gaussian radius distribution N (µr(t), σ2
r (t)) of a tracker. An

event with a score pi below δp, e.g., red crosses, is not considered, while an event above δp, e.g.,
green crosses, is considered to be generated by the circular shape.

In addition, each tracker has k directional activities aj with j = 1, . . . , k, which is defined
as (B.3) but only for a 1/k-th section of the circle. From these directional activities, we
compute a factor γ,

γ =
1
Ai

k

∑
j=1

aj

k
, (B.4)

which is high if the events are distributed uniformly around the circle and low otherwise.
Therefore, γ indicates how well the tracker follows an actual circle. In the following,
we only consider trackers that have A > 15 and γ > 0.7, i.e., trackers that have received
sufficient support from the event stream and follow a circle. To avoid that the trackers
follow arbitrary shapes, we restrict the radius, its variance, and the variance-to-mean
ratio to reasonable intervals. For the initialization of the trackers and more details of
the algorithm, we refer the reader to [72].

B.5.2 Stereo Matching

We match active trackers from the left and right sensor plane that fulfill all of these
four constraints: (i) the disparity d must be positive, (ii) the mean vertical positions µx

of the trackers must be close, (iii) the radius r of the trackers must be similar, and (iv)
each tracker can only have one matching tracker.

Due to the low spatial resolution of the DVS of only 128× 128 pixels and the short
baseline of 12 cm, the disparity at 5 m is only 3.1 pixels. Thus, noise in the tracker
positions has a significant impact on the accuracy of the depth measurement. We
therefore refine the disparity estimate with a sub-pixel estimation algorithm that we

69

Appendix B. Towards Evasive Maneuvers with Quadrotors

initialize with the stereo-matching estimate.

B.5.3 Sub-Pixel Disparity Estimation

To increase the precision of the stereo matching, we compute the correlation of the
spatio-temporal neighborhood of the two matching trackers. More precisely, we
correlate the Surface of Active Events (SAE) [10] using linear interpolation. The
SAE Σp(p) stores the last timestamp of an event with polarity p that was reported at
pixel location p,

Σp(p)← t. (B.5)

We search for the maximum correlation of the left and right SAE,

d = arg max
d

∑
p

∑
u

∑
v

Σ̃l
p(u, v) · Σ̃r

p(u + d, v), (B.6)

where l and r refer to the left and right SAE, respectively, and Σ̃ is the shifted SAE
defined as

Σ̃(p) = max(Σ(p)− tcurr + ∆T, 0), (B.7)

where tcurr is the current time and ∆T = 50 ms. All timestamps on the shifted SAE
are between 0 and ∆T. We first evaluate (B.6) in 1-pixel steps and then refine it with
0.1-pixel steps. This results in a measurement of the ball’s center of mass in the image
plane, i.e., its location u, v and its disparity d with sub-pixel accuracy.

B.5.4 Extended Kalman Filter

Under the assumption of negligible air drag and a perfectly-stable hovering quadrotor
(i.e., pitch, roll, and all angular rates are zero), the ballistic trajectory of a ball in the
sensor’s 3D coordinate frame is given byX(t)

Y(t)
Z(t)

 =

X0

Y0

Z0

+

vX0

vY0

vZ0

 t +
1
2

0
g
0

 t2, (B.8)

with initial position [X0, Y0, Z0]>, initial velocity [vX0, vY0, vZ0]
>, and gravitational

acceleration g.

For the Extended Kalman Filter (EKF), we use a mixed state x(t) consisting of the ball’s

70

B.5. Algorithm

position in image coordinates and its velocity in world coordinates,

x(t) = [x1, x2, x3, x4, x5, x6]
>

= [d, Ż, xcom, Ẋ, ycom, Ẏ]>.
(B.9)

This allows us to incorporate the measurement noise in pixel units with the dynamics
of the ball (B.8). The coordinates in image space and world coordinates are linked by
the pinhole camera model, i.e.,

X = b · u
d

, Y = b · v
d

, Z = b · f
d

, (B.10)

where f is the focal length of the camera and b the baseline of the stereo setup.

Using (B.10) and (B.8), the nonlinear continuous-time system can be derived as

ẋ(t) = q (x(t)) =

−1
f b · x2

1 · x2

0(
1
b · x4 − 1

f b · x2 · x3

)
· x1

0(
1
b x6 − 1

f b · x2 · x5

)
· x1

g

(B.11)

with observation vector

z(t) = h (x(t)) = [x1, x3, x5]
>. (B.12)

Using a first-order approximation of the derivate and a timestep of Tk, the discrete-time
nonlinear system becomes

x(tk+1) = q (x(tk)) =

(
−1
f b · x2

1 · x2

)
· Tk + x1

x2(
x4
b − 1

f b x2 · x3

)
· x1 · Tk + x3

x4(
1
b x6 − 1

f b · x2 · x5

)
· x1 · Tk + x5

g · Tk + x6

.

The linearized system matrix A(tk) is given by the Jacobian of the nonlinear system
around the current state xi, which has a closed-form solution,

A(tk) =
∂q (x(tk))

∂x(tk)
.

71

Appendix B. Towards Evasive Maneuvers with Quadrotors

We initialize the filter state with a linear least-square regression on the first four
measurements. While the filter could be initialized with only two measurements, we
found that four yields a good tradeoff between latency and precision.

B.5.5 Trajectory Propagation

To propagate the trajectory, we transform the ball’s position in image coordinates
and its covariance to world coordinates. For the covariance transformation, we use a
first-order approximation. We then use the dynamical model (B.8) to propagate the
system in world coordinates. We define the world-coordinate origin to coincide with
the quadrotor center. We compute a critical time tcrit at which the distance between the
trajectory r(t) and the quadrotor is minimal and propagate the states up to that time.
We find tcrit by

∂

∂t
|r(tcrit)| !

= 0. (B.13)

The more intuitive geometrical solution of this problem is illustrated in Figure B.7,
which yields

r(tcrit) · ṙ(tcrit)
!
= 0, (B.14)

which results in a cubic equation in tcrit that can be solved by, e.g., Cardano’s method.

Qy

Qx
Q

Qz

r(tp)

ṙ(tp)

ṙ(tcrit)

r(tcrit)

r(t)
g

Figure B.7: Illustration of the geometrical solution to obtain the critical point r(tcrit) on the
ballistic trajectory r(t) defined by the vectors r(tp) and ṙ(tp). The critical point occurs at the
time tcrit, when the position vector and its derivative are orthogonal.

72

B.5. Algorithm

B.5.6 Maneuver Decision

We define a spherical safety zone with radius rsafe around the quadrotor’s origin. Since
the trajectory prediction includes the expected value of the critical position and its
uncertainty, a collision is predicted if the uncertainty ellipsoid around the critical
position intersects with the safety zone.

If the distance-to-origin ‖r(tcrit)‖ of the predicted critical position is smaller than rsafe,
we expect a collision in any case. If it is larger, we need to consider the uncertainty of
the prediction. The vector rdist(tcrit) (B.15) represents the distance from the expected
critical position on the predicted trajectory to the closest point on the surface of the
spherical safety zone,

rdist(tcrit) =

(
rsafe

‖r(tcrit)‖
− 1
)
· r(tcrit). (B.15)

The covariance matrix Σr(tcrit) can be interpreted as an ellipsoid that gives us informa-
tion about directional uncertainty of the predicted critical position. This information is
extracted with the Principal Component Analysis (PCA) of the covariance matrix

Σr(tcrit) = UΛU> (B.16)

with

U = [u1, u2, u3] and Λ = diag(λ1, λ2, λ3),

where the normalized eigenvectors ui are the principal axes of the uncertainty ellipsoid
and the square roots of the corresponding eigenvalues λi represent the standard
deviations along the axes.

Therefore, we rotate rdist to the PCA space U using U and scale it with 3
√

Λ, which
corresponds to a probability of 99.73 %. We call this the confidence vector

Urconf(tcrit) =
(

3
√

Λ
)−1
·U · rdist(tcrit). (B.17)

The norm of the confidence vector then gives us an indication of the predicted critical
position not entering the safety zone with a probability of 99.73 %. More precisely, we
can rule out a collision with said probability, if the norm of the confidence vector is
larger than 1.

Additionally, we set a threshold σλ for the largest eigenvalue that determines whether

73

Appendix B. Towards Evasive Maneuvers with Quadrotors

we trust the prediction. I.e., we predict a collision if

max (Λ) ≤ σλ and ‖r(tcrit)‖ ≤ rsafe (B.18)

or

max (Λ) ≤ σλ and ‖Urconf(tcrit)‖ ≤ 1. (B.19)

B.6 Experiments

We first describe the experimental setup. Then, we evaluate the tracking performance
and the effect of the EKF. We compare the measurements with a ground truth captured
with a motion-capture system. Finally, we analyze the time margin between a collision
is predicted and the time of collision.

B.6.1 Experimental Setup

We mounted two DVS in a stereo setup on a quadrotor (see Fig. B.1a). Our quadrotor
platform is described in detail in [45]. All sensing and computation for flying was
performed onboard. We recorded the event streams from both DVS while hovering in
vision-based flight that we later processed offboard. Then, we threw a ball towards the
quadrotor from a distance of 6 m at speeds of about 10 m/s. The ball was secured with
a leash that prevents a collision shortly before it would occur. We recorded ground
truth for both the quadrotor and the ball using an OptiTrack motion-capture system.

B.6.2 Circle Tracking

Fig. B.8 shows a snapshot of the tracking. The three trackers on the left event stream
in Fig. B.8a are filtered by the stereo-matching constraints. Since the trackers only
roughly track the ball’s position, a sub-pixel disparity refinement is used to improve
the measurement.

B.6.3 EKF Performance

Figure B.9 shows the stereo measurements and the output of the EKF. The first four
measurements between t1 and t2 are used for initialization of the filter. The last
measurements at time t3 are corrupted since the ball is no longer fully visible by the
DVS. However, since these measurements do not pass a 3σ validation gate, they are not
used to update the state and only the dynamical model is propagated.

74

B.6. Experiments

(a) left DVS (b) right DVS

Figure B.8: Tracking of the ball during a throw. Red and blue points indicate events with
positive and negative polarity, respectively. The active circle trackers are marked in black and
highlighted with an arrow.

171.1 171.2 171.3 171.4
0

5

10

15

20

time [s]

d
[p
ix
el
]

171.1 171.2 171.3 171.4
30

40

50

60
t1 t2 t3

v
[p
ix
el
]

171.1 171.2 171.3 171.4
60

80

100

120

u
[p
ix
el
] Measurement

EKF

Figure B.9: Comparison of the measurement and the EKF estimate of the center of mass in
image coordinates [u, y, d]>. The first measurement is obtained at t1 and the EKF is initialized
at t2. The EKF recognizes corrupt measurement at t3.

B.6.4 Comparison with Ground Truth

In Fig. B.10, the output of the EKF is compared to ground truth obtained from a
motion-capture system. It also shows the triggering signal for the evasive maneuver.

75

Appendix B. Towards Evasive Maneuvers with Quadrotors

The EKF is initialized at time t2 and at time t4, a triggering signal is sent. The elapsed
time is t4 − t2 = 15 ms. Since the ball was on a leash in the experiment, it stops before
hitting the quadrotor. When we extrapolate its trajectory, a collision with the quadrotor
would occur at time t5. In this case, this yields a time of t5 − t4 = 330 ms for the
quadrotor to escape before a collision would occur. Since the plots in Fig. B.10 are
time-stamped by the same clock, they include the latency of the algorithm.

171 171.1 171.2 171.3 171.4
no

yes

t2 t4 t5

time [s]

tr
ig
ge
r

171 171.1 171.2 171.3 171.4

0

2

4

6

p
os
it
io
n
[m

]

XGT Xest

YGT Yest

ZGT Zest

Figure B.10: Ground truth and center of mass estimate in quadrotor frame world coordinates.
The EKF is initialized at t2 and the collision prediction is made at t4. The expected collision
would take place at t5. The evasive maneuver triggering signals are shown in magenta.

B.6.5 Time Margin for Evasive Maneuver

The time margin is the time between a collision is predicted and the time of collision
(assuming no maneuver) We evaluate the time margin for the evasive maneuver for a
series of 19 experiments. In 15 experiments, the ball was thrown at the quadrotor, which
was correctly predicted 12 times (80 %), while it was not detected in 3 experiments. In
the other 4 experiments, the ball missed the quadrotor. Our algorithm reported 3 times
(75 %) that no collision will occur and did not detect the ball in one experiment.

We summarized the time margin for the 12 successfully predicted collisions in Fig. B.11.
We estimated the time of collision by extrapolating the ball trajectory until it would hit
the quadrotor. The algorithm ran in real-time on the recorded data, thus we incorporate
also the processing time in our analysis. In most experiments, the time margin was

76

B.7. Conclusion

0 0.1 0.2 0.3 0.4
0

2

4

6

time [s]
co
u
n
ts

Figure B.11: Histogram of the escape time. The red dashed line indicates the 0.32 s escape time
that is necessary for our quadrotor to escape the imminent collision with a free fall evasive
maneuver (see Section B.7).

250 ms.

B.7 Conclusion

In this paper, we demonstrated a method to predict collisions of objects thrown at a
quadrotor. We used two DVS in a stereo configuration. The ball was detected and
tracked in both event streams. Using a set of geometric constraints, a rough stereo
matching is obtained that is further refined by sub-pixel disparity estimation. These
measurements are fused in an EKF that uses a mixed state to incorporate both the
measurement noise in the image plane and the dynamical model of the ball’s trajectory.
We predict a collision if the 3σ-ellipsoid along the predicted trajectory intersects with a
safety sphere around the quadrotor.

While the prediction of a collision is available within a reasonable time margin of
250 ms in most cases, our quadrotor platform currently does not allow to execute an
aggressive evasive maneuver. In fact, due to the additional payload of two DVS and
its sensor mount (which makes the quadrotor 40 % heavier), the quadrotor operates
at its actuator limits (i.e., it can barely hover). The only possible evasive maneuver
would be a free fall. However, to escape a safety sphere of s = 0.5 m using free fall, a
time margin of at least

√
2s/g = 0.32 s is required, assuming no delays on the motor

controllers and neglecting rotor dynamics. We are currently building a more powerful
quadrotor platform to perform different evasive maneuvers in future work.

Acknowledgments

The authors wish to thank Matthias Faessler and Guillermo Gallego for their contribu-
tions to the sensor-latency measurements.

77

Appendix B. Towards Evasive Maneuvers with Quadrotors

Appendix: Probabilistic Sensor-Latency Model

The total sensor latency Y is the sum of two independent random variables,

X1 = N (µ, σ), (B.20)

X2 = U (0, ∆t), (B.21)

Y = X1 + X2, (B.22)

where X1 models the Gaussian sensor latency and X2 accounts for the uniform delay
due to the fixed sensor frequency (cf. Sec. B.4.2). While ∆t is known, we want to
identify µ and σ. Since the two variables are independent, we can sum their expected
values and variances,

E[Y] = E[X1] + E[X2] = µ +
∆t
2

, (B.23)

Var[Y] = Var[X1] + Var[X2] = σ2 +
∆t2

12
. (B.24)

Given enough samples, we can compute E[Y] and Var[Y] from the measurements and
compute the mean µ and variance σ2 of the Gaussian as

µ = E[Y]− ∆t
2

, (B.25)

σ2 = Var[Y]− ∆t2

12
. (B.26)

78

C Event-Camera Dataset and Simula-
tor

Reprinted, with permission, from:

E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza. “The Event-
Camera Dataset and Simulator: Event-based Data for Pose Estimation, Visual Odom-
etry, and SLAM”. in: Int. J. Robot. Research 36 (2 2017), pp. 142–149. doi: 10 .
1177/0278364917691115

79

http://dx.doi.org/10.1177/0278364917691115
http://dx.doi.org/10.1177/0278364917691115

Appendix C. Event-Camera Dataset and Simulator

The Event-Camera Dataset and Simulator:
Event-based Data for Pose Estimation,

Visual Odometry, and SLAM

Elias Mueggler, Henri Rebecq, Guillermo Gallego, Tobi Delbruck and Davide

Scaramuzza

Abstract — New vision sensors, such as the Dynamic and Active-
pixel Vision sensor (DAVIS), incorporate a conventional global-shutter
camera and an event-based sensor in the same pixel array. These
sensors have great potential for high-speed robotics and computer
vision because they allow us to combine the benefits of conven-
tional cameras with those of event-based sensors: low latency, high
temporal resolution, and very high dynamic range. However, new
algorithms are required to exploit the sensor characteristics and
cope with its unconventional output, which consists of a stream of
asynchronous brightness changes (called “events”) and synchronous
grayscale frames. For this purpose, we present and release a col-
lection of datasets captured with a DAVIS in a variety of synthetic
and real environments, which we hope will motivate research on
new algorithms for high-speed and high-dynamic-range robotics and
computer-vision applications. In addition to global-shutter intensity
images and asynchronous events, we provide inertial measurements
and ground-truth camera poses from a motion-capture system. The
latter allows comparing the pose accuracy of ego-motion estimation
algorithms quantitatively. All the data are released both as stan-
dard text files and binary files (i.e., rosbag). This paper provides
an overview of the available data and describes a simulator that we
release open-source to create synthetic event-camera data.

80

C.1. Introduction

C.1 Introduction

Over the past fifty years, computer-vision research has been devoted to standard,
frame-based cameras (i.e., rolling or global shutter cameras) and only in the last few
years cameras have been successfully used in commercial autonomous mobile robots,
such as cars, drones, and vacuum cleaners, just to mention a few. Despite the recent
progress, we believe that the advent of event-based cameras is about to revolutionize
the robot sensing landscape. Indeed, the performance of a mobile robot in tasks, such as
navigation, depends on the accuracy and latency of perception. The latency depends on
the frequency of the sensor data plus the time it takes to process the data. It is typical
in current robot-sensing pipelines to have latencies in the order of 50–200 ms or more,
which puts a hard bound on the maximum agility of the platform. An event-based
camera virtually eliminates the latency: data is transmitted using events, which have a
latency in the order of micro-seconds. Another advantage of event-based cameras is
their very high dynamic range (130 dB vs. 60 dB of standard cameras), which makes
them ideal in scenes characterized by large illumination changes. Other key properties
of event-based cameras are low-bandwidth, low-storage, and low-power requirements.
All these properties enable the design of a new class of algorithms for high-speed and
high-dynamic-range robotics, where standard cameras are typically not ideal because
of motion blur, image saturation, and high latency. However, the way that event-based
cameras convey the information is completely different from that of traditional sensors,
so that a paradigm shift is needed to deal with them.

C.1.1 Related Datasets

There exist two recent datasets that also use the DAVIS: [127] and [7].

The first work is tailored for comparison of event-based optical flow estimation al-
gorithms [127]. It contains both synthetic and real datasets under pure rotational
(3 degrees of freedom (DOF)) motion on simple scenes with strong visual contrasts.
Ground truth was acquired using the inertial measurement unit (IMU). In contrast,
our datasets contain arbitrary, hand-held, 6-DOF motion in a variety of artificial and
natural scenes with precise ground-truth camera poses from a motion-capture system.

A more similar work to ours is [7]. Their focus is to create a dataset that facilitates
comparison of event-based and frame-based methods for 2D and 3D visual navigation
tasks. To this end, a ground robot was equipped with a DAVIS and a Microsoft Kinect
RGB-D sensor. The DAVIS was mounted on a pan-tilt unit, thus it could be excited
in 5-DOF. The scene contains checkerboards, books, and a chair. Ground truth was
acquired by the encoders of pan-tilt unit and the ground robot’s wheel odometry, and
is therefore subject to drift. In contrast, our dataset contains hand-held, 6-DOF motion
(slow- and high-speed) on a variety of scenes with precise ground-truth camera poses

81

Appendix C. Event-Camera Dataset and Simulator

(a) The DAVIS sensor and axes defi-
nitions. Figure adapted from [37]

(b) Visualization of the event output of a DAVIS in
space-time. Blue dots mark individual asynchronous
events. The polarity of the events is not shown.

Figure C.1: The DAVIS camera and visualization of its output.

from a motion-capture system, which is not subject to drift.

C.2 The DAVIS Sensor

The Dynamic and Active-pixel Vision Sensor (DAVIS) [19] (see Fig. C.1a) is an event cam-
era that transmits events in addition to frames. Events are pixel-level, relative-brightness
changes that are detected in continuous time by specially-designed pixels1. The events
are timestamped with micro-second resolution and transmitted asynchronously at the
time they occur. Each event e is a tuple 〈x, y, t, p〉, where x, y are the pixel coordinates
of the event, t is the timestamp of the event, and p = ±1 is the polarity of the event,
which is the sign of the brightness change. This representation is sometimes also
referred to as Address-Event Representation (AER). The DAVIS has a spatial resolution
of 240× 180 pixels. A visualization of the event output is shown in Fig. C.1b. Both the
events and frames are generated by the same physical pixels, hence there is no spatial
offset between the events and the frames.

Due to its low latency and high temporal resolution, both in the range of micro-seconds,
event-based cameras are very promising sensors for high-speed mobile robot applica-
tions. Since event cameras are data-driven (only brightness changes are transmitted), no
redundant data is transmitted. The required bandwidth thus depends on the motion
speed and the type of scene. An additional advantage for robotic applications is the
high dynamic range of 130 dB (compared to 60 dB of expensive computer-vision cam-
eras), which allows both indoor and outdoor operation without changing parameters.
Since all pixels are independent, very large contrast changes can also take place within
the same scene.

1Video illustration: https://youtu.be/LauQ6LWTkxM

82

https://youtu.be/LauQ6LWTkxM

C.3. DAVIS Simulator

Over the course of the last seven years, several groups including ours have demonstrated
the use of event-based sensors in a variety of tasks, such as SLAM in 2D [146] and 3D [70,
67, 124], optical flow [32, 9, 6], visual odometry [26], 6-DOF localization for high-speed
robotics [102], line detection and localization [149], 3D reconstruction [123], image
reconstruction and mosaicing [66, 125], orientation estimation [55], and continuous-time
trajectory estimation [101].

However, all these methods were evaluated on different, specific datasets and, therefore,
cannot be compared against each other. The datasets we propose here are tailored
to allow comparison of pose tracking, visual odometry, and SLAM algorithms. Since
event-based cameras, such as the DAVIS, are currently still expensive (∼ 5, 000 USD),
these data also allow researchers without equipment to use well-calibrated data for
their research.

C.2.1 DAVIS IMU

In addition to the visual output (events and frames), the DAVIS includes an IMU that
provides gyroscope and accelerometer data, thus enabling to design visual-inertial
event-based algorithms. The DAVIS cameras has the IMU mounted directly behind
and centered under the image sensor pixel array center, at a distance of about 3 mm
from it, so that the IMU shares nearly the same position as the event sensor. The IMU
axes are aligned with the camera axes (see Fig. C.1a). More specifically, the IMU is an
InvenSense MPU-61502, which integrates a three-axis gyroscope that can measure in
the range ±2,000 ◦/s and a three-axis accelerometer for the range ±16g. It integrates
six 16-bit ADCs for digitizing the gyroscope and accelerometer outputs at 1 kHz sample
rate.

C.3 DAVIS Simulator

Simulation offers a good baseline when working with new sensors, such as the DAVIS.
Based on the operation principle of an ideal DAVIS pixel, we created a simulator that,
given a virtual 3D scene and the trajectory of a moving DAVIS within it, generates
the corresponding stream of events, intensity frames, and depth maps. We used
the computer graphics software Blender3 to generate thousands of rendered images
along the specified trajectory, ensuring that the motion between consecutive images
was smaller than 1/3 pixel. For each pixel, we keep track of the time of the last
event triggered at that location. This map of timestamps (also called surface of active
events [9]), combined with time interpolation of the rendered image intensities, allows
determining brightness changes of predefined amount (given by the contrast threshold)

2IMU data sheet: https://store.invensense.com/ProductDetail/MPU6150-invensense/470090/
3https://www.blender.org/

83

Appendix C. Event-Camera Dataset and Simulator

t

log Iu(t)

C

Samples of log Iu

Actual Events

Predicted Events

Figure C.2: DAVIS Simulator. Per-pixel event generation using piecewise linear time interpola-
tion of the intensities given by the rendered images. For simplicity, images were rendered at a
fixed rate.

in the time between images, thus effectively providing continuous timestamps, as if
events were generated asynchronously. Time interpolation has an additional benefit:
it solves the problem of having to generate millions of images for each second of a
sequence, as it would have been required to deliver microsecond-resolution timestamps
in the absence of interpolation.

More specifically, Fig. C.2 illustrates the operation of the simulator for a single pixel
u = (x, y)>. The continuous intensity signal at pixel u, log Iu(t) (black) is sampled at
the times of the rendered images (blue markers). These samples are used to determine
the times of the events: the data is linearly interpolated between consecutive samples
and the crossings of the resulting lines (in red) with the levels given by multiples of the
contrast threshold C (i.e., horizontal lines) specify the timestamps of the events (red
dots). As it can be observed, this simple interpolation scheme allows for (i) higher
resolution event time stamps than those of the rendered images, and (ii) the generation
of multiple events between two samples if the corresponding intensity jump is larger
than the contrast threshold.

The provided events are “perfect” measurements up to sampling and quantization;
under this condition, an image Î(u; t) can be reconstructed from the event stream at
any point in time t by accumulating events ek = 〈uk, tk, pk〉 according to

log Î(u; t) = log I(u; 0) + ∑
0<tk≤t

pk C δ(u− uk)δ(t− tk),

where I(u; 0) is the rendered image at time t = 0 and δ selects the pixel to be updated
on every event (pixel uk of Î is updated at time tk). We used this scheme to check
that the reconstructed image agreed with the rendered image at several points in
time; specifically, the per-pixel intensity error was confined to the quantization interval

84

C.4. Datasets

(−C, C).

Event generation operates on brightness pixels, which are computed from the rendered
color images using the ITU-R Recommendation BT.6014 for luma, i.e., according to
formula Y = 0.299R + 0.587G + 0.114B, with RGB channels in linear color space to
better resemble the operation of the DAVIS.

Because realistic event noise is extremely difficult to model due to the complex behavior
of event sensors with respect to their bias settings and other factors, the provided
simulation datasets do not include event noise. Nevertheless, the simulator, and the
datasets created with it, are a useful tool for prototyping new event-based algorithms.
Our implementation is available as open-source software.5

C.4 Datasets

In this section, we describe the datasets that we provide. The datasets contain:

• the asynchronous event stream,

• intensity images at about 24 Hz,

• inertial measurements (3-axis gyroscope and 3-axis accelerometer) at 1 kHz,

• ground-truth camera poses from a motion-capture system6 with sub-millimeter
precision at 200 Hz (for the indoor datasets),

• the intrinsic camera matrix.

All information comes with precise timestamps. For datasets that were captured outside
the motion-capture system (e.g., in an office or outdoors), no ground truth is provided.
Some datasets were collected using a motorized linear slider and ground truth was
collected using the slider’s position. Due to vibrations induced by the slider motor, the
very noisy IMU data was not recorded.

C.4.1 Data Format

The datasets are provided in standard text form that is described here. For convenience,
they can also be downloaded as binary rosbag files (the details are on the website). The
format of the text files is described in Table C.1.

4https://www.itu.int/rec/R-REC-BT.601
5https://github.com/uzh-rpg/rpg_davis_simulator
6We use an OptiTrack system from NaturalPoint.

85

Appendix C. Event-Camera Dataset and Simulator

(a) Shapes (b) Wall Poster (c) Boxes (d) Outdoors

(e) Dynamic (f) Calibration (g) Office (h) Urban

(i) Motorized linear
slider

(j) Motorized slider
(HDR)

(k) Motorized slider
with objects (l) Synthetic: 3 planes

(m) Synthetic: 3 walls

Figure C.3: Dataset scenes

File Description Line Content
events.txt One event per line timestamp x y polarity
images.txt One image reference per line timestamp filename
images/00000000.png Images referenced from images.txt
imu.txt One measurement per line timestamp ax ay az gx gy gz
groundtruth.txt One ground truth measurements per line timestamp px py pz qx qy qz qw
calib.txt Camera parameters fx fy cx cy k1 k2 p1 p2 k3

Table C.1: Description of Dataset Format

The ground-truth pose is with respect to the (arbitrary) motion-capture origin that
has the z-axis gravity-aligned (pointing upwards). The orientation is provided as a
unit quaternion q = (qx, qy, qz, qw)>, where qw and qv = (qx, qy, qz)> are the scalar
and vector components, respectively. This convention was proposed as a standard by
JPL [21].

86

C.4. Datasets

All values are reported in SI units. While the timestamps were originally recorded as
POSIX, we subtracted the lowest timestamp as offset such that all datasets start at zero.
This helps to avoid numerical difficulties when dealing with microsecond resolution
timestamps of the events.

Images are provided as PNG files. The list of all images and their timestamps is
provided in a separate file. The typical framerate is 24 Hz, but it varies with the
exposure time.

The IMU axes are aligned with the optical coordinate frame (i.e., the positive z-axis is
identical to the optical axis and so are the x- and y-axes).

C.4.2 List of Datasets

The provided datasets are summarized in Table C.2 and Fig. C.3. All the datasets
contain increasing speeds, different scenes, and varying degrees of freedom7: for the
shapes, poster, and boxes datasets, the motion first starts with excitation of each single
degree of freedom separately; then combined and faster excitations are performed.
This leads to increasing difficulty and a higher event rate over time.

In the high-dynamic-range (HDR) sequences (hdr_poster, hdr_boxes, and slider_hdr),
a spotlight was used to create large intrascene contrasts. For hdr_poster, we measured
80 lx and 2,400 lx in the dark and bright areas, respectively.

The outdoors datasets were acquired in an urban environment both walking and
running. While no ground truth is available, we returned precisely to the same location
after a large loop.

The dynamic datasets were collected in a mock-up office environment viewed by the
motion-capture system, with a moving person first sitting at a desk, then moving
around.

A calibration dataset is also available, for instance in case the user wishes to use a
different camera model or different methods for hand-eye calibration. The dimensions
of the calibration pattern (a checkerboard) are 6× 9 tiles of 40 mm. For the lower half
of the table, different settings (lenses, focus, etc.) were used. Thus, while we provide
the intrinsic calibration, no calibration datasets are available.

The slider_close, slider_far, slider_hdr_close, and slider_hdr_far datasets were
recorded with a motorized linear slider parallel to a textured wall at 23.1 cm, 58.4 cm,
23.2 cm, and 58.4 cm, respectively.

7The DAVIS was moved by hand, the dominant motion is described.

87

Appendix C. Event-Camera Dataset and Simulator

Name Motion Scene GT T [s] TS [m/s] RS [◦/s] NE [-]
shapes_rotation Rotation, incr. speed Fig. C.3a yes 59.8 0.83 730 23,126,288
shapes_translation Translation, incr. speed Fig. C.3a yes 59.7 2.60 271 17,363,976
shapes_6dof 6 DOF, incr. speed Fig. C.3a yes 59.7 2.35 715 17,962,477
poster_rotation Rotation, incr. speed Fig. C.3b yes 59.8 0.84 884 169,350,136
poster_translation Translation, incr. speed Fig. C.3b yes 59.8 2.58 240 100,033,286
poster_6dof 6 DOF, incr. speed Fig. C.3b yes 59.8 2.51 937 133,464,530
boxes_rotation Rotation, incr. speed Fig. C.3c yes 59.8 0.85 669 185,688,947
boxes_translation Translation, incr. speed Fig. C.3c yes 59.8 3.43 319 112,388,307
boxes_6dof 6 DOF, incr. speed Fig. C.3c yes 59.8 3.84 509 133,085,511
hdr_poster 6 DOF, incr. speed Fig. C.3b yes 59.8 2.28 597 102,910,720
hdr_boxes 6 DOF, incr. speed Fig. C.3c yes 59.8 2.94 592 118,499,744
outdoors_walking 6 DOF, walking Fig. C.3d no† 133.4 n/a n/a 64,517,638
outdoors_running 6 DOF, running Fig. C.3d no† 87.6 n/a n/a 98,572,164
dynamic_rotation Rotation, incr. speed Fig. C.3e yes 59.8 0.45 542 71,324,510
dynamic_translation Translation, incr. speed Fig. C.3e yes 59.8 1.86 227 35,809,924
dynamic_6dof 6 DOF, incr. speed Fig. C.3e yes 59.7 2.91 627 57,174,637
calibration 6 DOF, slow Fig. C.3f yes 59.8 0.32 67 21,340,629
office_zigzag 6-DOF, zigzag, slow Fig. C.3g no 10.9 n/a n/a 7,735,308
office_spiral 6-DOF, spiral, slow Fig. C.3g no 11.2 n/a n/a 6,254,774
urban Linear, slow Fig. C.3h no 10.7 n/a n/a 5,359,539
slider_close Linear, const, speed Fig. C.3i yes* 6.5 0.16 0 4,032,668
slider_far Linear, const, speed Fig. C.3i yes* 6.4 0.16 0 3,442,683
slider_hdr_close Linear, const. speed Fig. C.3j yes* 6.5 0.16 0 3,337,787
slider_hdr_far Linear, const. speed Fig. C.3j yes* 6.5 0.16 0 2,509,582
slider_depth Linear, const. speed Fig. C.3k yes* 3.4 0.32 0 1,078,541
simulation_3planes Translation, circle Fig. C.3l yes# 2.0 0.63 0 6,870,278
simulation_3walls 6 DOF Fig. C.3m yes# 2.0 5.31 109 4,104,833

Table C.2: List of Datasets. Note that the calibration dataset only applies to the upper half
of the table. The other datasets use different lenses and calibrations. GT: Ground truth. T:
Duration. TS: Maximum translation speed. RS: Maximum rotational speed. NE: Number of
events. †Same start and end pose after a large loop. *Ground truth from motorized linear slider.
No IMU data due to vibrations. #Simulated DAVIS using Blender. No IMU data included.

For the datasets, we applied two different sets of biases (parameters) for the DAVIS,
as listed in Table C.3. The first set, labeled “indoors”, was used in all datasets but
outdoors_walking, outdoors_running, and urban, where the set “outdoors” was ap-
plied. For the simulated datasets, we used a contrast threshold of ±15 % and ±20 %
for the simulation_3planes and simulation_3walls, respectively.

For the simulated scenes, we also provide the 3D world model in Blender (cf. Fig. C.3l
and C.3m). In addition to the intensity images and events, these datasets include a
depth map for each image frame at 40 Hz, encoded as 32-bit floating-point values (in
the OpenEXR data format).

C.5 Calibration

First, we calibrated the DAVIS intrinsically using a checkerboard pattern. Then, we
computed the hand-eye calibration that we applied to the subsequent dataset recordings
so that the ground-truth poses that we provide are those of the event camera (i.e., the

88

C.5. Calibration

Bias Indoors Outdoors
Coarse Fine Coarse Fine

DiffBn 2 39 4 39
OFFBn 1 62 4 0
ONBn 4 200 6 200
PrBp 3 72 2 58
PrSFBp 3 96 1 33
RefrBp 3 52 4 25

Table C.3: List of biases applied to the DAVIS. The DAVIS uses two stages of biases, coarse and
fine, which we report here.

“eye”), not those of the motion-capture trackable (i.e., the “hand”) attached to the
camera. We also included a calibration dataset in case a different camera model or
improved hand-eye calibration method is required.

C.5.1 Intrinsic Camera Calibration

We used the standard pinhole camera model with radial-tangential distortion using the
implementation of ROS and OpenCV8. We used three radial distortion coefficients (k1,
k2, and k3 = 0) and two for tangential distortion (p1 and p2). The distortion coefficients
are listed in calib.txt in the same order as in OpenCV. We provide a dataset for
post-calibration in case that another method is preferred.

C.5.2 Hand-Eye Calibration

For the indoor datasets, we provide accurate and high-frequency (200 Hz) pose data
from a motion-capture system. However, the coordinate frame used by the motion-
capture system is different from the optical coordinate frame of the DAVIS. Thus, we
performed a hand-eye calibration before acquiring the datasets. Fig. C.4 shows the
coordinate frames and transformations used to solve the hand-eye calibration problem.
The frames are those of the world W, the hand H, the camera E (Fig. C.1a), and the
checkerboard C. For the transformations, Fig. C.4 shows both the compact standard
notation of hand-eye calibration problems and a more explicit one: the Euclidean
transformation Tba (4× 4 homogeneous matrix representation) maps points from frame
a to frame b according to Pb = TbaPa.

More specifically, we first use a linear algorithm [140] to provide an initial solution of
the hand-eye calibration problem {AiX = XBi}N

i=1, where Ai ↔ Bi are N correspondences
of relative hand-hand (Ai := THk Hj) and eye-eye (Bi := TEkEj) poses at different times
(j and k), respectively, and X := THE is the unknown eye-to-hand transformation.

8http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration

89

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration

Appendix C. Event-Camera Dataset and Simulator

W

C

Ej

Hj

Ek

HkX = THE

X = THE

Bi = TEkEj

Ai = THkHj

B′j = TCEj

B′k = TCEk

Z = TWC

A′j = TWHj

A′k = TWHk

Standard notation:

T21 notation:

AiX = XBi

THkHjTHE = THETEkEj

A′jX = ZB′j

TWHj
THE = TWCTCEj

Figure C.4: Hand-eye calibration. Coordinate frames and transformations involved in case of
the hand-eye device at two different positions (j and k). The red loop between two stations
of the hand-eye device is used in the first type of hand-eye calibration problems, of the form
AiX = XBi, and the blue loop is used in the second type of hand-eye calibration problems, of the
form A′jX = ZB′j. We use a combination of both approaches to solve for the constant, hand-eye
calibration transform X.

90

C.6. Known Issues

Then, using the second formulation of hand-eye calibration problems, of the form
{A′jX = ZB′j}N+1

j=1 , where A′j := TWHj and B′j := TCEj are the hand-to-motion-capture and
eye-to-checkerboard transformations for the j-th pose, respectively, we refined THE

by jointly estimating the hand-eye X and robot-world Z := TWC (i.e., motion-capture–
checkerboard) transformations that minimize the reprojection error in the image plane:

min
X,Z ∑

mn
d2
(

xmn, x̂mn(X, Z; A′m, Pn, K)
)

,

where d2(xmn, x̂mn) is the squared Euclidean distance between the measured projection
xmn of the n-th checkerboard corner Pn on the m-th camera and the predicted corner
x̂mn = f(B̂′m; Pn, K), which is a function of the intrinsic camera parameters K and the
extrinsic parameters B̂′m := Z−1A′mX predicted using the motion-capture data. This
non-linear least-squares problem is solved iteratively using the Gauss-Newton method.
The initial value of Z is given by Z = A′1XB

′−1
1 , with X provided by the above-mentioned

linear algorithm. We included a dataset for post-calibration in case another method is
preferred.

The ground-truth pose gives the position and orientation of the event camera with
respect to the world (i.e., the motion-capture system). Hence, it already incorporates
the computed hand-eye transformation. That is, while the motion-capture system
outputs TWHj , we apply the hand-eye calibration THE ≡ THjEj ∀j and directly report
TWEj = TWHjTHjEj as ground-truth pose.

C.6 Known Issues

C.6.1 Clock Drift and Offset

The clocks from motion-capture system and the DAVIS are not hardware-synchronized.
We observed clock drift of about 2 ms/min. To counteract the clock drift, we reset the
clocks before each dataset recording. Since all datasets are rather short (in the order of
1 min), the effect of drift is negligible. A small, dataset-dependent offset between the
DAVIS and motion-capture timestamps is present since the timestamps were reset in
software.

91

D Event Lifetime

c©2015 IEEE. Reprinted, with permission, from:

E. Mueggler, C. Forster, N. Baumli, G. Gallego, and D. Scaramuzza. “Lifetime Estima-
tion of Events from Dynamic Vision Sensors”. In: IEEE Int. Conf. Robot. Autom. (ICRA).
2015, pp. 4874–4881. doi: 10.1109/ICRA.2015.7139876

93

http://dx.doi.org/10.1109/ICRA.2015.7139876

Appendix D. Event Lifetime

Lifetime Estimation of Events from
Dynamic Vision Sensors

Elias Mueggler, Christian Forster, Nathan Baumli, Guillermo Gallego and

Davide Scaramuzza

Abstract — We propose an algorithm to estimate the “lifetime” of
events from retinal cameras, such as a Dynamic Vision Sensor (DVS).
Unlike standard CMOS cameras, a DVS only transmits pixel-level
brightness changes (“events”) at the time they occur with micro-
second resolution. Due to its low latency and sparse output, this
sensor is very promising for high-speed mobile robotic applications.
We develop an algorithm that augments each event with its lifetime,
which is computed from the event’s velocity on the image plane. The
generated stream of augmented events gives a continuous represen-
tation of events in time, hence enabling the design of new algorithms
that outperform those based on the accumulation of events over
fixed, artificially-chosen time intervals. A direct application of this
augmented stream is the construction of sharp gradient (edge-like)
images at any time instant. We successfully demonstrate our method
in different scenarios, including high-speed quadrotor flips, and
compare it to standard visualization methods.

D.1 Introduction

D.1.1 Motivation

Event-based (retinal) vision sensors [36], such as the Dynamic Vision Sensor [77], offer
great potential for robotic applications: since only pixel-level brightness changes are
transmitted, less bandwidth is required and less data must be processed. In addition,
these changes are transmitted at the time they occur with minimal latency, which is in

94

D.1. Introduction

the order of a few micro-seconds. Due to the asynchronous nature of these changes,
they are called events.

However, since an event stream is fundamentally different from video streams of
standard CMOS cameras, new algorithms are required to deal with this data. Event-
based adaptations of iterative closest points [108] and optical flow [10, 9] have been
proposed. Recently, event-based visual odometry [26, 66], tracking [145, 102], and
Simultaneous Localization And Mapping (SLAM) [146] algorithms were also presented.
The design goal of such algorithms is that each incoming event can asynchronously
change the estimated state, thus preserving the event-based nature of the sensor.

While all of these algorithms implicitly buffer a certain number of past events, we
propose to explicitly model the set of active events. We consider an event active as long
as the brightness gradient causing this event is visible by the pixel. The estimation of
such a set of active events has several applications, such as the generation of sharp
gradient images at any point in time, clustering of events for tracking of multiple
objects, etc. Here, we focus on the first one (see Fig. D.1). This also allows applying
standard computer-vision algorithms on these images without modification.

D.1.2 Related Work

Due to its low latency and low bandwidth, the DVS [77] is a promising sensor for robotic
systems with limited computational power and short time constants. An impressive
demonstration of these capabilities was presented in [31]. Using two DVS, the authors
implemented a pencil-balancing system on a highly-reactive platform free to move
on a plane. A robotic goalkeeper with a reaction time of 3 ms was presented in [34].
More recently, robot localization was demonstrated using a DVS during high-speed
maneuvers [102], where rotational speeds of up to 1,200 ◦/s were measured during
quadrotor flips.

Standard computer-vision algorithms cannot be applied directly to the output of
event-based vision sensors, since they do not provide grayscale intensity images. A
straightforward workaround is to generate such intensity images by accumulating
events over a fixed time interval and then apply standard frame-based algorithms. An
event-to-frame converter was presented in [69] and tested on two conventional stereo-
vision algorithms. Another example of DVS event accumulation was shown in [130],
where events were accumulated in artificial time slots of 5–50 ms and used in stereo
vision for tracking moving objects. In both cases, the event-to-frame conversion was a
time-consuming process that introduced some latency and, therefore, the asynchronous
data delivery and high temporal resolution of the DVS was not used very efficiently.

In [108], the events in a sliding window of fixed duration were selected as input of
an Iterative Closest Point (ICP) algorithm that was used to guide a micro gripper to

95

Appendix D. Event Lifetime

(a) Image of the scene (b) 30 ms

(c) 1 ms (d) Our method

Figure D.1: The Dynamic Vision Sensor (DVS) is moved in front of a window frame diagonally,
from bottom-left to top-right a. Since the window frame is much closer than the buildings, its
apparent motion is significantly larger. Thus, if we use a fixed accumulation interval, the images
will either be blurred, if the interval is too long b, or some structures will not be clearly visible,
if the interval is too short c. Our method estimates the lifetime of each event independently
and displays the event for that period of time d.

grasp an object with a mean update rate of 4 kHz. In this particular setup, such a
fixed duration could be chosen for all the pixels of the DVS, because the gripper was
moving at almost constant speed parallel to the image plane. In a general configuration,
however, such a time interval does not exist.

D.1.3 Contributions and Outline

In this paper, we present a method to augment data streams from event-based cameras
with their lifetime and the velocity of each event, while simultaneously filtering noise.

96

D.2. Dynamic Vision Sensor

Our method is based on the event-based optical flow [10, 9] to estimate the velocity of
an event from where we can estimate its lifetime. As a direct application, this method
allows rendering sharp gradient images at any point in time, as illustrated in Fig. D.2.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

∆t

t∗

time [ms]

p
ix

el

(a) Raw event stream

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

t∗

time [ms]

p
ix
el

(b) Event stream augmented with lifetime

Figure D.2: In this illustration, we consider a single pixel row of a DVS, which observes two
edges moving at different speeds (cf. Fig. D.4). The events are marked with crosses. To
visualize the events at time t∗, the active events at that time are plotted. If a fixed accumulation
interval ∆t is chosen a, some regions become blurred (the upper, fast edge is represented with
two events) or others are not complete (if we chose a shorter interval, the slow edge would not
be considered). Our method b assigns a lifetime to each event (shown in red), thus the active
events at t∗ are known.

In contrast to previous algorithms, our method does not depend on a temporal window
[t− ∆t, t + ∆t] around the event time t. Thus, we eliminate both a tuning parameter
(∆t) and its corresponding latency (our method uses only past events). Our method is
also robust against noise because we use RANSAC [48] and a regularization term. The
output of the method can be used to apply standard computer-vision algorithms to the
output of event-based cameras.

The remainder of the paper is organized as follows. In Section D.2, we characterize the
Dynamic Vision Sensor (DVS). The developed algorithm to calculate the lifetime of an
event is described in Section D.3 and evaluated in Section D.4.

D.2 Dynamic Vision Sensor

Standard CMOS cameras send full frames at fixed frame rates. On the other hand, event-
based (retinal) cameras such as the DVS [77] have independent pixels that generate
spike events at local relative brightness changes in continuous time. These events are
timestamped and transmitted asynchronously at the time they occur using sophisticated
digital circuitry. Each event e is a tuple 〈x, y, t, p〉, where x, y are the pixel coordinates
of the event, t is the timestamp of the event, and p ∈ {−1,+1} is the polarity of the
event, which is the sign of the brightness change. This representation is sometimes
also referred to as Address-Events Representation (AER). The DVS has a resolution of
128× 128 pixels and is connected via USB. A visualization of the output of the DVS is

97

Appendix D. Event Lifetime

Figure D.3: Visualization of the output of a DVS looking at a rotating dot. Colored dots mark
individual events. The polarity of the events is not shown. Events that are not part of the spiral
are caused by sensor noise. Figure adapted from [82].

shown in Fig. D.3.

Due to its low latency and high temporal resolution, both in the range of micro-seconds,
the DVS is a very promising sensor for high-speed mobile robot applications. Since
the data stream from the DVS is sparse (only changes are reported), the bandwidth
and computational load are low. An additional advantage for robotic applications is
the DVS’ high dynamic range of 120 dB (compared to 60 dB of expensive computer-
vision cameras), which allows both indoor and outdoor operation without changing
parameters. Since all pixels are independent, these contrasts can also take place within
the same scene.

D.3 Algorithm

In this section, we devise our algorithm to estimate the lifetime of each incoming event.
The basic idea is to determine each event’s velocity v = (vx, vy)> on the image plane
and use this information to calculate the time interval that this event is considered
active. The lifetime τ indicates how long it will take for the brightness gradient at the
current event location to trigger a new event in a neighboring pixel. We assign zero
lifetime to noise events, τ = 0.

Our algorithm augments the stream of events 〈x, y, t, p〉 with the the lifetime τ and the
event’s velocity v,

〈x, y, t, p〉 7→ 〈x, y, t, p, τ, vx, vy〉. (D.1)

The velocity of the event v is computed using event-based visual flow, which is

98

D.3. Algorithm

(a) Surface of Active Events with a slice
shown in b. (b) All events between t = 2 s and 2.1 s.

Figure D.4: Surface of Active Events (SAE) of two lines moving to the right. The left line moves
slower than the right one. Events caused by sensor noise are visible as isolated dots. A 100 ms
slice starting at t = 2 s is shown in b, which corresponds to the naive method that accumulates
events over a fixed time interval (here, 100 ms). While the slow line appears sharp, the fast line
is several pixels wide, which corresponds to motion blur.

estimated based on the method introduced in [10, 9]. We first present our adaptation
of the event-based visual flow and the computation of the lifetime for each event. Then,
we detail the local plane-fitting algorithm including outlier rejection and regularization.

D.3.1 Event-Based Visual Flow and Lifetime

The Surface of Active Events (SAE) is defined in the three-dimensional spatio-temporal
domain that is composed of the two-dimensional sensor frame and an additional
dimension representing time [1]. Each incoming event generates or updates a point on
the surface, such that, for each pixel position on the image plane, the time value of the
surface is equal to the timestamp of the last event at this position. The SAE is given by
the map Σe : R2 → R, t = Σe(p), where p = (x, y)>. In space-time, a point of the SAE
is represented by the 3-vector S(p) = (x, y, Σe(x, y))>. In this sense, Σe(p) represents
the SAE as an “elevation map”.

Figure D.4a shows the SAE of real data recorded with the DVS in the spatio-temporal
domain. The recorded sequence contains two lines moving at different speeds, hence
the different slopes. Sensor noise is clearly visible as isolated dots. Figure D.4b shows
the corresponding visualization of a 100 ms slice. The latter corresponds to what we
refer to as the naive method that accumulates events over a fixed time interval.

The planar approximation of the SAE at an event’s location p is given by the first order

99

Appendix D. Event Lifetime

Taylor expansion

S(p + ∆p) ≈ S(p) +
(

Sx(p), Sy(p)
)

∆p, (D.2)

where Sx = ∂S
∂x = (1, 0, ∂Σe

∂x)
>, Sy = ∂S

∂y = (0, 1, ∂Σe
∂y)
> are the first partial derivatives of S,

representing vectors in the tangent space to S.

As illustrated in Fig. D.5, we define the lifetime of the event at (p, t) as the first order
approximation of the maximum temporal increment of S for a displacement ‖∆p‖ = 1
pixel:

τ(p) = max ∆t subject to ‖∆p‖ = 1, (D.3)

where ∆t = 〈S(p + ∆p)− S(p), e3〉, e3 = (0, 0, 1)> is the direction of the time axis and
〈·, ·〉 is the standard inner product in Rn.

The lifetime τ, therefore, indicates the maximum amount of time before the brightness
gradient at the current event location will trigger a new event in a neighboring pixel.

Substituting (D.2) and the expressions for Sx, Sy in (D.3) yields ∆t = e>3
(

Sx(p), Sy(p)
)

∆p =

〈∇Σe(p), ∆p〉 , with ∇Σe(p) =
(

∂Σe
∂x (p),

∂Σe
∂y (p)

)>
. Hence we arrive at the equivalent

definition

τ(p) = max 〈∇Σe(p), ∆p〉 subject to ‖∆p‖ = 1. (D.4)

Since t is an increasing function, Σe is a monotonically increasing function of p, thus it
has nonzero gradient at any point p, and ∇Σe(p) is related to the velocities describing
the visual flow (see [9]) according to

∇Σe(p) =
(

v−1
x (p), v−1

y (p)
)>

. (D.5)

The local planar approximation is equivalent to assuming constant velocities vx and vy.

The maximum (D.4) is achieved for the unit vector ∆p = ∇Σe(p)/‖∇Σe(p)‖ (see
Fig. D.5). Hence,

τ(p) = ‖∇Σe(p)‖ =
√

v−2
x + v−2

y . (D.6)

Next, we give a formula for τ in terms of the normal to the surface S at p (i.e., the
normal of the tangent plane), n(p) = (n1, n2, n3)>, which is assumed to be known
by fitting a plane to the data (this step will be described next in Section D.3.2). We
may further assume that n3 > 0 since Σe is a monotonically increasing function. The

100

D.3. Algorithm

t

x

y

Sx

Sy

S

τ

Image plane

Direction of
steepest ascent

1px p
∂Σe
∂y

∂Σe
∂x
∂Σe
∂x

∇Σe

∆p

Surface of
active events

Figure D.5: Visualization of the lifetime τ: the maximum time increment ∆t of the planar
approximation to the Surface of Active Events (SAE) for a displacement of ‖∆p‖ = 1 pixel. Both
the optimal unit displacement ∆p and τ are directly related to ∇Σe, as summarized in (D.6).

normal is given by n(p) ∝ Sx(p)× Sy(p) = (−(∇Σe(p))>, 1)>. Substituting (D.5) gives
n(p) ∝ (−v−1

x ,−v−1
y , 1)> in terms of the motion velocity and, identifying coordinates

with n(p) = (n1, n2, n3)>, we obtain −v−1
x = n1/n3 and −v−1

y = n2/n3, which finally
implies

τ(p) =
√

v−2
x + v−2

y =
1
n3

√
n2

1 + n2
2. (D.7)

D.3.2 Local Plane-fitting Algorithm

Our plane-fitting algorithm is based on [9], where all events in an N×N× 2∆t window,
centered around the current event, in the spatio-temporal domain are used to estimate
the local plane. However, their algorithm has two undesirable properties: first, it
introduces a tuning parameter (∆t) that limits the slowest detectable gradients (the
slope of the plane). Second, events from the future are included, which translates to
introducing a ∆t latency. To overcome these issues, we only use past events in our
estimation. Since we assume local smoothness, we can only use half of the events of
the N × N window around the current event. This is illustrated in Fig. D.6.

To robustly fit the plane, we use the RANSAC algorithm [48]. We compute a candidate

101

Appendix D. Event Lifetime

xy

ti
m
e

Figure D.6: When a new event (green) arrives, the SAE on a 5× 5 patch around it includes
the red and blue events. The events in red correspond to the brightness gradient that moves
over this patch. The events in blue correspond to another gradient that moved over this patch
previously. The events in magenta are future events to which we do not have access. However,
under the local planar assumption, the magenta events will lie on the same plane (gray) as the
red events. To avoid latency in our algorithm, we only use the newer half of events from the SAE
(red events) to estimate the plane, while the blue events are not considered (see Section D.3.2).

plane using the new event and two additional past events that were chosen randomly.
We then check all other past events whether they support the candidate plane. A past
event is considered an inlier, if its point-to-plane distance is below the inlier threshold µ.
The second tuning parameter of the RANSAC algorithm is the estimated percentage of
outliers ε, which can further be used to estimate the necessary number of iterations. If
less than m inliers are found, the event is considered as noise and its lifetime is set to
zero. We compute m as a function of half the events in the window of size N and the
percentage of outliers ε,

m = (1− ε)︸ ︷︷ ︸
inlier
ratio

N2/2︸ ︷︷ ︸
maximum

support

. (D.8)

Both parameters have to be empirically tuned and they vary for different scenes and
DVS settings. We found µ = 10−4 and ε = 0.4 to yield good results. Note that we split
incoming events by their polarity, i.e., we run our algorithm separately for the positive
and negative events, and combine the output of both for the final result.

102

D.3. Algorithm

Plane Fitting

Let A be the matrix of the n inliers obtained by the RANSAC algorithm,

A =

x1 y1 t1
...

...
...

xn yn tn

 , (D.9)

where here xi, yi, ti, i ∈ {1, . . . n} are local coordinates relative to the current event.

The ordinary least-squares solution of the plane normal nLS is given by

nLS = arg min
n
‖An− b‖2, (D.10)

where b = (1 · · · 1)>.

Regularization

To refine the estimate of the plane normal, we predict future events using the local
constant-velocity assumption, which serves as regularization. Using the estimated
velocity for a new event, we predict the time t̂ for all neighboring pixels at which
an event should occur. We then compare the time an event actually occurs with
the predicted time. We use this difference as a measure of how much we trust the
previously fitted plane. The absolute error

∆terr = |ti − t̂i| (D.11)

between the predicted time t̂i and the actual time ti is, therefore, used for an error-
dependent regularization weight λ(∆terr). A regularized plane nR is computed,

nR = arg min
n

(
‖An− b‖2 + λ(∆terr)‖n− n̂i‖2

)
, (D.12)

where n̂i is the predicted plane normal.

The value of the error-dependent regularization weight λ(∆terr) in (D.12) gives an
indication about the preference of the prior information, e.g., for small prediction
errors, the prior information is considered reliable and is therefore weighted stronger.
Therefore, λ(∆terr) should be big for small errors. An exponential approach is chosen
to satisfy this condition. To enforce general smoothness on the motion, a constant value
can be added to the exponential function. For the experiments described in this paper,
the following function is used:

λ(∆terr) = 9 + 100 exp(−0.005∆terr). (D.13)

103

Appendix D. Event Lifetime

Figure D.7: The DVS is mounted on a train cart to achieve constant linear velocity. The scene is
divided in three parts, which are at different depths: two line patterns (at 0.1 m and 0.2 m) and
the background consisting of boxes and windows (at 5 m).

Edge Thinning

If a gradient is accelerating and thus violating the constant-velocity assumption, the
lifetime will be overestimated. Therefore, two neighboring events in the direction of
motion will be active at the same time, causing a similar effect as motion blur. A simple
solution to this problem is to use the velocity information of the new event to reset
the lifetime of the neighboring pixel in negative velocity direction. This technique
effectively suppresses motion blur caused by accelerating gradients.

D.4 Experimental Evaluation

We evaluate our algorithm using four different experiments, going from controlled
environments to urban settings. We visually compare the output of our method with
that of the naive method that accumulates events over a fixed time interval.

D.4.1 Experiment 1: Line Pattern at Constant Velocity

Experimental Setup

The first experiment investigates the response to straight lines at different depths when
the DVS moves parallel to the pattern at a constant velocity (see Fig. D.7). To enforce
constant linear velocity, the DVS is mounted on a train cart. Two boards with distinct
vertical black and white bars are installed in front of the DVS at different distances. In
the DVS, both boards as well as part of the background containing cardboard boxes
and windows are visible.

104

D.4. Experimental Evaluation

Results

Figure D.8 shows the event-stream visualization using the naive method with a fixed
accumulation interval of 1 ms a and 30 ms b along with our algorithm both without c
and with d regularization. Both intervals are not suitable for this setup, resulting in
motion blur (30 ms) or hardly recognizable structure (1 ms). Our algorithm detects the
lines and estimates their velocities coherently. The colors in the visualization correspond
to the lifetime. The slow apparent background motion, visible in Fig. D.8b, is only
partially captured by our method due to the bad signal-to-noise ratio for slow apparent
motion. Qualitative comparison of the output with and without regularization shows
that both perform similarly, with regularization performing slightly better when it
comes to noise suppression. In this case of pure translation, the lifetime is proportional
to the inverse depth of the scene. Hence, another application of the estimation of the
lifetime of the events is the recovery of the structure (i.e., depth) of the scene.

Figure D.9 shows the fraction of cumulated predictions plotted against their absolute
error. For instance, using N = 5 more than 90 % of all predictions have a smaller error
than 10 ms. This quantitative evaluation for different window sizes does not show a
significant difference between the algorithm with or without regularization for window
sizes of N = 5 and N = 7. The effect of the regularization becomes much clearer when
looking at the distribution of the estimated lifetimes (Fig. D.10). There is a stronger
segregation of the two main expected lifetimes as a result of the regularization.

D.4.2 Experiment 2: Complex Patterns at Constant Velocity

Experimental Setup

The second experiment investigates the response to complex patterns. We used the
same train cart to move the DVS at constant velocity parallel to a complex pattern (see
Fig. D.11a). In this experiment, however, the entire pattern has constant distance to the
DVS.

Results

Figure D.11b shows the output of our algorithm for Experiment 2. The silhouette
of “Garfield” is clearly visible even though most edges are curved. Many details
are preserved well. However, some details are too small to be captured by the low
resolution of the DVS, which is 128× 128 pixels. Horizontal edges are not visible, as
they are parallel to the apparent motion and, therefore, do not trigger any events. In
this setup, a well-tuned fixed lifetime would achieve similar results, but without noise
suppression.

105

Appendix D. Event Lifetime

(a) 1 ms (b) 30 ms

(c) Without regularization (d) With regularization

Figure D.8: Experiment 1: DVS moves at constant velocity in front of a striped pattern. The
experimental setup is shown in Fig. D.7. Accumulating events over a fixed time interval results
in either unclear structures a or motion blur b. Since the apparent motion changes over the
image space, no fixed interval exists that can render sharp images. Our method delivers sharp
images as well as suppresses noise. Long and short lifetimes are depicted in red and blue,
respectively.

D.4.3 Experiment 3: Quadrotor Flips

Experimental Setup

In this experiment, we mounted the DVS on a quadrotor in a front-looking configuration.
The quadrotor first hovers in front of a black square attached to a white wall. It then
performs a flip around the optical axis of the DVS and settles down to hover condition
again. Figure D.12 shows the quadrotor performing a flip, when it reaches rotational
speeds of up to 1,200 ◦/s.

106

D.4. Experimental Evaluation

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

∆terr = |t− testimated|[ms]

C
D

F
(∆

t e
rr

) N = 3 w/o regularization

N = 3 w/ regularization

N = 5 w/o regularization

N = 5 w/ regularization

N = 7 w/o regularization

N = 7 w/ regularization

Figure D.9: Prediction error analysis of Experiment 1 for different window sizes both with and
without regularization.

0 5 10 15 20
0

2,000

4,000

6,000

Lifetime [ms]

N
u
m
b
er

o
f
co
u
n
ts

(a) Without regularization

0 5 10 15 20
0

2,000

4,000

6,000

Lifetime [ms]

N
u
m
b
er

o
f
co
u
n
ts

(b) With regularization

Figure D.10: Lifetime histogram of Experiment 1 for N = 5: events with an assigned lifetime
within 0.2 ms are binned. The two peaks correspond to the close and far lines in the scene (cf.
Fig. D.7). Note that with regularization b, the two peaks are much sharper than without a.

Results

Figures D.13 and D.14 compare the output of both the naive and proposed methods
at two different time instances during the experiment. Figure D.13 shows the output
during hovering, while Fig. D.14 corresponds to the flip.

During hovering, a fixed accumulation interval of 1 ms hardly captures any structure
(Fig. D.13a), while 30 ms yields an almost sharp image (Fig. D.13b). During the flip,
an interval of 1 ms yields a sharp image of the square (Fig. D.14a), while an interval
of 30 ms causes heavy motion blur (Fig. D.14b). Thus, choosing such a accumulation
interval results in a trade-off between completeness of the image and motion blur,
which is visible as “thickening”. In contrast, our method provides a sharp image in
both situations, showing the applicability and adaptability of the algorithm to varying
velocities in both rotational and translational motion.

107

Appendix D. Event Lifetime

(a) Image of the scene (b) Output of our algorithm

Figure D.11: Experiment 2: DVS moves at constant velocity parallel to the image shown in a.
The output of our algorithm captures many details b. However, fine details are not preserved
due to the low resolution of the DVS (128× 128 pixels).

D.4.4 Experiment 4: Urban Environment

Figure D.1 shows an experiment in an urban environment. The scene constists of a
window frame at a close distance with office buildings outside (cf. Fig. D.1a). While
the naive method either misses elements in the scene (the buildings, see Fig. D.1c)
or causes motion blur (the window frame, Fig. D.1b), our method performs well in
capturing both fast and slow edges (Fig. D.1d).

D.5 Conclusion

We developed a method to augment the stream of events from a retinal camera with a
measure of the lifetime of each event. Such a measure is defined based on the visual
flow in the image plane and is computed based on a local planar approximation of the
surface of active events. To this end, we designed an event-based, robust plane fitting
algorithm with minimum latency (by considering only past events in the neighborhood
of the current event) and optional regularization. In contrast to the previous work of
visual-flow estimation, we did not rely on any temporal window or the use of future
events.

The generated stream of augmented events opens up new possibilities to design other
event-based algorithms that operate on a continuous-time representation of the events.
This significantly departs from the algorithmic paradigm of event accumulation over

108

D.5. Conclusion

Figure D.12: Setup of Experiment 3: a quadrotor equipped with a front-looking DVS performs
a flip in front of a square pattern. Rotational speeds are measured to be as high as 1,200 ◦/s
during the flip.

(a) 1 ms (b) 30 ms (c) Without regulariza-
tion

(d) With regulariza-
tion

Figure D.13: Experiment 3: Quadrotor during hovering. The experimental setup is shown in
Fig. D.12. A fixed accumulation interval of 1 ms captures hardly any structure a, while an
interval of 30 ms yields a sharp image b. Our method produces even sharper images and
reduces noise c, d.

artificially-chosen intervals of fixed duration at discrete times, which suffer from the
“completeness – motion blur” trade-off. We demonstrated the usefulness of our method
with several experiments in a visualization application: the rendering of sharp gradient
images at any time instant. Additionally, we included datasets acquired by a DVS
onboard a quadrotor during agile maneuvers. Our method outperformed that of fixed
event-accumulation interval, which implicitly assigns the same lifetime to all events,
since it can cope with scenes containing structures at different apparent velocities. In
addition, it is able to filter a significant amount of events caused by sensor noise. Our
method performs well despite the low resolution of the DVS (128× 128 pixels).

109

Appendix D. Event Lifetime

(a) 1 ms (b) 30 ms (c) Without regulariza-
tion

(d) With regulariza-
tion

Figure D.14: Experiment 3: Quadrotor during the flip. The experimental setup is shown in
Fig. D.12. A fixed accumulation interval of 1 ms yields a sharp image a, while an interval of
30 ms produces heavy motion blur b. Our method produces sharp images and reduces noise c,
d.

110

E Event-based Feature Detection

Reprinted, with permission, from:

E. Mueggler, C. Bartolozzi, and D. Scaramuzza. “Fast Event-based Corner Detection”.
In: British Machine Vis. Conf. (BMVC). 2017

111

Appendix E. Event-based Feature Detection

Fast Event-based Feature Detection

Elias Mueggler, Chiara Bartolozzi and Davide Scaramuzza

Abstract — Event cameras offer many advantages over standard
frame-based cameras, such as low latency, high temporal resolution,
and a high dynamic range. They respond to pixel-level brightness
changes and, therefore, provide a sparse output. However, in tex-
tured scenes with rapid motion, millions of events are generated
per second. Therefore, state-of-the-art event-based algorithms ei-
ther require massive parallel computation (e.g., a GPU) or depart
from the event-based processing paradigm. Inspired by frame-based
pre-processing techniques that reduce an image to a set of features,
which are typically the input to higher-level algorithms, we propose
a method to reduce an event stream to a corner event stream. Our
goal is twofold: extract relevant tracking information (corners do
not suffer from the aperture problem) and decrease the event rate
for later processing stages. Our event-based corner detector is very
efficient due to its design principle, which consists of working on
the Surface of Active Events (a map with the timestamp of the latest
event at each pixel) using only comparison operations. Our method
asynchronously processes event by event with very low latency. Our
implementation is capable of processing millions of events per sec-
ond on a single core (less than a micro-second per event) and reduces
the event rate by a factor of 10 to 20.

E.1 Introduction

Event cameras offer great potential for virtual reality and robotics to overcome the
challenges of latency, dynamic range, and high speed. Inspired by the human eye,
these cameras respond to local, pixel-level brightness changes at the time they occur.
These changes, called “events”, are transmitted asynchronously and timestamped

112

E.1. Introduction

(a) Standard vs Event Camera
(b) Raw Event vs Corner
Event Stream

Figure E.1: (a): Comparison of the output of a standard frame-based and an event camera when
facing a rotating disk with a black dot. The standard camera outputs frames at a fixed rate,
thus sending redundant information when no motion is present in the scene. Standard cameras
also suffer from motion blur during rapid motion. Event cameras instead respond to pixel-level
brightness changes with microsecond latency. Therefore, they do not suffer from motion blur
and do not report anything when everything is at rest. An animated version of this figure can
be found here: https://youtu.be/LauQ6LWTkxM. (b): The output of our method is a corner
event stream (green), which is here overlaid on the raw event stream (gray) in space-time (time
going upwards).

with micro-second precision. A comparison between standard frame-based and event
cameras is shown in Fig. E.1a. Since each pixel is independent and can choose its
own operating point, event cameras achieve a very high intra-scene dynamic range
(more than 140 dB). However, due to their fundamentally different output (an event
stream rather then a sequence of frames), standard computer-vision algorithms cannot
be applied to such data directly and new methods to deal with this different way of
encoding visual information (temporal contrast rather than absolute brightness) should
be devised. As event cameras have become commercially available only in the last few
years, e.g.the DVS [77] and the DAVIS [19], research on event-based vision is a relatively
new topic. The most recent sensor, the DAVIS, has a resolution of 240× 180 pixels
and, in addition to the events, it also outputs standard grayscale images from the same
physical pixels (that we only use for visualization purposes in this work).

Certain applications of event cameras, such as image reconstruction [32, 66, 125] or
video decompression [20], require processing all events. However, many applications
like visual odometry or object tracking are known from standard cameras to work
reliably on corners alone. Corners are useful features as they are well localized, highly
informative, and do not suffer from the aperture problem. Additionally, they reduce an
image (composed of millions of pixels) to a few hundred measurements. Similarly, we
aim at reducing the event stream to a highly-informative corner event stream.

113

https://youtu.be/LauQ6LWTkxM

Appendix E. Event-based Feature Detection

The first method for event-based corner detection was presented by [29]. They estimate
the optical flow by fitting planes to the Surface of Active Events (a map of the timestamp
of the latest event for each pixel) and searching for intersections. However, as plane
fitting is a costly operation, the number of events per second that can be processed
is rather limited. A more recent work [142] computes Harris corners on artificial
frames generated from the events. While this method shows convincing results, it is
not computationally efficient due to the underlying data structure and the required
convolutions and matrix multiplications.

Other works focus on feature tracking in the event stream. However, they assume to
know the shape of the features a priori [72], or they extract features from the frame
and only track them using the events [138]. In [151], a probabilistic feature tracking
algorithm using Expectation-Maximization is presented. Similarly to [142], they detect
Harris corners in artificial frames, but instead of using a binarized frame, they use the
event density over a temporal window.

Recently, several methods for camera tracking and visual odometry for event cameras
have been presented. In [67] a visual-odometry method was proposed that works in real
time, but requires a GPU. Instead of processing single events, EVO [124] accumulates
events to build artificial frames as an intermediate step. These works show that real-
time performance either requires massive parallel processing power (e.g., a GPU) or
departing from the event-based processing paradigm (i.e., each event can change the
state of the system). In [70], a visual-odometry algorithm using feature tracks was
presented. They showed that feature-based methods work efficiently on event cameras.
However, they required frames to detect corners and extract features before they could
be tracked with the events.

In this paper, we present a fast method for corner detection in an event stream. Our
detector is very efficient due to its design principle, which consists of working on the
Surface of Active Events using only comparison operations, as opposed to plane fitting
or computing gradients by convolution, as previous works. Our method asynchronously
processes event by event with very low latency, thus preserving the characteristics
of the event stream. It can serve as a lightweight, low-latency preprocessing step
for subsequent higher-level algorithms such as visual odometry, object tracking, or
recognition. Our implementation can process more than a million events per second on
a single core, and typically reduces the event rate by a factor of 10 to 20.

The remainder of this paper is structured as follows. Section E.2 describes our method,
which we evaluate and compare to previous work in Section E.3. Results are discussed
and conclusions are drawn in Sections E.4 and E.5, respectively.

114

E.2. Method

(a) Events over the last 33 ms.
Positive events (white) and
negative events (black)

(b) Surface of Active Events
(SAE). Brightness represents
time, from past (dark) to
present (bright)

(c) Intensity Image (absolute
brightness I(x, y) in (E.1))

Figure E.2: Signal used for corner detection: the Surface of Active Events (SAE).

E.2 Method

Inspired by the FAST [126] corner detector for frames, we propose a corner detector
for event streams that only uses pixel-wise comparisons. FAST considers a pixel as a
corner if n contiguous pixels along a circle around the pixel of interest have all darker
(or all brighter) intensity than the center pixel plus a threshold (typically, n = 9 on a
circle of radius 3 with 16 pixels). In event cameras, brightness is encoded in the form
of temporal contrast. More precisely, an event e = (x, y, t, pol) is triggered at a pixel
(x, y) at time t if the (logarithmic) brightness I reaches a predefined contrast threshold
C (typically 15 %),

I(x, y, t)− I(x, y, t− ∆t) = pol · C, (E.1)

where t− ∆t is the time when the last event at that pixel was triggered, and pol, the
polarity of the event, is the sign of the brightness change. Since visual information is
represented by time and there is no notion of frames for event cameras, we propose to
operate on the Surface of Active Events (SAE) [9], which is the function given by the
timestamp of the most recent event at each pixel:

SAE : (x, y) 7→ t. (E.2)

Figure E.2 shows a temporal window of events, the Surface of Active Events, as well as
an intensity image for the same moment in time. Similarly to [142], we separate the
events by polarity and process them independently.

Since this continuously and asynchronously updated representation is fundamentally
different from intensity images, several changes are needed to make a FAST-like detector
for event cameras. First, we do not need to iterate over all pixels, but only check the
current event using its local neighborhood. This check is performed asynchronously at

115

Appendix E. Event-based Feature Detection

(a) Circles of radius 3 and 4
pixels

(b) Visualization of Surface
of Active Events (SAE)

Figure E.3: Proposed Method. We compare the timestamps of the latest event of the pixels on
two circles (red and blue) around the current event (in black). (a): The inner (red) and outer
(blue) circle around the current event (black). (b): Visualization of the Surface of Active Events
(SAE) around the current event (black) and of the circles used for the timestamp comparison.
In this example, the event under consideration (center pixel) is classified as corner.

the moment the event arrives. Second, the pixel values represent timestamps instead of
intensity values and since the current event is considered the center pixel of the local
neighborhood it always has the highest timestamp on the SAE. Therefore, comparisons
of the pixels on the circle to the center one (as in FAST) are non-informative, and a
different spatial comparison pattern (between pixels on the circle only) is required.

Our method analyzes the distribution of timestamps around the current event to decide
on the presence of a corner. A moving corner will create, locally, a pixel map of
timestamps such as that in Fig. E.3b, with two clearly separated regions (recent vs. old
events, i.e., high vs. low values). Hence, we detect corners by searching for contiguous
pixels with higher timestamps than the rest. We use circular segments for isotropic
response and for efficiency (checking fewer pixels than the whole neighborhood). In
contrast to existing methods [142], we completely avoid the computation of derivatives,
which are expensive and amplify noise.

More specifically, we define a patch (local spatial neighborhood) of the SAE around
the current event. In this patch, we focus on the pixels on two centered, concentric
circles of radius 3 and 4 as shown in Fig. E.3. Along each circle, the algorithm searches
for segments of contiguous pixels (arcs) that are higher (i.e., they have a more recent
timestamp) than all other pixels on the circle. For the inner circle (red), we search for
a segment of length between 3 and 6 (pixels). For the outer circle (blue), we search
for a segment of length between 4 and 8. If we find such segments on both circles, we
consider the current event to be a corner event. In the example in Fig. E.3b, the inner
circle (red) and the outer circle have 5 and 6 contiguous pixels that are all higher than
the other pixels along the circle, respectively. Therefore, the event in the center pixel is
considered a corner.

116

E.3. Evaluation

Experimentally, we found that using additional inner circles (of radius 1 or 2) does not
improve detection quality. We suspect that sensor noise is the main issue why corners
in current event cameras cannot be located more precisely (feature-track methods [138,
151] also report localization errors in the range of 2 pixels). However, we also found that
only using the inner circle of radius 3 provides significantly worse quality compared to
using both circles. As can be seen from Fig. E.3a, circles of radius 3 and 4 constitute
less than half of the pixels (36/81 ≈ 44%) in the 9× 9 pixels patch. However, it is
this region that we experimentally found to provide the most relevant information for
corner detection and localization: larger circles do not provide good localization and
smaller circles are not reliable to detect corners as they are more sensitive to sensor
noise.

E.3 Evaluation

To evaluate the performance of our method, we first describe how we compute ground
truth. Then we review the current state-of-the-art Harris detector [142] and describe our
improvement. Finally, we compare the detection performance and runtime of Harris
and our method on the Event-Camera Dataset [103].

E.3.1 Ground Truth

Ground Truth using Frames

Establishing ground truth using the Lucas-Kanade tracking algorithm [85] on the frames
of the DAVIS and interpolating between the frames suffers from severe limitations: (i)
dynamic range: due to the limited dynamic range of the frames (around 55 dB), no
corners are detected and tracked in over- and underexposed areas of the image (see
Fig. E.4a), (ii) frame rate: due to the limited frame rate of the sensor (around 25 Hz),
tracking is lost in high-speed scenarios and linear interpolation is no longer a good
approximation (see Fig. E.4b), and (iii) corner interpretation: not all elements perceived
as corners in the event stream are also recognized as corners in the images, and vice
versa, even though they are repeatably detected and well tracked (see Fig. E.4c). We
experimented with different corner detectors (Harris and FAST) and different pyramid
levels (up to 4 levels). Therefore, we propose a different method for establishing ground
truth, which we describe next.

Ground Truth using Feature Tracks

Instead of using frames, we post-process the corner events to find “feature tracks”.
A feature track is composed of an inner and an outer oblique cylinder in space-time
(see Fig. E.5a). We exhaustively search for feature tracks by creating hypotheses using

117

Appendix E. Event-based Feature Detection

(a) Dynamic Range (b) Frame Rate (c) Corner Interpretation

Figure E.4: Issues with image-based ground truth. Frames from the DAVIS with superimposed
detected corners (yellow traces) from frame-based Lukas-Kanade corner tracking implementa-
tion. (a): Corners in areas with overexposure (red) and underexposure (blue) are not detected
in the image (frame from the boxes dataset). (b): Too much motion between two frames and
motion blur causes Lucas-Kanade tracking to fail (frame from the shapes dataset). (c): Not the
same corners are detected using the frames and the events (highlighted in red) (frame from the
shapes dataset).

two corner events and checking whether there are enough corner events in the inner
cylinder and few corner events in the outer cylinder. We used 3 and 5 pixels for the
inner and outer radius, respectively, a minimum of 30 inner events, and maximum
ratio of outer-to-inner events of 25 %. We then consider all corner events belonging to
such a feature track as inliers of the hypothesis and label them as correct corners.

E.3.2 Event-based Harris Detector

We compare our method with the event-based adaptation [142] of the Harris detector,
which we describe here for completeness. Their method binarizes the SAE by the
newest N events (depending on the experiment, they choose N = 1000 or N = 2000).
Let Σb be a binary patch centered around the latest event, where 0 and 1 indicate the
absence and presence of an event, respectively. Compute Ix = Σb ∗ Gx and Iy = Σb ∗ Gy

as convolutions of the patch with 5× 5 Sobel kernels Gx and Gy = G>x , respectively.
Compute Harris matrix

M = ∑
e∈Σb

g(e) ∇I(e)∇I>(e), (E.3)

where g is a Gaussian weighting function with spread σ = 1 pixel,∇I(e) = (Ix(e), Iy(e))>

is the gradient at pixel e, and the 2× 2 matrix ∇I(e)∇I>(e) is the point-wise structure
tensor. Finally, the Harris score is computed as

H = det(M)− k · trace(M)2, (E.4)

where k = 0.04 is a user-defined parameter. The event at the center of the patch is
classified as a corner if its score H is large than a threshold S.

118

E.3. Evaluation

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•
•

••

•

•

•

•

•

•

(a) Feature Track (b) Labeled Data

Figure E.5: Ground truth using feature tracks. (a) Feature tracks shown in space-time (time
going upwards) represented by an inner and outer oblique cylinder. Points represent events
that have been detected as corner events. Only if few corner events fall within the outer
cylinder (red), the corners in inner cylinder are considered as correct detections (green). (b)
Visualization of labeled data where each dot represents a corner detection. Green dots are part
of a feature track (and therefore labeled as “true” corner), whereas red corners are considered
false detections.

Spatially-Adaptive Harris Method. We propose the following improvement to the
above-mentioned event-based Harris detector. Instead of choosing the newest N events
for the whole image plane, which depends on the amount of texture in the scene, we
choose the number of newest events locally, Nl , around the event under consideration.
This choice is more sensible since only the latest events around the current one are
relevant for deciding whether that event is a corner or not. Hence, our modified Harris
detector adapts to the local visual information and is independent of the scene and the
sensor size. We found that a patch of 9× 9 pixels, the latest Nl = 25 events therein,
and a threshold of S = 8 gave the best performance over a wide variety of datasets.
Note that this is the same patch size as the one used in our proposed FAST-inspired
corner-detection method (see Section E.2).

E.3.3 Detector Performance

We compare the performance of our method with the spatially-adaptive Harris method
described above. We evaluate the detectors on a representative subset of the datasets
provided by the publicly available Event-Camera Dataset [103]. Each dataset is ap-
proximately one minute long and contains tens of millions of events. The scenes in
the dataset range from simple shapes to natural and office environments. The motion
speed, and therefore also the event rate, steadily increases during the datasets, reaching
top values of over 3 m/s and 900 ◦/s, corresponding to activity peaks of 8 million

119

Appendix E. Event-based Feature Detection

(a) shapes (b) dynamic

(c) poster (d) boxes

Figure E.6: Visualization of corner detections of the last 33 ms and 100 ms in bright and dark
color, respectively. Left and right images show the detections of Harris and our method,
respectively. The datasets are from the Event-Camera Dataset [103]. The images are only shown
for visualization and not used in either method. Color indicates the polarity of the corner
events: green and red are events with positive and negative polarity, respectively.

events per second.1

The results are summarized in Table E.1 and report the reduction rate in percentage
(Red.) and the percentage of corner detections that could be matched to a feature track
(FT, cf. Section E.3.1). Figure E.6 shows snapshots from both methods for all scenes
overlaid on the frame. Figure E.1b shows the corners in space-time together with the
event stream for the shapes dataset during an interval of 1 s. Our method performs
slightly worse than spatially-adaptive Harris on almost all datasets, but runs more than
an order of magnitude faster, as shown in the next section (see Table E.2). Both methods
show the same trend: on scenes with low texture (such as shapes that contains only
black-and-white patterns or dynamic that contains a desk, screen, books, and a moving
person), both methods perform very well. On more finely-textured scenes (such as
boxes and poster that contain fine-grained natural pattern), fewer feature tracks can be
found in the corner event stream. This does not necessarily mean that the detections are
wrong, but rather that there might be corner-like structures very close in the image that
cannot be separated well with the proposed ground-truth labeling technique. Further,
the detector performance does not significantly depend on the motion type (rotation,
translation, or 6-DOF), but rather on the level of texture in the scene.

1Sampled at 1 ms intervals.

120

E.3. Evaluation

Harris [142] Ours
Texture Dataset Red. FT Red. FT

shapes_rotation 92.7 74.1 88.9 74.7
low shapes_translation 91.7 78.3 87.8 77.5

shapes_6dof 90.6 77.1 87.0 76.8
dynamic_rotation 95.1 53.3 96.4 46.4

medium dynamic_translation 95.3 62.1 96.7 52.1
dynamic_6dof 95.4 55.9 96.4 49.4
poster_rotation 92.6 35.3 95.7 30.5

high poster_translation 92.3 39.5 95.8 35.9
poster_6dof 92.4 35.3 95.6 32.1
boxes_rotation 92.1 32.9 96.7 25.2

high boxes_translation 92.4 37.0 96.7 30.5
boxes_6dof 92.7 34.4 96.8 26.7

Table E.1: Performance of Harris and our detector expressed as reduction rate (Red.) of the
event stream and matched Feature Tracks (FT). Values are given in percentages.

E.3.4 Computational Performance

A major advantage of our algorithm is its runtime. Due to the asynchronous nature
of event cameras, the event rate depends on the scene, the motion, and the sensor
parameters (biases). The event rate in the Event Camera Dataset [103] is in the range of
a few million of events per second (peaks of 8 million events per second). Our algorithm
runs at 780 ns per event, allowing rates of up to 1.2 million events per second—more
than an order of magnitude higher than previous methods. The results are summarized
in Table E.2. We used a single core of an Intel i7-3720QM CPU at 2.60 GHz for all
experiments.

Method Time per event [µs] Max. event rate [e/s]
Harris [142] 11.6 86,230
Ours 0.78 1,275,000

Table E.2: Runtime comparison per event and corresponding maximum event rate.

Since our method uses only a small local neighborhood of the events, parallelization
is straightforward, if needed, with very little overhead. While this argument applies
also to the Harris detector, the runtime per event remains critical to achieve low-
latency performance: the DAVIS has a latency of 3 µs [19]. While the application of
Harris triples this latency (11.6 µs), our method only yields around 30 % additional
latency to the overall system (0.78 µs). The Harris method is slower for two main
reasons: (i) a sort operation is required to find the latest N events on the SAE2; (ii)

2Just keeping the last N events in a queue is not equivalent, because pixels often fire more than one

121

Appendix E. Event-based Feature Detection

the computation involves convolutions (Sobel operator to compute ∇I) and matrix
multiplications (Gaussian weighting). Our method, instead, works only by direct, pixel-
wise comparisons on the SAE. Thus, there are no expensive floating-point or sorting
operations carried out on the pixel values. Additionally, as mentioned in Section E.2
(Fig. E.3a), our method is also fast because it processes only the most relevant part of
the patch for the current event, which accounts to less than half of the pixels in the
patch.

E.4 Discussion

The early reduction of the event stream to a corner event stream has several advantages.
First, the corner detector acts as a filter: letting through only the most informative (i.e.,
less ambiguous) and well-localized events, and reducing, by more than an order of
magnitude, the amount of data that must be processed at later stages in the pipeline, at
little computational cost. Second, the low-latency and asynchronous nature of event
camera output is maintained because each event is processed as soon as it is received.
Since our algorithm runs very fast, very little additional latency is introduced. Third,
the event-based paradigm of processing data on an event-by-event basis is preserved
since we decide whether an event is a corner immediately and only using past events
in a local neighborhood.

While the corner detection quality is slightly worse than an improved version of a state-
of-the-art method, its computational performance is more than an order of magnitude
faster. However, since both the Harris detector and our method operate on the same
signal (the SAE), it would also be feasible to refine our corner event detections by
post-processing them with the event-based Harris method.

E.5 Conclusion

We present a fast corner-detection algorithm that works on the asynchronous output
stream of event cameras and preserves its low-latency and asynchronous characteristics.
Our method reduces the event rate by 90%-95% and achieves a number of correctly-
tracked features close to a state-of-the-art event-based corner detector (less than 10%
difference). Since our method works directly on the Surface of Active Events using only
binary comparisons, the processing time per event is very little and millions of events
can be processed per second on a single core, which is more than 10 times faster than
state-of-the-art methods. If needed, our method can be parallelized with almost no
overhead since it uses only local information. Furthermore, as the resolution of future
event cameras steadily increases, the event rate will also increase, and our algorithm
will become more relevant to convert the event stream into a more manageable stream

event. For Harris to work best, we need the last N events from distinct pixels.

122

E.5. Conclusion

of informative and well-localized events.

Future work will include improving the detection quality further and investigation
of non-maximum suppression methods, which is non-trivial due to the asynchronous
nature of the events.

Acknowledgements. We thank Guillermo Gallego, Arren Glover and Valentina Vasco
for valuable discussions.

123

F Event-based Feature Tracking

c©2016 IEEE. Reprinted, with permission, from:

D. Tedaldi, G. Gallego, E. Mueggler, and D. Scaramuzza. “Feature Detection and
Tracking with the Dynamic and Active-pixel Vision Sensor (DAVIS)”. in: Int. Conf.
Event-Based Control, Comm. Signal Proc. (EBCCSP). Krakow, Poland, June 2016, pp. 1–7.
doi: 10.1109/EBCCSP.2016.7605086

125

http://dx.doi.org/10.1109/EBCCSP.2016.7605086

Appendix F. Event-based Feature Tracking

Feature Detection and Tracking with the
Dynamic and Active-pixel Vision Sensor

(DAVIS)

David Tedaldi, Guillermo Gallego, Elias Mueggler and Davide Scaramuzza

Abstract — Because standard cameras sample the scene at constant
time intervals, they do not provide any information in the blind time
between subsequent frames. However, for many high-speed robotic
and vision applications, it is crucial to provide high-frequency mea-
surement updates also during this blind time. This can be achieved
using a novel vision sensor, called DAVIS, which combines a stan-
dard camera and an asynchronous event-based sensor in the same
pixel array. The DAVIS encodes the visual content between two
subsequent frames by an asynchronous stream of events that convey
pixel-level brightness changes at microsecond resolution. We present
the first algorithm to detect and track visual features using both the
frames and the event data provided by the DAVIS. Features are first
detected in the grayscale frames and then tracked asynchronously in
the blind time between frames using the stream of events. To best
take into account the hybrid characteristics of the DAVIS, features
are built based on large, spatial contrast variations (i.e., visual edges),
which are the source of most of the events generated by the sensor.
An event-based algorithm is further presented to track the features
using an iterative, geometric registration approach. The performance
of the proposed method is evaluated on real data acquired by the
DAVIS.

126

F.1. Introduction

F.1 Introduction

Feature detection and tracking are the building blocks of many robotic and vision
applications, such as tracking, structure from motion, place recognition, etc. Extensive
research has been devoted to feature detection and tracking with conventional cameras,
whose operation principle is to temporally sample the scene at constant time intervals.
However, conventional cameras still suffer from several technological limitations that
prevent their use in high speed robotic and vision applications, such as autonomous
cars and drones: (i) low temporal discretization (i.e., they provide no information
during the blind time between consecutive frames), (ii) high redundancy (i.e., they
wastefully transfer large amounts of redundant information even when the visual
content of the scene does not change), (iii) high latency (i.e., the time needed to capture
and process the last frame). Since the agility of an autonomous agent is determined by
the latency and temporal discretization of its sensing pipeline, all these advantages put
a hard bound on the maximum achievable agility of a robotic platform.

Bio-inspired event-based sensors, such as the Dynamic Vision Sensor (DVS) [78, 77, 36]
or the Asynchronous Time-based Image Sensor (ATIS) [118, 117, 116], overcome the
above-mentioned limitations of conventional cameras. In an event-based sensor, each
pixel operates independently of all other pixels, and transmits asynchronously pixel-
level brightness changes, called “events”, at microsecond resolution at the time they
occur. Hence, an event camera virtually eliminates latency and temporal discretization.
Also, it avoids redundancy, as no information is transmitted if the scene does not change.
However, this comes at a price: the output of an event camera (a stream of events) is
fundamentally different from that of conventional cameras; hence, mature computer
vision algorithms cannot be simply adapted, and new, event-driven algorithms must
be developed to exploit the full potential of this novel sensor.

More recently, hybrid vision sensors that combine the benefits of conventional and
event-based cameras have been developed, such as the Dynamic and Active-pixel
VIsion Sensor (DAVIS) [19]. The DAVIS implements a standard grayscale camera and
an event-based sensor in the same pixel array. Hence, the output consists of a stream of
asynchronous high-rate (up to 1 MHz) events together with a stream of synchronous
grayscale frames acquired at a low rate (on demand and up to 24 Hz).

We present the first algorithm to detect features from the DAVIS frames and perform
event-driven high-temporal resolution tracking of these features in the blind time
between two frames. The key challenge consists of designing an algorithm that best
takes into account the hybrid characteristics of the DAVIS output to solve the detection-
and-tracking problem (Fig. F.1). Since events are generated by changes of brightness
in the scenes, features are built based on large, spatial contrast variations (i.e., visual
edges), which are the source of most of the events generated by the sensor. An event-
based algorithm is further presented to track the features using an iterative, geometric

127

Appendix F. Event-based Feature Tracking

Figure F.1: Spatio-temporal view of the output of the DAVIS (frames and events) and the
trajectories of the tracked features (in different colors, one for each feature). In this example,
the scene consists of a rotating object. The motion in the blind time between consecutive frames
is accurately tracked using the stream of events; e.g., rotation is clearly visible in the spiral-like
trajectories of the event-based tracked features. To facilitate the visualization, only 10% of the
events is displayed.

registration approach.

The paper is organized as follows. Section F.2 reviews the related work on event-based
feature detection and tracking. Section F.3 describes the DAVIS sensor. Section F.4
describes the proposed detection and tracking algorithm. Section F.5 presents the exper-
imental results. Finally, section F.6 draws the conclusion and gives future perspectives.

F.2 Related Work

F.2.1 From Frame-based to Event-based Tracking

Feature detection and tracking methods for frame-based cameras are well-known [85,
30, 134]. The pixel intensities around a corner point are used as a template that is
compared frame-by-frame with the pixels around the estimated position of the corner
point. The photometric error is then used to update the parameters describing the
position and warping of the template in the current frame. These appearance-based
methods do not apply to event cameras; however, the approach of using a parametric
template model and updating its parameters according to data fitting still applies.

From a high-level point of view, two relevant questions regarding event-based tracking
are what to track and how to track. The first question refers to how are the objects of
interest modeled in terms of events so that object instances can be detected in the event
stream. The answer to this question is application dependent; the object of interest is

128

F.3. The Dynamic and Active-pixel VIsion Sensor

usually represented by a succinct parametric model in terms of shape primitives. The
second question, “how to track?”, then refers to how to update the parameters of the
model upon the arrival of data events (caused by relative motion or by noise). For a
system that answers the aforementioned questions, a third relevant question is “what
kind of object motions or distortions can be tracked?” The above-mentioned three questions
are key to understand existing tracking approaches.

F.2.2 Event-based Tracking Literature

Early event-based feature trackers were very simple and focused on demonstrating the
low-latency and low-processing requirements of event-driven vision systems, hence
they tracked moving objects as clustered blob-like sources of events [80, 79, 35, 34, 113]
or lines [31].

Accurate tracking of general shapes can be performed by continuously estimating the
warping between the model and the events. This has been addressed and demonstrated
for arbitrary user-defined shapes using event-based adaptions of the Iterative Closest
Point (ICP) algorithm [108], gradient descent [109], or Monte-Carlo methods [72]
(i.e., by matching events against a uniformly-sampled collection of rotated and scaled
versions of the template). Detection and tracking of locally-invariant features, such as
corners, directly from event streams has been addressed instead in [29].

Notice, however, that all above-mentioned papers were developed for event-only vision
sensors. In this paper, we build upon these previous works and present the first
algorithm to automatically detect features from the DAVIS frames and perform event-
driven high-temporal resolution tracking of these features in the blind time between
two frames.

F.3 The Dynamic and Active-pixel VIsion Sensor

The DAVIS [19] is a novel vision sensor combining a conventional frame-based camera
(active pixel sensor - APS) and a DVS in the same array of pixels. The global-shutter
frames provide absolute illumination on demand and up to 24 Hz, whereas the event
sensor responds asynchronously to pixel-level brightness changes, independently for
each pixel. More specifically, if I(t) is the illumination sensed at pixel (x, y) of the
DVS, an event is triggered if relative brightness change exceeds a global threshold:
|∆ ln I| := | ln I(t)− ln I(t− ∆t)| > C, where ∆t is the time since the last event was
triggered (at the same pixel). An event is a tuple e = (x, y, t, p) that conveys the spatio-
temporal coordinates (x, y, t) and sign (i.e., polarity p = ±1) of the brightness change.
Events are time-stamped with microsecond resolution and transmitted asynchronously
when they occur, with very low latency 15 µs. The DAVIS has a very high dynamic

129

Appendix F. Event-based Feature Tracking

(a) (b) (c) (d)

Figure F.2: Feature detection and tracking. (a) Frame with centers of detected features (green
crosses). (b) Edge map (black and white) and square patches defining the features (i.e, model
point sets, in red) (b)-(c) Zoomed views of the data point sets (i.e., events; blue circles) and
model point sets (red stars) of the features, shortly after initialization.

range (130 dB) compared with the 70 dB of high-quality, traditional image sensors. The
low latency, the high temporal resolution, and the very high dynamic range make the
DAVIS extremely advantageous for future robotic applications in uncontrolled natural
lighting, i.e., real-world scenarios.

A sample output of the DAVIS is shown in Fig. F.1. The spatial resolution of the DAVIS
is 240× 180 pixels. This is still limited compared to the spatial resolution of state-of-the-
art conventional cameras. Newer sensors, such as the color DAVIS (C-DAVIS) [75] will
have higher spatial resolution (640× 480 pixels), thus overcoming current limitations.

F.4 Feature Detection and Tracking with the DAVIS

Since events are generated by changes of brightness, this implies that only edges
are informative. Intersecting edges create corners, which are “features” that do not
suffer from the aperture problem and that have been proven to be optimally trackable
in frame-based approaches [134]. Therefore, event-based cameras also allow for the
perception of corners, as shown in [29]. We exploit these observations to extract and
describe features using the DAVIS frames, and then track them using the event stream,
as illustrated in Fig. F.2. Our method builds upon the customized shapes in [72] and
the update scheme in [108]. The technique comprises to main steps: feature detection
and tracking, as we detail in the next sections.

F.4.1 Feature Detection From Frames

The absolute brightness frames of the DAVIS are used to detect edges (e.g., Canny’s
method [23]) and corners (e.g., Harris detector [58]). Around the strongest corners,
we use the neighboring pixels of the Canny edge-map to define patches containing
the dominant source of events. We simplify the detection by converting the edge-map
patches to binary masks indicating the presence (1) or absence (0) of an edge. The

130

F.4. Feature Detection and Tracking with the DAVIS

Algorithm 1 High temporal resolution tracking

Feature detection:
- Detect corner points on the frame (Harris detector).
- Run Canny edge detector (returns a binary image, 1 if edge pixel; 0 otherwise).
- Extract local edge-map patches around corner points, and convert them into model
point sets.
Feature tracking:
- Initialize a data point set per patch
for each incoming event do

- Update the corresponding data point set.
for each corresponding data point set do

- Estimate the registration parameters between the
data and the model point sets.

- Update registration parameters of the model points.

binary masks define the interest shapes for tracking in terms of 2D point sets, called
“model point sets”. These steps are summarized at the beginning of Algorithm 1.

We use square patches of the same size, which is an adjustable parameter. However, it
is straightforward to extend the method to consider different aspect ratios and sizes.

Frames are not required to be provided at a constant rate since they are only used to
initialize features; they can be acquired on demand to replace features that are lost or
fall out of the field of view of the sensor.

F.4.2 Feature Tracking From the Event Stream

Extracted features are tracked using subsequent events from the DAVIS. The input to
the event-based tracking algorithm consists of multiple, local model point sets. The
second part of Algorithm 1 summarizes our tracking strategy.

Sets of Events used for Feature Registration

For every feature, we define a data point set of the same size as the model point set.
Therefore, the size can be different for every feature, depending on edge information.
Data point sets consist of local space-time subsets of the incoming events: an event
is inserted in a data point set if the event coordinates are inside the corresponding
patch. Once a data point set has been filled, registration of the point sets can be done.
Hence, a data point set defines the set of events that are relevant for the registration
of the associated feature. Registration is carried out by minimization of the distance
between the data and the model point sets, as explained next. Data point sets are
continuously updated: the newest event replaces the oldest one and the registration

131

Appendix F. Event-based Feature Tracking

iteration proceeds.

This procedure is event-based, i.e., the parameters of the tracked feature are updated
every time an incoming event is considered relevant for that feature. The algorithm
is asynchronous by design, and can process multiple features simultaneously. Several
strategies to assign an incoming event to one or more overlapping patches can be used,
in a way similar to [109]. We updated all models around the ambiguous event.

Registration

The data point set from the events, {pi}, is registered to the model point set (feature),
{mi}, by minimization of the Euclidean distance between the sets, and including outlier
rejection:

arg min
A

∑
(pi ,mi)∈Matches

‖A(pi)−mi‖2, (F.1)

where A is the registration transformation between the matched point sets. For simplic-
ity, we choose A within the class of Euclidean motions, but the method can be extended
to more complex transformations. We choose the iterative closest point algorithm
(ICP) [12] to minimize (F.1). Matches pi ↔ mi are established according to nearest
neighbor; a predefined distance of 2 pixels between the events in the data point set
and the model point set is used for outlier rejection. Each algorithm iteration has three
stages: first, candidate matches are established, then the geometric transformation
is estimated, and, finally, the transformation is applied to the model point set. The
operation proceeds until the error difference between two consecutive iterations is
below a certain threshold.

Fig. F.3a shows both the model and the data point sets. When a new event arrives,
the geometric transformation that defines the tracker is updated according to the
minimization of (F.1). The result is depicted in Fig. F.3b. By discounting the points
classified as outliers by the algorithm (in yellow), registration is accurate. Feature
trajectories are given by the positions of the features returned by the registration step.

Due to the high temporal resolution of the DAVIS, the transformation between con-
secutive events (in the same feature) is close to the identity (Fig. F.3b), and so, our
method yields good results even after a single iteration. In practice, it is more efficient
to compute the registration transformation every M events, e.g., of half the size of the
model point set.

132

F.5. Experiments

(a) Before registration (b) After registration

Figure F.3: A feature tracker, with the model point set (in red), the data point set (in blue).
Same color notation as in Figs. F.2c-F.2d. The black square represents the patch around the
model point set. (a) Before registration: the current event (in green) updates the data point set
and is used for registration of the point sets. (b) After registration: the events marked in yellow
are classified as outliers, and the registration parameters are updated, aligning the model and
data point sets.

F.5 Experiments

We present the tests performed to validate the algorithm and to study its performance
in different scenes with increasing level of complexity: a very large contrast (i.e., black
and white) scene, a piecewise constant scene (a cartoon), and a natural scene (the leaves
of a tree; see Fig. F.11). The first scene depicts a black star on a white background;
this scene has sharp transitions between the two intensity levels, showing clear edges
(Fig F.1) and well-localized features. The second scene consists of a cartoon image
with piecewise constant regions (Fig F.8a); intensity is concentrated in a few grayscale
levels and there are moderately abrupt transitions between them. The third scene is a
representative of a natural image, rich in texture and brightness changes of different
magnitudes (Fig. F.11a) coming from the leaves of a tree. The scene datasets show
dominant translational and rotational motions.

We used patches of 25× 25 pixels, which is approximately 1/10 of the image width.
This size was empirically found to be best for a broad class of scenes.

We measured the tracking error over time. The tracking error is computed against
ground truth, which was generated using a frame-based Lucas-Kanade tracker [85]
and linearly interpolating the feature motion in the time interval between frames. The
ground truth has sub-pixel accuracy. Features were detected in the first frame (t = 0)

133

Appendix F. Event-based Feature Tracking

and then tracked over the entire sequence using only events. In all scenes, the mean
tracking error is less than 2 pixels. Notice that in spite of the sequences being short,
they contain several million events.

F.5.1 Large-Contrast Scene (“Star”)

Translation

We moved a 10-point star sideways, back and forth, in front of the DAVIS. The algorithm
detected one feature every two edges of the star (so there are 20 corners). The mean
tracking error plot for all features is shown in Fig. F.4. As it can be observed in the
plot, there is a short pause after 1.5 s, marked with a constant error, before changing
direction. In this interval, there are virtually no events, and so, the feature tracks do not
move, waiting to observe new events in order to keep updating the features’ position
and orientation.

Figure F.4: Star (translation) dataset: feature tracking error of our event-based algorithm on
translational motion facing the star shown in Fig. F.1. The mean tracking error of all features
is marked in black. The blue bands around the mean indicate the ±1 standard-deviation
confidence interval. The overall mean error is 1.52 pixels.

High-Speed Rotation

Next, we made the 10-point star pattern rotate, accelerating from rest to 1.600 ◦/s (see
Fig. F.5) using a electro-mechanical device. Observe that, while the overall motion of
the star is a rotation approximately around the center of the image, features are much
smaller than the whole star and so they only “see” parts of the peaks, consisting of at
most two lines. Nevertheless, these very simple features are able to track the motion of
the scene very well.

Because of the offset of the features from the rotation center of about 65 pixels, the
features translate at high speeds (more than 1,800 pixels/s on the image plane). For
this dataset, ground truth was annotated since the frame-based solution failed: since
the star is rotating by up to two points (peaks) between frames, aliasing prevented from

134

F.5. Experiments

obtaining the correct motion. This speed at which there is frame-based aliasing is not a
problem for event-based tracking due to the microsecond temporal resolution of the
pixels. The orientation error of the features is shown in Fig. F.6. The mean orientation
error remains below 20◦ over more than two full revolutions, leading to a relative error
of 2.3 %. The feature tracks form spirals in image space-time, as shown in Fig. F.7. All
of the 20 features (one per vertex) of the 10-point star were accurately tracked during
the entire sequence.

Figure F.5: Star (rotation) dataset: angular speed of rotating star. With an approximately
constant acceleration (i.e., linear velocity profile), the angular speed reaches more than 1,600 ◦/s.

Figure F.6: Star (rotation) dataset: feature tracking error of our event-based algorithm on the
dataset shown in Fig. F.1. The mean tracking error of all features is marked in black. The blue
bands around the mean indicate the ±1 standard-deviation confidence interval. The overall
mean error is 6.3◦.

F.5.2 Cartoon Scene (“Lucky Luke”)

Fig. F.8 shows several snapshots of the tracked features on a sequence of the cartoon
scene. The dominant motion is a horizontal translation, back and forth. We observe
that 81 features well distributed in the object are correctly tracked throughout the event
stream. The tracking error is reported in Fig. F.9. As observed in the plot, there is a
short pause after 1 s (constant error), before changing the motion direction. A slight
increase of the error can be observed when the motion resumes. However, the mean
error in this part of the motion is less than 2 pixel and the overall mean error is small:
1.22 pixel. Tracking in this scene is very good due to two reasons: (i) most of the events

135

Appendix F. Event-based Feature Tracking

Figure F.7: Star (rotation) dataset: space-time locations of the features. Due to the rotation
of the star, the feature tracks form spirals. The spiral step gets smaller as the angular speed
increases, in this case, with constant acceleration.

(a) DAVIS frame for
initialization.

(b) Events (white over
black) and features
(solid colors) shortly
after initialization.

(c) Features during mo-
tion.

(d) Features during
motion, at a later time
than (c).

Figure F.8: Lucky Luke (cartoon) dataset. The DAVIS is moving sideways while viewing a natural
scene consisting of leaves (a). Individually tracked features (model point sets) are marked in
different colors in (b) to (d).

are located at the strong edges, which are captured by the features, and regions of
constant intensity do not generate events. (ii) there are more than two edges per feature,
and with a complex shape (edges in several directions) that make them distinctive for
alignment. The tracked features in image space-time are shown in Fig. F.10.

F.5.3 Natural Scene (“Leaves”)

In natural scenes (Fig. F.11a), edges can have all sort of different magnitudes, but our
features still track the most dominant ones. In this experiment, we moved the DAVIS
in front of a natural scene containing both edges (mostly at leave borders) and smooth
intensity variations (within the leaves). The motion was oscillatory and predominantly
translational (Fig. F.11). Fig. F.12 shows the feature position error; the mean error is

136

F.5. Experiments

Figure F.9: Lucky Luke dataset: feature tracking error of our event-based algorithm. The mean
tracking error of all features is marked in black. The blue bands around the mean indicate the
±1 standard-deviation confidence interval. The overall mean error is 1.22 pixels.

Figure F.10: Lucky Luke dataset: space-time view in the image plane of the tracked features’
trajectories. The sideways motion is clearly visible in the feature trajectories.

1.48 pixels.

Feature tracks in image space-time are shown in Fig. F.13. Fewer features are tracked
compared to the simpler scenes (large contrast and cartoon) because of two reasons:
(i) the detected features are based on a binary edge-map of the scene (resulted from
the Canny detector), but such binary map is an exact representation of the underlying
grayscale scene only if the contrast is sufficiently large. (ii) we do not model many of
the non-linearities of the DAVIS, such as non-white noise and other dynamic properties,
which have a larger effect on natural scenes than in simpler ones because events are
triggered all over the patches. Notwithstanding, for some robotics applications there
is no need to track many features; for example, in perspective-N-point problems) it is
sufficient to track as few as three features [68].

137

Appendix F. Event-based Feature Tracking

(a) DAVIS frame for
initialization.

(b) Events (white over
black) and features
(solid colors) shortly
after initialization.

(c) Features during mo-
tion.

(d) Features during
motion, at a later time
than (c).

Figure F.11: Leaves dataset. The DAVIS is moving sideways while viewing a natural scene
consisting of leaves (a). Individually tracked features (model point sets) are marked in different
colors in (b) to (d).

Figure F.12: Leaves dataset: feature tracking error of our event-based algorithm. The mean
tracking error of all features is marked in black. The blue bands around the mean indicate the
±1 standard-deviation confidence interval. The overall mean error is 1.48 pixels.

Figure F.13: Leaves dataset: space-time view in the image plane of the tracked features’ trajecto-
ries. The oscillating motion of the DAVIS is correctly captured by the feature trajectories.

Notice that, overall, all the experiments show that our proposed and automatically-
detected features can be tracked for a considerable amount of time, much larger than

138

F.6. Conclusions

the time between consecutive frames. Hence, lost features (e.g., falling out of the field
of view) could be replaced by new ones that would be initialized using frames at a
much lower rate (e.g. 1 Hz) or on demand.

Our method has been tested with real data, with different types of motion, and the
results show accurate tracking (less than 2 pixels mean error). Better and more accurate
results could be obtained by incorporating the edge strength and the event generation
model.

F.6 Conclusions

We have developed a high-temporal tracking algorithm for hybrid sensors such as
the DAVIS. We used principled arguments of event data generation to justify our
choice of relevant features to track, and proposed a pipeline to extract those features
from the frames. Then we used an event-based tracking algorithm that exploits the
asynchronous and high temporal resolution of the event stream. In our method, features
are automatically and accurately initialized, and are adapted to the scene content, thus
overcoming the shortcomings of existing methods. We tested the algorithm on real
data from several sequences, and the results validate the approach.

Inspired by the achieved tracking accuracy, we intend to build a visual-odometry
pipeline on top of this event-based feature tracking method. Finally, the frames used in
our algorithm to initialize the features suffer from motion blur and limited dynamic
range, as in any standard camera. To overcome these limitations, we plan to investigate
methods to extract features directly from the event stream.

Acknowledgement

We thank Tobi Delbruck for providing the DAVIS240C and Beat Kueng for helping
with data recording.

139

G Sparse Visual Odometry with Fea-
ture Tracks

c©2016 IEEE. Reprinted, with permission, from:

B. Kueng, E. Mueggler, G. Gallego, and D. Scaramuzza. “Low-latency Visual Odometry
using Event-based Feature Tracks”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS).
Daejeon, Korea, Oct. 2016, pp. 16–23. doi: 10.1109/IROS.2016.7758089

141

http://dx.doi.org/10.1109/IROS.2016.7758089

Appendix G. Sparse Visual Odometry with Feature Tracks

Low-latency Visual Odometry using
Event-based Feature Tracks

Beat Kueng, Elias Mueggler, Guillermo Gallego and Davide Scaramuzza

Abstract — New vision sensors, such as the Dynamic and Active-
pixel Vision sensor (DAVIS), incorporate a conventional camera and
an event-based sensor in the same pixel array. These sensors have
great potential for robotics because they allow us to combine the ben-
efits of conventional cameras with those of event-based sensors: low
latency, high temporal resolution, and high dynamic range. However,
new algorithms are required to exploit the sensor characteristics and
cope with its unconventional output, which consists of a stream of
asynchronous brightness changes (called “events”) and synchronous
grayscale frames. In this paper, we present a low-latency visual
odometry algorithm for the DAVIS sensor using event-based feature
tracks. Features are first detected in the grayscale frames and then
tracked asynchronously using the stream of events. The features are
then fed to an event-based visual odometry algorithm that tightly
interleaves robust pose optimization and probabilistic mapping. We
show that our method successfully tracks the 6-DOF motion of the
sensor in natural scenes. This is the first work on event-based visual
odometry with the DAVIS sensor using feature tracks.

G.1 Introduction

Vision systems for robotics are currently dominated by methods designed for con-
ventional, frame-based cameras, which acquire entire images of the scene at fixed
rates.

Recently, bio-inspired silicon retinas [77, 116] have been developed to overcome some of
the limitations of frame-based cameras. These sensors constitute a paradigm shift since

142

G.1. Introduction

Figure G.1: Space-time view in the image plane of the tracked features’ trajectories used for
visual odometry. Features are tracked using the events produced by the DAVIS during arbitrary
motion in a scene with natural textures. This example shows a back-and-forth dominant
translation with a short pause in the middle. Events are not displayed to avoid cluttering. A
sample of the events produced by the DAVIS in visual odometry applications is shown in
Fig. G.2

they operate asynchronously, transmitting only the information conveyed by brightness
changes in the scene (“events”), at the time they occur with microsecond resolution.
Event-driven algorithms have been developed to provide initial solutions to some
robotics problems such as pose tracking [102, 101], visual odometry [26], Simultaneous
Localization and Mapping (SLAM) [145, 144]. However, some of these approaches used
additional sensors, such as depth sensors [26, 144], or were developed for high-contrast
scenes [102, 101, 26].

The Dynamic and Active-pixel Vision Sensor (DAVIS) [19] has been introduced very
recently (2014). It is an integrated sensor comprising a conventional frame-based camera
and an asynchronous event sensor. This novel hybrid sensor calls for new methods that
exploit the combined advantages of event and frame sensors to yield better solutions for
robotics problems than those provided by each sensor individually. Such new methods
must address the challenges that this sensor poses: it has a complicated analog circuitry,
with non-linearities and multiple biases that can change the sensitivity of the pixels,
and other dynamic properties, which unfortunately make the frames and events highly
susceptible to noise.

Contribution In this paper, we present a low-latency visual odometry algorithm for
the DAVIS sensor using event-based feature tracks. We make use of both the frames
and the events provided by the sensor. More specifically, we achieve visual odometry
using the geometric information conveyed by edge-like features that are adapted to the
DAVIS characteristics and represent natural brightness patterns in the scene. Features
are first detected using the frames and then tracked asynchronously using the events
(see Fig. G.1). Next, they are fed to an event-based visual odometry (VO) algorithm that
computes a local probabilistic 3D map of the scene and tracks the 6 degree-of-freedom

143

Appendix G. Sparse Visual Odometry with Feature Tracks

(DOF) pose of the sensor by robust reprojection error minimization. Pose updates are
event-based, thus preserving the asynchronous and low-latency nature of the event
data.

Outline The remainder of the paper is organized as follows. Section G.2 describes
the sensor used. Section G.3 reviews related literature on event-based feature tracking
and event-driven motion estimation methods. Our approaches to feature tracking (2D)
and visual odometry (3D) are described in Sections G.4 and G.5, respectively, and they
are empirically evaluated in Section G.6. Conclusions are highlighted in Section G.7.

G.2 The Dynamic and Active-pixel Vision Sensor

The first event-based sensor, called the Dynamic Vision Sensor (DVS) [77], became
commercially available in 2008. The DAVIS [19] is a novel vision sensor combining a
conventional frame-based camera and a DVS in the same array of pixels. The global-
shutter frames provide absolute illumination on demand, whereas the event sensor
responds asynchronously to pixel-level brightness changes, independently for each
pixel. If I(t) is the illumination sensed at pixel (x, y), an event is triggered if the
relative brightness change exceeds a global threshold. More specifically, an event is a
tuple e = (x, y, t, p) that conveys the spatio-temporal coordinates (x, y, t) and sign (i.e.,
polarity p = ±1) of the brightness change. Events are time-stamped with microsecond
resolution and transmitted asynchronously when they occur and with very low latency
(microseconds). The DAVIS has a very high dynamic range (130 dB) compared with
the 70 dB of high-quality, traditional image sensors. The low latency, the high temporal
resolution, and the very high dynamic range make the DAVIS extremely advantageous
for future robotic applications.

A visualization of the DAVIS output is shown in Fig. G.2. The spatial resolution of
the DAVIS is 240× 180 pixels. This is still small compared to the spatial resolution of
state-of-the-art conventional cameras. Newer sensors, such as the color DAVIS [75] will
have higher spatial resolution (640× 480 pixels), thus overcoming current limitations.

Optically, the lenses mounted on the DAVIS are the same as those mounted on conven-
tional cameras. Having the grayscale and DVS pixels perfectly aligned in the DAVIS
simplifies camera calibration, an essential stage in robotics applications. State-of-the-art
algorithms for conventional cameras can be applied on the frames alone to calibrate
the sensor.

144

G.3. Related Work

Figure G.2: Typical output of the DAVIS in a visual odometry scenario: as the sensor moves
through the scene, it acquires both frames (at low frame rates) and events (asynchronously
and fast). Thousands of events are triggered in the time between two frames since, due to the
sensor’s motion, intensity changes occur at all pixels.

G.3 Related Work

We first review the related works on event-based feature tracking and then on event-
based motion estimation.

G.3.1 Event-based Feature Detection and Tracking

Feature detection and tracking methods for frame-based cameras are well established.
However, they cannot track in the blind time between consecutive frames, and are
expensive because they process information from all pixels, even in the absence of
motion in the scene. Conversely, event-based cameras acquire only relevant informa-
tion for tracking and respond asynchronously, thus, filling the blind time between
consecutive frames. Event-based cameras are particularly suitable for applications in
motion analysis and high-speed control [35].

Early event-based feature trackers were very simple and focused on demonstrating
the low-latency and low-processing requirements of event-driven systems, hence they
tracked moving objects as clustered blob-like sources of events [80, 35]. The high-speed
advantage of event cameras was also shown in [31] for a pencil-balancing robot. Track-
ing of the pencil was performed using a fast event-based Hough transform. Tracking
of large contrast polygonal shapes was demonstrated in [108], where an event-based
Iterative Closest Point (ICP) algorithm was able to track a black polygonal microgripper
on a white background. The method allows for planar rigid-body transformations of
the target shape and uses a nearest-neighbor strategy to match incoming events to the
target shape. Tracking of complex shapes has been recently presented in [109] for the
ATIS sensor [116]. The method continuously estimates the geometric transformation
between the model and the events representing the object using a gradient descent
update. It can handle isometries and mild affine distortions. Tracking the translations

145

Appendix G. Sparse Visual Odometry with Feature Tracks

of arbitrary user-defined shapes (“kernels”) has also been presented in [72]. Rotational
and scaling distortions of a kernel are partially addressed by comparing the events
against a collection of rotated and scaled kernels.

All previous methods require a priori knowledge or user input to determine the objects
to track. The method in [29] does not detect and track user-defined objects but lower-
level primitives, such as corner events defined by the intersection of two moving edges,
which are obtained by fitting planes in the space-time stream of events.

The method of [81] uses both the events and frames to detect and track objects. The
events are used to track clusters and generate regions of interest, while the frames serve
for foreground-background separation using Convolutional Neural Networks (CNN).
Since this classification is only applied to the regions of interest, a speedup factor of 70
is reported. The method requires training data and is only suitable for tracking few,
large objects in the scene. For visual odometry, we are rather interested in tracking
many local features whose position can be precisely determined.

Recently, we presented a hybrid method for feature detection and tracking for the
DAVIS [138]. The method first detects and extracts features in the frames and then
tracks them using only the events. In the present paper, we improve [138] by (i) taking
into account the observation that nearby pixels typically observe events at roughly
the same time and (ii) introducing a tracking refinement step that works on a slower
timescale to avoid drift. Furthermore, we improve the tracking speed and add dynamic
reinitialization of new features (e.g., in new areas of the scene or when features are
lost).

G.3.2 Event-based Motion Estimation

Event-based cameras have been used for robotics applications such as ego-motion
estimation and visual odometry. One of the first works in this area is [145], where
an event-based particle filter was used for robot self-localization. The VO system was
limited to planar motion, 2D reference maps with very high contrast, and known scene
depth. In the experiments, they used an upward-looking DVS mounted on a ground
robot moving at low speed. The method was extended in [144] to a 3D SLAM system
that requires an RGB-D sensor operating in parallel with the DVS.

In our previous work [26], an RGB-D camera was attached to the DVS to estimate the
relative displacement between the current event and the previous frame of the camera.
However, the system was developed for planar 3-DOF motions and for scenes with
very high contrast.

In another work, we presented an event-based algorithm to track the 6-DOF pose of the
DVS during high-speed motions in a known environment [102]. However, the method

146

G.4. Feature Detection and Tracking with the DAVIS

Visual

Odometry

Feature

Tracking

Optimize pose

Map 3D points

Track features

Detect featuresFrames

Events

Camera pose

Figure G.3: Visual Odometry system: we track features using events and frames, and then
recover the 3D structure of the scene and the DAVIS’ pose.

was meant for artificial, B&W line-based maps; indeed, the system estimated the pose
through minimizing the point-to-line reprojection error.

Tracking the 3D orientation of the DVS and simultaneously using the event stream to
generate high-resolution panorama images of natural scenes was presented in [66, 32].
However, the system was restricted to rotational motions, and, thus, did not account
for translation or depth.

None of the previous event-based motion estimation methods is based on tracking
complex, natural features in the event stream. This is the approach that we develop in
this work, as we show next.

G.4 Feature Detection and Tracking with the DAVIS

The overall system workflow is shown in Fig. G.3. The feature tracking module builds
upon our previous work [138], which exploits the absolute brightness information
provided by the frames to detect and extract features that are tracked using the event
data, as illustrated in Fig. G.4. To make this paper self-contained, we summarize the
two main steps, feature detection and tracking, in the next two subsections and propose
improvements in Section G.4.3.

G.4.1 Feature Detection using the Frames

Since large contrast edges of moving parts of the scene trigger events more often than
low-textured regions, we focus on this dominant information to devise suitable features
to track. Moreover, we track only distinctive edge patterns that do not suffer from the
aperture problem. Hence, we use the absolute brightness frames of the DAVIS to detect

147

Appendix G. Sparse Visual Odometry with Feature Tracks

(a) (b) (c)

Figure G.4: Feature detection and tracking. (a) Frame with centers of detected features (green
crosses). (b) (1st zoom) edge map and square patches defining the features (in purple). (c) (2nd
zoom) point sets used for feature tracking: model point set (in purple) and data point set (in
blue).

Algorithm 2 High temporal resolution tracking

Feature detection:
- Detect corner points on the frame (Harris detector).
- Run Canny edge detector (returns a binary image, 1 if edge pixel, 0 otherwise).
- Extract local edge-map patches around corner points, and convert them into model
point sets.
Feature tracking:
- Initialize the data point set and 2D histograms per patch.
for each incoming event do

- Update the corresponding data point set and histograms
for each corresponding data point set do

- Estimate the registration parameters between the
data and the model point sets (weighted ICP).

- Update registration parameters of the model points.
Every M2 events, compare spatial histograms, compute and apply the best shift to

mitigate drift.

both edges (Canny’s method [23]) and corners (Harris detector [58]). Around the most
salient and best distributed corners in the frame (Fig. G.4a), we use the edge pixels to
define patches that mark the locations of the dominant sources of events (Fig. G.4b).
The patches are converted into binary masks that indicate the presence (1) or absence
(0) of an edge. These patches resemble the customized kernels in [72]. The binary
masks define the target shapes to be tracked as 2D point sets, called “model point sets”
(Fig. G.4c). These steps are summarized in the first part of Algorithm 2.

All patches are square and have the same size (Fig. G.4b), which is an adjustable
parameter, but it is straightforward to extend the method to consider different patch
sizes.

Our method does not require frames to be provided at a constant rate since they are

148

G.4. Feature Detection and Tracking with the DAVIS

only used to initialize features. Frames can be acquired on demand to replace lost
features.

G.4.2 Feature Tracking using the Events

Detected features are tracked using the event stream. The input to the event-based
tracking algorithm consists of multiple, local model point sets. The tracking strategy is
summarized in the second part of Algorithm 2.

Sets of Active Events

For every feature i, we define a data point set of the same size Ni
p as the model point

set. Data point sets consist of subsets of the incoming events: an event is inserted in the
i-th data point set if its coordinates are inside the i-th patch. A data point set defines
the active set of events that are relevant for the registration of the corresponding feature
(Fig. G.4c). Data point sets are continuously updated: every incoming event replaces
the oldest one in the set, and then the registration iteration proceeds. This strategy is
event-based, which means that the registration parameters of the tracked feature are
updated every time an incoming event is considered relevant for the feature under
consideration. The algorithm is asynchronous by design and it can process multiple
features simultaneously.

Registration

Registration is carried out by minimization of a weighted distance between the model
(feature) and the data point sets (events), mi and pi, respectively:

arg min
R,t

= ∑
(pi ,mi)∈Matches

bi ‖Rpi + t−mi‖2, (G.1)

where a Euclidean transformation (R, t) is assumed (this is enough since the features
do not significantly deform in the time between events), and the weights bi take into
account outlier rejection and simultaneous events due to edge structure (Section G.4.3).
The algorithm that minimizes (G.1) is a variation of the Iterative Closest Point (ICP)
algorithm [12]. It yields the tracking update rule and is directly linked to our choice of
feature representation. Each iteration of the algorithm has three stages: first, candidate
matches are established, then the geometric transformation is estimated, and, finally,
the transformation is applied to the model point set. The operation proceeds until
the error difference between two consecutive iterations is below a certain threshold.
Matches are established according to the minimum distance criterion, and those above
a certain threshold are discarded; hence the method can handle outlier events, as those
produced by noise.

149

Appendix G. Sparse Visual Odometry with Feature Tracks

Due to the high temporal resolution of the DAVIS, the transformation between consec-
utive events (in the same feature) is close to the identity and, therefore, our method
yields good results even after a single iteration.

G.4.3 Tracking Improvements

Moving edges produce simultaneous events at neighboring locations

Tracking accuracy is improved by incorporating in the registration criterion the fact
that our features are based on edges, which are not isolated points but form connected
structures that normally trigger events in neighboring locations at roughly the same
time. We do so by using weights bi in (G.1) proportional to the number of events, out
of the last Ni

p/4 of them, that fall in the 3× 3 pixel neighborhood of the current event.

Tracking refinement based on local 2D histograms of events

We supplement weighted ICP with local 2D histograms designed to improve long-term
tracking. Events are accumulated into patch-size histograms over longer times than
those used in ICP, which makes them more robust to noise than the point sets. There
are two histograms per feature: H1 over the first M1 events and a moving histogram
H2 over the last M2 events. For well-tracked and rotation-compensated features, both
histograms look almost identical, thus effectively filtering out noisy events. Otherwise,
feature drift is detected as a shift of H2 with respect to H1. Every M2 events, histograms
are compared in search for shifts s = (ox, oy)> in the range ±3 pixels in each dimension.
The comparison metric is histogram intersection, given by the sum of the minimum of
the two histogram values:

d(H1, H2, s) = ∑
x

min(H1(x), H2(x + s)), (G.2)

where x = (x, y)> iterates over the patch domain. The shift s with the largest intersec-
tion is applied to the feature, if it is larger than a given threshold. Histogram lengths
pose a trade-off: the larger they are, the more event noise is filtered; however, this de-
creases the reaction speed of the algorithm and it can also yield blurred histograms for
fast drifting features. The histogram lengths M1 and M2 are multiples of the patch size
N; a good choice for M2 is 5N, while M1 is set larger than M2 to ensure a good initial
histogram. Figure G.5 shows a sequence of histograms with M2 = 5N. The benefit of
this technique on tracking and visual odometry is demonstrated in Section G.6.1.

150

G.5. Visual Odometry

Figure G.5: From left to right: histogram H1 (initial) and three instances of histogram H2 as
new events arrive.

G.5 Visual Odometry

The proposed visual odometry (VO) algorithm in Fig. G.3 uses the 2D geometric
information provided by the feature tracks to estimate the 3D structure of the scene
and the location of the DAVIS. These two operations (localization and mapping) are
performed in a tightly interleaved manner. We use depth-filters [50] to estimate the
scene structure in a Bayesian way, and since we track in the order of one hundred
features, the resulting probabilistic map is a sparse representation of the scene. The
camera motion is tracked by minimization of a weighted reprojection error using the
Gauss-Newton method, which is very fast since the motion between two events is
almost zero. Both operations are adapted from the Semi-direct Visual Odometry (SVO)
algorithm [50].

G.5.1 3D Mapping using Depth Filters

During mapping, we estimate the depth of 2D features for which the corresponding 3D
point is not yet known. The depth estimate of a feature is modeled with a probability
distribution that is updated in a Bayesian framework (see Fig. G.6) [50]. This is known
as a depth-filter. When a depth-filter has converged, that is, when the variance of
the distribution becomes small enough, a new 3D point is inserted in the map at the
converged depth and it is immediately used for pose tracking.

More specifically, depth-filters are initialized with a high uncertainty and set to the
mean depth of the scene. Feature tracks provide depth measurements that are processed
by the filter. Each measurement d̃k

i (k-th observation of the i-th feature) is obtained by
triangulation of the current feature location and its first detection, using the relative
camera pose Tr,k (see Fig. G.6). d̃k

i is modeled using a Gaussian + Uniform mixture [143]:
good measurements are normally distributed around the true depth di, with variance
τ2

i , while outliers are uniformly distributed in the known range [dmin
i , dmax

i],

p(d̃k
i |di, ρi) = ρiN (d̃k

i |di, τ2
i) + (1− ρi)U (d̃k

i |dmin
i , dmax

i),

151

Appendix G. Sparse Visual Odometry with Feature Tracks

Tr,k

tr

tk

d̂i

u′i
ui

d̃ki

dmin
i

dmax
i

Figure G.6: Depth-filter update for a new measurement d̃k
i , at current time tk, of a feature

that was extracted at reference time tr. Over time the uncertain distribution (cyan) becomes
narrower for an inlier (green). Image courtesy of [50].

p3

u3
tk−1

tk

u′3

p2

p1

u′1
u′2

u1

u2

Tk−1
Tk

Figure G.7: The Gauss-Newton optimizer finds the new pose Tk at time tk from 2D-3D feature
correspondences ui ↔ pi and the initial guess Tk−1. Image courtesy of [50].

where ρi is the inlier probability. Well-tracked features are those with ρi close to 1.
Further details on the filter update equations can be found in [143], however, note that
we use inverse depth coordinates, as in [50].

G.5.2 Pose Tracking by Reprojection Error Minimization

Given a sparse map of the scene, we obtain the current camera pose Tk by minimizing
the reprojection error:

Tk = arg min
T

1
2 ∑

i
wi‖ui − π(T, pi)‖2, (G.3)

where ui and pi are the 2D and 3D positions of the i-th feature, as illustrated in Fig. G.7,
wi are weights, and π projects 3D world points into the camera frame. This is solved
iteratively with the Gauss-Newton method. For robustness against outliers, we use

152

G.6. Experiments

the bell-shaped Tukey weight function

wi =

(

1− x2

b2

)2
|x| ≤ |b|,

0 otherwise,
(G.4)

with x = ‖ui − π(T, pi)‖ and b = 5 (pixels). Additionally we have found that by
multiplying wi by the inlier probability ρi and the normalized feature age (the number
of events that fall into the patch), the results are significantly better. Features that are
well-tracked over a long time are given the highest weight, while features that lose
track are usually removed due to a large reprojection error.

G.5.3 Bootstrapping

Pose optimization relies on the availability of a map, and mapping relies on the avail-
ability of pose information. But neither of them are available at the beginning, hence
we need to provide an initial map and pose estimate. We use two-view bootstrapping
with a minimum mean disparity between the features. The relative camera pose is
calculated from 2D point correspondences with the five-point algorithm for the es-
sential matrix [110] and RANSAC [48]. This requires an initial camera motion with a
translational component.

G.6 Experiments

We evaluated the performance of the event-based VO system on several scenes with
natural textures, rich in brightness changes of different magnitudes (e.g., Fig. G.8).
The resulting camera trajectory is compared against those acquired by a motion-
capture system and a frame-based VO algorithm based on the state of the art [50]. No
constraints were placed on the sensor’s motion: the DAVIS was freely moved by hand
through the scene.

G.6.1 Feature Tracking

A space-time visualization of the trajectories described by the tracked features in the
image plane is displayed in Fig. G.1. Qualitatively, it shows that the tracked features’
trajectories have a coherent motion.

We evaluate our event-based feature tracker on two different scenes: a checkerboard-like
scene (because it offers well-localized features) and a natural scene (with less localized
features, Fig. G.8). The results are reported in Fig. G.9 and Fig. G.10, respectively,
in terms of tracking error vs. time. The tracking error is computed against ground
truth. Ground truth was generated using a frame-based Lucas-Kanade tracker [85] and

153

Appendix G. Sparse Visual Odometry with Feature Tracks

Figure G.8: Sample output of the DAVIS: frame with overlaid events, colored according to
polarity (positive in green, negative in red), from a 0.5 ms interval.

linearly interpolating the feature motion in the time interval between frames. Features
were detected in the first frame (t = 0) and then tracked over the entire sequence
using only events. In the checkerboard-like scene (Fig. G.9), the mean tracking error is
1.5 pixels. In the natural scene (Fig. G.8), the tracking accuracy gracefully degrades,
yielding a mean tracking error of 2.5 pixels. This degradation results from two causes:
(i) we do not model many of the non-linearities of the DAVIS, such as non-white
noise and other dynamic properties; (ii) the detected features are based on a binary
edge-map of the scene (resulted from the Canny detector), but such binary map is an
exact representation of the underlying grayscale scene only if the contrast is very large.
In natural scenes, edges can have all sort of different magnitudes, but our features
still track the most dominant ones. We used patches of 19× 19 pixels, which were
experimentally proven to be best for a broad class of scenes.

The positive effect of the feature refinement technique described in Section G.4.3 is
shown in Fig. G.11. Feature refinement increases the duration of the feature tracks
(called “feature age”). This has also a positive effect on the performance of the VO
algorithm since points that are tracked for longer times imply higher VO accuracy.

0 1 2 3 4 5 6 7 8

Time [s]

0
2
4
6
8

10

E
rr
o
r
[P
ix
e
ls
]

Figure G.9: Feature tracking error of our
event-based algorithm on the checkerboard-
like scene. The mean tracking error of all
features is marked in black. The blue bands
around the mean indicate the ±1 standard-
deviation confidence interval. The overall
mean error (in black) is 1.5 pixels.

0 1 2 3 4 5 6

Time [s]

0
2
4
6
8

10

E
rr
o
r
[P
ix
e
ls
]

Figure G.10: Feature tracking error of our
event-based algorithm on the natural scene
in Fig. G.8. The mean tracking error of all
features is marked in black. The blue bands
around the mean indicate the ±1 standard-
deviation confidence interval. The overall
mean error (in black) is 2.5 pixels.

154

G.6. Experiments

Without
Refinement

With
Refinement

0

1

2

3

4

5

6

Fe
at
u
re

A
ge

[s
]

Figure G.11: Long-term tracking improves by using local spatial histograms of events. With
them, the “feature age” distribution shifts toward higher values; e.g., the median increases from
1.0 s to 1.5 s.

G.6.2 Visual Odometry

The VO system tracks a constant number of features (120) that are chosen to be well
distributed in the image plane by means of a grid/binning strategy. Using fewer than
100 features does not yield good results. New features are initialized when features are
lost or leave the field of view (FOV) of the DAVIS.

Figs. G.12 and G.13 show the VO results on two sequences. The figures show the
trajectory produced by our VO algorithm, the ground truth (motion-capture system),
and the trajectory produced by a frame-based solution, as well as the corresponding
errors in position and orientation (with respect to ground truth). The position error
is given by the Euclidean distance between camera locations. The orientation error is
given by the angle of the relative rotation between camera reference frames, which is
the geodesic distance in SO(3) [62]. In Experiment 1 (Fig. G.12), the average position
errors of our method and the frame-based one are 16 and 6 mm, respectively. Since
the mean scene depth is 40 cm, this corresponds to relative errors of 4.0 % and 1.5 %,
respectively. In Experiment 2 (Fig. G.13), these errors are 30 and 11 mm (7.5 % and 2.8 %
of the mean scene depth), respectively. Overall, the quality of the estimate produced
by our event-based algorithm is comparable to that of the frame-based solution, but
provides low-latency pose updates since it preserves the event-based nature of the data.
These results are very promising and represent a first step towards a fully integrated
frame-plus-events feature tracking and VO solution with this novel sensor in natural
scenes and in 6-DOF motions, which are challenging conditions that have not been
addressed in previous work.

G.6.3 Runtime Analysis

The runtime of event-based algorithms depends on the event rate, which itself depends
on several factors: the apparent speed of moving objects in the scene, the amount of
texture and edges, the sensor parameters (bias configuration), etc. Roughly speaking,

155

Appendix G. Sparse Visual Odometry with Feature Tracks

the DAVIS generates 105–106 events/s for normal motions. For faster motion, it is in
the order of a few millions. We tested the implementation on a laptop with Intel Core
i7-4710MQ CPU @ 2.50GHz with 8GB RAM. The C++ code runs completely single
threaded. Our algorithm is able to process 160 kevents/s on average. The performance
analysis is shown in Fig. G.14. Running ICP on every incoming event is excessive since
an event does not have a large influence. We experimentally found that running ICP
every N/3 events (N being the size of the point sets) speeds up the VO algorithm by a
factor of 6 while its accuracy is preserved. Running ICP only every N events increases
the error. In spite of this speed-up, a significant portion of the computational time
(58.5%, see Fig. G.14) is spent in an off-the-shelf ICP library [115] that can match point
sets in arbitrary dimensions. By using a customized implementation, runtime could be
improved.

G.7 Conclusion

We have developed a low-latency, event-based visual odometry algorithm adapted to the
characteristic of the DAVIS, a prototype sensor with great potential for robotics, which
combines a conventional camera and an event-based sensor in the same pixel array. Our
method extracts visual features in the frames and tracks them asynchronously using the
events. Features are designed to be trackable using only the events and are sufficiently
generic to be applicable to non-structured environments. We used two cooperative
techniques to achieve event-based tracking: a weighted point-set minimization for
short-term tracking and comparison of spatial histograms of events for long-term
tracking. Feature tracks were used to infer 3D quantities, using probabilistic depth-
filters for mapping and robust reprojection error minimization for pose tracking. We
demonstrated successful tracking and VO performance of a moving DAVIS in 6-DOF
and in scenes with natural textures, which are challenging conditions that have not
been previously addressed in the literature.

156

G.7. Conclusion

x [cm]
−8 −6 −4 −2 0 2 4 6 8

y [cm]

−2
0

2
4

6
8

10
12

14

z
[c
m
]

−4
−2
0
2
4
6
8
10
12

Estimate Event-based

Estimate Frame-based

Ground Truth

(a) 3D view of camera trajectories

0 2 4 6 8 10 12 14

Time [s]

0

10

20

30

40

P
o
si
ti
o
n
E
rr
o
r
[m

m
]

Event-based Frame-based

(b) Position error of the estimated trajectories
(event-based and frame-based) with respect to
ground truth. The mean scene depth is 40 cm.

0 2 4 6 8 10 12 14

Time [s]

2
4
6
8

10
12
14

O
ri
e
n
t.

e
rr
.
[d
e
g]

Event-based

Frame-based

(c) Orientation error of the estimated trajec-
tories (event-based and frame-based) with re-
spect to ground truth.

Figure G.12: VO Experiment 1. Comparison
of DAVIS trajectories estimated by our event-
based VO algorithm, a frame-based solution,
and ground truth (motion-capture system).

x [cm]

−6 −4 −2 0 2 4 6 8 10

y
[cm

]

−10
−8

−6
−4

−2
0

2
4

6
8

z
[c
m
]

0

20

Estimate Event-based

Estimate Frame-based

Ground Truth

(a) 3D view of camera trajectories

0 2 4 6 8 10 12

Time [s]

0
10
20
30
40
50
60

P
o
si
ti
o
n
E
rr
o
r
[m

m
]

Event-based Frame-based

(b) Position error of the estimated trajectories
(event-based and frame-based) with respect to
ground truth. The mean scene depth is 40 cm.

0 2 4 6 8 10 12

Time [s]

0

5

10

15

O
ri
e
n
t.

e
rr
.
[d
e
g] Event-based

Frame-based

(c) Orientation error of the estimated trajec-
tories (event-based and frame-based) with re-
spect to ground truth.

Figure G.13: VO Experiment 2. Comparison
of DAVIS trajectories estimated by our event-
based VO algorithm, a frame-based solution,
and ground truth (motion-capture system).

157

Appendix G. Sparse Visual Odometry with Feature Tracks

58.5%
ICP

28.8%

Nearest Neighbor

27.4%malloc + free

12.3%

Apply Transformation
9.0%

Calculate Weights

17.0%

New Event

4.3%

LK Tracking3.4%

Pose Optimizer

3.4%

Feature Extraction
13.4%

Rest

Figure G.14: Runtime analysis of the VO system in Fig. G.3, calling ICP every N/3 incoming
events. “New Event” checks whether a new event is within a patch and updates the target point
set accordingly. “LK Tracking” is not part of our algorithm and is only used for comparison.
Feature extraction and pose tracking are very efficient. Percentages within ICP are relative to
the aggregated cost (58.5%).

158

H Event-based Dense Tracking

This chapter is a reprint of the article currently under revision as:

G. Gallego, J. E. A. Lund, E. Mueggler, H. Rebecq, T. Delbruck, and D. Scaramuzza.
“Event-based, 6-DOF Camera Tracking for High-Speed Applications”. In: IEEE Trans.
Pattern Anal. Machine Intell. (2017). under review

159

Appendix H. Event-based Dense Tracking

Event-based, 6-DOF Camera Tracking for
High-Speed Applications

Guillermo Gallego, Jon E. A. Lund, Elias Mueggler, Henri Rebecq, Tobi

Delbruck and Davide Scaramuzza

Abstract — In contrast to standard cameras, which produce frames
at a fixed rate, event cameras respond asynchronously to pixel-level
brightness changes, thus enabling the design of new algorithms for
high-speed applications with latencies of microseconds. However,
this advantage comes at a cost: because the output is composed
by a sequence of events, traditional computer-vision algorithms
are not applicable, so that a new paradigm shift is needed. We
present an event-based approach for ego-motion estimation, which
provides pose updates upon the arrival of each event, thus virtually
eliminating latency. Our method is the first work addressing and
demonstrating event-based pose tracking in six degrees-of-freedom
(DOF) motions in realistic and natural scenes, and it is able to track
high-speed motions. The method is successfully evaluated in both in-
door and outdoor scenes with significant depth variation, and under
motions with excitations in all 6-DOFs.

H.1 Introduction

Event cameras [8, p.77], such as the Dynamic Vision Sensor (DVS [77]), are biologically
inspired sensors that overcome many limitations of traditional cameras: they respond
very fast (within microseconds) to brightness changes, have a very high dynamic range
(120 dB vs 60 dB of standard cameras), and require low power and bandwidth (20 mW
vs 1.5 W of standard cameras). Such advantages makes these sensors very attractive
for low-powered and/or high-speed applications. However, because they convey the
visual information in a radically different way than standard cameras (they do not

160

H.1. Introduction

12.9 13 13.1 13.2 13.3 13.4

−20
0

20

40

60

time [s]

or
ie

nt
at

io
n

[d
eg

] EB roll GT roll
EB pitch GT pitch
EB yaw GT yaw

Figure H.1: High-speed motion sequence. Top left: image from a standard camera, suffering
from blur due to high-speed motion. Top right: set of asynchronous DVS events in an interval
of 3 milliseconds, colored according to polarity. Bottom: estimated poses using our event-based
(EB) approach, which provides low latency and high temporal resolution updates. Ground
truth (GT) poses are also displayed.

provide grayscale values but only changes in intensity and the output is composed by
a sequence of asynchronous events rather than frames), computer-vision algorithms
that are conceived for conventional frame-based cameras do not work on event data.
Therefore, new methods must be developed to leverage the advantages of event-driven
vision [129].

Previous works on event cameras are still at an early stage of development since event
cameras have become commercially available only since 2008 [77]. How to exploit the
advantages of event cameras (i.e., high speed, low latency, and high dynamic range)
is still an open research problem. The challenges we address in this paper are two:
i) event-based 6-DOF pose tracking in natural scenes; ii) tracking the pose during
very fast motions, e.g., where standard cameras suffer from motion blur, as shown
in Figure H.1.

We present a novel probabilistic pose-tracking method for event-based vision sensors
in a known environment. It is based on Bayesian filtering theory with three key
contributions in the way that the events are processed: i) event-based pose update,

161

Appendix H. Event-based Dense Tracking

meaning that the 6-DOF pose estimate is updated every time an event is generated,
at microsecond time resolution, ii) the design of a sensor likelihood function using
a mixture model that takes into account both the event generation process and the
presence of noise and outliers (Section H.4.3), and iii) the approximation of the posterior
distribution of the system by a tractable distribution in the exponential family that is
obtained by minimizing the Kullback-Leibler divergence (Section H.4.4). The result is
a filter adapted to the asynchronous nature of the DVS, which also incorporates an
outlier detector that weighs measurements according to their confidence for improved
robustness of the pose estimation. The approximation of the posterior distribution
allows us to obtain a closed-form solution to the filter update equations and has the
benefit of being computationally efficient. Localization of the DVS is achieved with
respect to reference images (and their poses) of the scene. Our method can handle
arbitrary, 6-DOF, high-speed motions of the DVS in natural scenes.

The paper is organized as follows: Section H.2 reviews related literature on event-based
ego-motion estimation methods. Section H.3 describes the Dynamic Vision Sensor.
The probabilistic approach developed for DVS 6-DOF pose tracking is described in
Section H.4, and it is empirically evaluated on natural scenes in Section H.5. Conclusion
and future work are highlighted in Section H.6.

H.2 Related work on Event-based Ego-Motion Estimation

The first work on pose tracking with a DVS was presented in [145]. The system design,
however, was limited to slow planar motions (i.e., 3 DOF) and planar scenes parallel
to the plane of motion consisting of artificial B&W line patterns. The method was
extended to 3-D in [144] but relied on an external RGB-D sensor for depth estimation.
However, a depth sensor introduces the same bottlenecks that exist in standard frame-
based systems: depth measurements are outdated for very fast motions, and the depth
sensor is still susceptible to motion blur.

In our previous work [26], a standard grayscale camera was attached to a DVS to
estimate the small displacement between the current event and the previous frame of
the standard camera. The system was developed for planar motion and artificial B&W
striped background. This was due to the sensor likelihood being proportional to the
magnitude of the image gradient, thus favoring scenes where large brightness gradients
are the source of most of the event data. Because of the reliance on a standard camera,
the system was again susceptible to motion blur and therefore limited to slow motions.

An event-based algorithm to track the 6-DOF pose of a DVS alone and during very high-
speed motion was presented in [102]. However, the method was developed specifically
for artificial, B&W line-based maps. Indeed, the system worked by minimizing the
point-to-line reprojection error.

162

H.3. Event-based cameras. The Dynamic Vision Sensor (DVS)

(a) The Dynamic Vision Sensor (DVS). (b) Visualization of the output of a DVS
(event stream) while viewing a rotating
scene, which generates a spiral-like struc-
ture in space-time. Events are represented
by colored dots, from red (far in time)
to blue (close in time). Event polarity is
not displayed. Noise is visible by isolated
points.

Figure H.2: Event-based camera.

Estimation of the 3-D orientation of a DVS to generate high-resolution panoramas of
natural scenes was presented in [66]. However, the system was restricted to rotational
motions, and, thus, did not account for translation and depth.

Contrarily to all previous works, the approach we present in this paper tackles full
6-DOF motions, does not rely on external sensors, can handle arbitrary fast motions,
and is not restricted to specific texture or artificial scenes.

H.3 Event-based cameras. The Dynamic Vision Sensor (DVS)

Event-based vision constitutes a paradigm shift from conventional (e.g., frame-based)
vision. In standard cameras, pixels are acquired and transmitted simultaneously at
fixed rates; this is the case of both global-shutter or rolling-shutter sensors. Such
sensors provide little information about the scene in the “blind time” between consec-
utive images. Instead, event-based cameras such as the DVS [77] (Figure H.2a) have
independent pixels that respond asynchronously to relative contrast changes. If I(u, t)
is the intensity sensed at a pixel u = (x, y)> of the DVS, an event is generated if the
temporal visual contrast (in log scale) exceeds a nominal threshold Cth:

∆ ln I := ln I(u, t)− ln I(u, t− ∆t) ≷ Cth, (H.1)

where ∆t is the time since the last event was generated at the same pixel. Different
thresholds may be specified for the cases of contrast increase (C+

th) or decrease (C−th).
An event e = (x, y, t, p) conveys the spatio-temporal coordinates and sign (i.e., polarity)
of the brightness change, with p = +1 (ON-event: ∆ ln I > C+

th) or p = −1 (OFF-event:

163

Appendix H. Event-based Dense Tracking

∆ ln I < C−th). Events are time-stamped with microsecond resolution and transmitted
asynchronously when they occur, with very low latency. A sample output of the DVS
is shown in Figure H.2b. Another advantage of the DVS is its very high dynamic range
(120 dB), which notably exceeds the 60 dB of high-quality, conventional frame-based
cameras. This is a consequence of events triggering on log-intensity changes (H.1)
instead of absolute intensity. The spatial resolution of the DVS is 128× 128 pixels,
but newer sensors, such as the Dynamic and Active-pixel VIsion Sensor (DAVIS) [19],
and color DAVIS (C-DAVIS) [75] will have higher resolution (640× 480 pixels), thus
overcoming current limitations.

H.4 Probabilistic approach

Consider a DVS moving in a known static scene. The map of the scene is described
by a sparse set of reference images {Ir

l }Nr
l=1, poses {ξr

l}Nr
l=1, and depth map(s). Suppose

that an initial guess of the location of the DVS in the scene is also known. The problem
we face is that of exploiting the information conveyed by the event stream to track
the pose of the DVS in the scene. Our goal is to handle arbitrary 6-DOF, high-speed
motions of the DVS in realistic (i.e., natural) scenes.

We design a robust filter combining the principles of Bayesian estimation, posterior
approximation, and exponential family distributions with a sensor model that accounts
for outlier observations. In addition to tracking the kinematic state of the DVS, the filter
also estimates some sensor parameters automatically (e.g., event triggering threshold
Cth) that would otherwise be difficult to tune manually. 1

The outline of this section is as follows. First, the problem is formulated as a marginal-
ized posterior estimation problem in a Bayesian framework. Then, the motion model
and the measurement model (a robust likelihood function that can handle both good
events and outliers) are presented. Finally, the filter equations that update the pa-
rameters of an approximate distribution to the posterior probability distribution are
derived.

H.4.1 Bayesian Filtering

We model the problem as a time-evolving system whose state s consists of the kinematic
description of the DVS as well as sensor and inlier/outlier parameters. More specifically,

s = (ξc, ξi, ξ j, Cth, πm, σ2
m)
>, (H.2)

1Today’s event-based cameras, such as the DVS [77] or the DAVIS [19], have almost a dozen tuning
parameters that are neither independent nor linear.

164

H.4. Probabilistic approach

where ξc is the current pose of the DVS (at the time of the event, t in (H.1)), ξi and ξ j
are two poses along the DVS trajectory that are used to interpolate the pose of the last
event at the same pixel (time t− ∆t in (H.1)), Cth is the contrast threshold, and πm and
σ2

m are the inlier parameters of the sensor model, which is explained in Section H.4.3.

Let the state of the system at time tk be sk, and let the sequence of all past observations
(up to time tk) be o1:k, where ok is the current observation (i.e., the latest event).

Our knowledge of the system state is contained in the posterior probability distribution
p(sk|o1:k), also known as belief [139, p.27], which is the marginalized distribution of
the smoothing problem p(s1:k|o1:k). The Bayes filter recursively estimates the system
state from the observations in two steps: prediction and correction. The correction step
updates the posterior by:

p(sk|o1:k) ∝ p(ok|sk)p(sk|o1:k−1), (H.3)

where p(ok|sk) is the likelihood function (sensor model) and we used independence of
the events given the state. The prediction step, defined by

p(sk|o1:k−1) =
∫

p(sk|sk−1)p(sk−1|o1:k−1)dsk−1, (H.4)

incorporates the motion model p(sk|sk−1) from tk−1 to tk.

We incorporate in our state vector not only the current DVS ξk
c pose but also the other

relevant poses for contrast calculation (poses ξk
i , ξk

j in (H.2)), so that we may use the
filter to partially correct errors of already estimated poses. Past events that are affected
by the previous pose are not re-evaluated, but future events that reference back to such
time will have better previous-pose estimates.

To have a computationally feasible filter, we approximate the posterior (H.3) by a
tractable distribution with parameters ηk−1 that condense the history of events o1:k−1,

p(sk|o1:k) ≈ q(sk; ηk). (H.5)

Assuming a motion model with slowly varying zero-mean random diffusion, so that
most updates of the state are due to the events, the recursion on the approximate
posterior becomes, combining (H.3)-(H.5),

q(sk; ηk) ≈ C p(ok|sk)q(sk; ηk−1) (H.6)

for some normalizing constant C. The approximate posterior q is computed by min-
imization of the Kullback-Leibler (KL) divergence between both sides of (H.6). As
tractable distribution we choose one in the exponential family because they are very
flexible and have nice properties for sequential Bayes estimation. The KL minimization

165

Appendix H. Event-based Dense Tracking

gives the update equations for the parameters of the approximate posterior.

H.4.2 Motion model

The diffusion process leaves the state mean unchanged and propagates the covariance.
How much process noise is added to the evolving state is determined by the trace of the
covariance matrix (sum of the eigenvalues): each incoming event adds white noise to
the covariance diagonal, thus increasing its trace, up to some allowed maximum. This
works gracefully across many motion speeds. More specifically, we used a maximum
standard deviation of 0.03 for poses parametrized in normalized coordinates (with
translation in units relative to the mean scene depth), to factor out the metric scale in
the diffusion process.

H.4.3 Measurement Model

Here we elaborate on the choice of likelihood function p(ok|sk) in (H.6) that is used to
model the DVS events. Our contributions are, starting from an ideal sensor model, i)
to define a dimensionless implicit function based on the contrast residual to measure
how well the DVS pose and the a priori information (e.g., a map of the scene) explain
an event (Section H.4.3), and ii) to build upon such measurement function taking
into account noise and outliers, yielding a mixture model for the likelihood function
(Section H.4.3).

Ideal Sensor Model

In a noise-free scenario, an event is triggered as soon as the temporal contrast reaches
the threshold (H.1). Such a measurement would satisfy ∆ ln I − Cth = 0. For simplicity,
let us assume that the polarity has already been taken into account to select the
appropriate threshold C+

th > 0 or C−th < 0. Defining the measurement function

M :=
∆ ln I
Cth

− 1, (H.7)

the event-generation condition becomes M = 0 in a dimensionless formulation. Assum-
ing a prediction of the temporal contrast is generated using the system state, ∆ ln I(sk),
then (H.7) depends on both the system state and the observation, M(ok, sk). More
precisely, denoting by

s̃ = (ξc, ξi, ξ j, Cth)
>, (H.8)

166

H.4. Probabilistic approach

the part of the state (H.2) needed to compute (H.7), we have M(ok, s̃k). The likelihood
function that characterizes such an ideal sensor model is

p(ok|sk) = δ(M(ok, s̃k)), (H.9)

where δ is the Dirac delta distribution.

All deviations from ideal conditions can be collectively modeled by a noise term in the
likelihood function. Hence, a more realistic yet simple choice than (H.9) that is also
supported by the bell-shaped form of the threshold variations observed in the DVS [77]
is a Gaussian distribution,

p(ok|sk) = N (M(ok, s̃k); 0, σ2
m). (H.10)

Most previous works in the literature do not consider an implicit measurement func-
tion (H.7) or Gaussian model (H.10) based on the contrast residual. Instead, they use
explicit measurement functions that evaluate the goodness of fit of the event either
in the spatial domain (reprojection error) [145, 102] or in the temporal domain (event-
rate error), e.g., image reconstruction thread of [66], assuming Gaussian errors. Our
measurement function (H.7) is based on the event-generation process and combines in
a scalar quantity all the information contained in an event (space-time and polarity)
to provide a measure of its fit to a given state and a priori information. However,
models based on a single Gaussian distribution (H.10) are very susceptible to outliers.
Therefore, we opt for a mixture model to explicitly account for them, as explained next.

Resilient Sensor Model. Likelihood Function

Based on the empirical observation that there is a significant amount of outliers in the
event stream, we propose a likelihood function consisting of a normal-uniform mixture
model. This model is typical of robust sensor fusion problems [143], where the output
of the sensor is modeled as a distribution that mixes a good measurement (normal)
with a bad one (uniform):

p(ok|sk) =πmN (M(ok, s̃k); 0, σ2
m) (H.11)

+ (1− πm)U (M(ok, s̃k); Mmin, Mmax),

where πm is the inlier probability (and (1− πm) is the outlier probability). Inliers are
normally distributed around 0 with variance σ2

m. Outliers are uniformly distributed
over a known interval [Mmin, Mmax]. The measurement parameters σ2

m and πm are
considered unknown and are collected in the state vector sk to be estimated.

To evaluate M(ok, s̃k), we need to compute the contrast ∆ ln I(s̃k) in (H.7). We do so

167

Appendix H. Event-based Dense Tracking

�
�(t)

�
�(t��t)

�
�

�(t��t)
�(t)

Reference

Event camera

Z(t)

Z(t��t)

��

Figure H.3: Computation of the contrast (measurement function) by transferring events from
the DVS to a reference image. For each event, the predicted contrast (H.13), ∆ ln I, used in the
measurement function (H.7) is computed as the log-intensity difference (as in (H.1)) at two
points on the reference image Ir: the points (H.12) corresponding to the same pixel u on the
event camera, at times of the event (tk and tk − ∆t).

based on a known reference image Ir (and its pose) and both relevant DVS poses for
contrast calculation, as explained in Fig. H.3. Assuming the depth of the scene is
known, the point u′ in the reference image corresponding to the event location (u, t) in
the DVS satisfies the following equation (in calibrated camera coordinates):

u′(t) = π
(

TRC(t)π−1
(

u, Z(t)
))

, (H.12)

where TRC(t) is the transformation from the event camera frame at time t to the frame
of the reference image, Z(t) represents the scene structure (i.e., the depth of the map
point corresponding to u with respect to the event camera), π : R3 → R2, (X, Y, Z) 7→
(X/Z, Y/Z) is the canonical perspective projection, and π−1 is the inverse perspective
projection. The transformation TRC(tk) at the time of the current event depends on
the current estimate of the event camera pose ξc ≡ ξ(tk) in (H.8); the poses ξi ≡ ξ(ti)

and ξ j ≡ ξ(tj) along the event camera trajectory ξ(t) enclosing the past timestamp
tk − ∆t are used to interpolate the pose ξ(t − ∆t), which determines TRC(tk − ∆t).
For simplicity, separate linear interpolations for position and rotation parameters
(exponential coordinates) are used, although a Lie Group formulation with the SE(3)
exponential and logarithm maps (more computationally expensive) could be used.

Once the corresponding points of the event coordinates (u, tk) and (u, tk − ∆t) have
been computed, we use their intensity values on the reference image Ir to approximate
the contrast:

∆ ln I ≈ ln Ir(u′(tk))− ln Ir(u′(tk − ∆t)), (H.13)

where tk is the time of the current event and ∆t is the time since the last event at the

168

H.4. Probabilistic approach

same pixel. This approach is more accurate than linearizing ∆ ln I. We assume that for
a small pose change there is a relatively large number of events from different pixels. In
this case the information contribution of a new event to an old pose will be negligible,
and the new event will mostly contribute to the most recent pose.

Next, we linearize the measurement function in (H.11) around the expected state
s̄k = Ep(sk |o1:k−1)[sk], prior to incorporating the measurement correction:

M(ok, s̃k) ≈ M(ok, ¯̃sk) +∇s̃ M(ok, ¯̃sk) · (s̃k − ¯̃sk)

= M̄k + Jk · ∆s̃k, (H.14)

where M̄k and Jk are the predicted measurement and Jacobian at s̄k, respectively.
Substituting in (H.11) we get:

p(ok|sk) = πmN (M̄k + Jk · ∆s̃k; 0, σ2
m) + (1− πm)U . (H.15)

We assume that the linearization is a good approximation to the original measurement
function.

Finally, we may re-write the likelihood (H.15) in a more general and convenient form for
deriving the filter equations, as a sum of exponential families for the state parameters
sk (see the Appendix):

p(ok|sk) = ∑
j

h(sk) exp(ηo,j · T(sk)− Ao,j). (H.16)

H.4.4 Posterior Approximation and Filter Equations

Our third contribution pertains to the approximation of the posterior distribution using
a tractable distribution. For this, we consider variational inference theory [14], and
choose a distribution in the exponential family as well as conjugate priors, minimizing
the relative entropy error in representing the true posterior distribution with our
approximate distribution, as we explain next.

Exponential families of distributions are useful in Bayesian estimation because they
have conjugate priors [14]: if a given distribution is multiplied by a suitable prior, the
resulting posterior has the same form as the prior. Such a prior is called a conjugate
prior for the given distribution. The prior of a distribution in the exponential family is
also in the exponential family, which clearly simplifies recursion. A mixture distribution
like (H.16) does not, however, have a conjugate prior: the product of the likelihood
and a prior from the exponential family is not in the family. Instead, the number of
terms of the posterior doubles for each new measurement, making it unmanageable.
Nevertheless, for tractability and flexibility, we choose as conjugate prior a distribution

169

Appendix H. Event-based Dense Tracking

in the exponential family and approximate the product, in the sense of the Kullback-
Leibler (KL) divergence [71], by a distribution of the same form, as expressed by (H.6).
This choice of prior is optimal if either the uniform or the normal terms of the likelihood
dominates the mixture; we expect that small deviations from this still gives good
approximations.

Letting the KL divergence (or relative entropy) from a distribution f to a distribution g
be

DKL(f ‖g) =
∫

f (x) ln
f (x)
g(x)

dx, (H.17)

which measures the information loss in representing distribution f by means of g, the
posterior parameters ηk are calculated by minimization of the KL divergence from the
distribution on the right hand side of (H.6) to the approximating posterior (left hand
side of (H.6)):

ηk = arg min
η

DKL

(
C p(ok|sk)q(sk; ηk−1)‖q(sk; η)

)
.

It can be shown [14, p.505] that for g in the exponential family, the necessary optimality
condition ∇η DKL(f ‖g) = 0 gives the system of equations (in η)

E f (s)[T(s)] = Eg(s)[T(s)], (H.18)

i.e., the expected sufficient statistics must match. Additionally, the right hand side
of (H.18) is ∇A ≡ ∇η A = Eg(s)[T(s)] since g is in the exponential family. In our case,
g ≡ q(sk; η), f ∝ p(ok|sk)q(sk; ηk−1) and (H.18) can also be written in terms of the
parameters of (H.16) [(H.26)-(H.27) in the Appendix], the log-normalizer A and its
gradient:

0 =∑
j

exp
(

A(ηo,j + ηk−1)− A(ηk−1)− Ao,j)
)

×
(
∇A(ηo,j + ηk−1)−∇A(η)

)
. (H.19)

Equation (H.19) describes a system of equations that can be solved for η, yielding the
update formula for ηk in terms of ηk−1 and the current event ok. For a multivariate
Gaussian distribution over the DVS poses, explicit calculation of all update rules has
the simple form of an Extended Kalman Filter (EKF) [63, 139] weighted by the inlier

170

H.5. Experimental Results

Algorithm 3 Event-based pose tracking
Initialize state variables (DVS pose, contrast threshold, inlier ratio). Then, for each
incoming event:
- propagate state covariance (zero-mean random diffusion)
- transfer the event to the map, compute the depth and evaluate the measurement
function M function (H.14).
- compute Kk in (H.20), the inlier probability πm, the weight wk in (H.21), and the gain
wkKk.
- update filter variables and covariance (e.g., (H.22)-(H.23)).

probability of that event:

Kk = Pk J>k (JkPk J>k + σ2
m)
−1 (H.20)

wk =
πmN (M̄k; 0, σ2

m)

πmN (M̄k; 0, σ2
m) + (1− πm)U

(H.21)

ξk+1 = ξk + wkKk M̄k (H.22)

Pk+1 = (1− wkKk Jk)Pk, (H.23)

where 1 is the identity, M̄k and Jk are given in (H.14), ξ are the 6-DOF coordinates (3
for translation and 3 for rotation) of the DVS pose, P is the pose covariance matrix,
and wkKk acts as the Kalman gain. A pseudocode of the approach is outlined in
Algorithm 3.

The posterior approximation described in this section allows us to fuse the measure-
ments and update the state-vector efficiently, without keeping multiple hypothesis
in the style of particle filters, which would quickly become intractable due to the
dimension of the state-vector.

H.5 Experimental Results

For our pose estimation algorithm to work, it requires an existing photometric map
of the scene. As mentioned at the beginning of Section H.4, without loss of generality
we describe the map in terms of depth maps with associated reference frames. These
can be obtained from a previous mapping stage by means of an RGB-D camera or by
classical dense reconstruction approaches using standard cameras (e.g., DTAM [106] or
REMODE [114]), or even using a DVS (future research). In this work we use an Intel
Realsense R200 RGB-D camera. We show experiments with both nearly planar scenes
and scenes with large depth variations.

We evaluated the performance of our algorithm on several indoor and outdoor se-
quences. The datasets also contain fast motion with excitations in all six degrees of
freedom (DOF).

171

Appendix H. Event-based Dense Tracking

First, we assessed the accuracy of our method against ground truth obtained by a
motion-capture system. We placed the DVS in front of a scene consisting of rocks
(Fig. H.4) at a mean scene depth of 60 cm and recorded eight sequences. Fig. H.4 shows
the position and orientation errors (i.e., difference between the estimated ones and
ground truth)2 for one of the sequences, while Fig. H.9 shows the actual values of
the estimated trajectory and ground truth over time. Fig. H.5 summarizes the errors

0 2 4 6 8 10 12
time [s]

0

5

10

15

20

25
po

si
tio

n
er

ro
r

[%
]

X
Y
Z

0 2 4 6 8 10 12
time [s]

0

5

10

15

or
ie

nt
at

io
n

er
ro

r
[d

eg
] x

y

z

Figure H.4: Error plots in position (relative to a mean scene depth of 60 cm) and in orientation
(in degrees) for one of the test sequences with ground truth provided by a motion capture
system with sub-millimeter accuracy.

of the estimated trajectories for all sequences. The mean RMS errors in position and
orientation are 1.63 cm and 2.21◦, respectively, while the mean and standard deviations
of the position and orientation errors are µ = 1.38 cm, σ = 0.84 cm, and µ = 1.89◦,
σ = 1.15◦, respectively. Notice that the RMS position error corresponds to 2.71 % of the
average scene depth, which is very good despite the poor spatial resolution of the DVS.

Next, we show the results of our algorithm in three outdoor sequences. In this case,
ground truth is obtained via pose tracking with a standard camera running the SVO
visual-odometry algorithm, which is available open source [50].3

To acquire accurate data for the evaluation, we rigidly mounted the DVS and the
standard camera on a rig (see Figure H.6), and the same lens model was mounted
on both sensors. The DVS has a spatial resolution of 128× 128 pixels and operates
asynchronously, in the microsecond scale. The standard camera is a global shutter
MatrixVision Bluefox camera with a resolution of 752× 480 pixels and a frame rate of
up to 90 Hz. Both camera and DVS were calibrated intrinsically and extrinsically.

The three outdoor sequences (ivy, graffiti, and building) were recorded with the DVS-
plus-camera rig viewing an ivy, a graffiti covered by some plants, and a building with
people moving in front of it, respectively (see Fig. H.7, 1st column and accompanying
video submission). The rig was moved by hand with increasing speed. All sequences
exhibit significant translational and rotational motion. The error plots in position and
orientation of all 6-DOFs are given in Fig. H.7. The reported error peaks in the graffiti

and building sequences are due to a decrease of overlap between the DVS frustum and
2The rotation error is measured using the angle of their relative rotation (i.e., geodesic distance in

SO(3) [62]).
3SVO reports relative errors of 0.1%; hence it is justified to use its pose estimates as ground truth.

172

H.5. Experimental Results

RMS Mean Std
0

1

2

3

4

P
os

iti
on

 e
rr

or
 [%

]
RMS Mean Std

0

1

2

3

4

O
rie

nt
at

io
n

er
ro

r
[d

eg
]

Figure H.5: Error in position (relative to a mean scene depth of 60 cm) and orientation (in
degrees) of the trajectories recovered by our method for all rocks sequences (ground truth is
given by a motion capture system). We provide box plots of the root-mean-square (RMS) errors,
the mean errors and the standard deviation (Std) of the errors.

Figure H.6: A DVS and a standard camera mounted on a rig. The standard camera was only
used for comparison.

the reference map, thus making pose estimation ambiguous for some motions (e.g.,
Y-translation vs. X-rotation).

Table H.1 summarizes the statistics of the pose tracking error for the three outdoor
sequences. For the ivy dataset, the mean and standard deviation of the position error
are 9.93 cm and 4.60 cm, which correspond to 3.97 % and 1.84 % of the average scene
depth (2.5 m), respectively. The mean and standard deviation of the orientation error
are 2.0◦ and 0.94◦, respectively. For the building dataset, which presents the largest

Table H.1: Error measurements of three outdoor sequences. Translation errors are relative (i.e.,
scaled by the mean scene depth).

Position error [%] Orientation error [◦]
RMS µ σ RMS µ σ

ivy 4.37 3.97 1.84 2.21 2.00 0.94
graffiti 5.88 5.23 2.70 3.58 3.09 1.80
building 7.40 6.47 3.60 3.99 3.43 2.05

173

Appendix H. Event-based Dense Tracking

0 2 4 6
time [s]

0

5

10

15

20

25

po
si

tio
n

er
ro

r
[%

] Outdoor dataset: ivy X
Y
Z

0 2 4 6
time [s]

0

5

10

15

or
ie

nt
at

io
n

er
ro

r
[d

eg
]

Outdoor dataset: ivy 3
x

3
y
3

z

0 5 10
time [s]

0

5

10

15

20

25

po
si

tio
n

er
ro

r
[%

] Outdoor dataset: graffiti X
Y
Z

0 5 10
time [s]

0

5

10

15

or
ie

nt
at

io
n

er
ro

r
[d

eg
]

Outdoor dataset: graffiti 3
x

3
y
3

z

0 2 4 6 8
time [s]

0

5

10

15

20

25

po
si

tio
n

er
ro

r
[%

] Outdoor dataset: building X
Y
Z

0 2 4 6 8
time [s]

0

5

10

15

or
ie

nt
at

io
n

er
ro

r
[d

eg
]

Outdoor dataset: building 3
x

3
y
3

z

Figure H.7: Error plots in position (2nd column, relative to the mean scene depth) and
in orientation (3rd column, in degrees) for three outdoor test sequences (1st column): ivy,
graffiti, and building. The mean scene depths are 2.5 m, 3 m, and 30 m, respectively.

errors, the mean and standard deviation of the orientation error are 3.43◦ and 2.05◦,
respectively, while, in position error, the corresponding figures are 1.94 m and 1.08 m,
that correspond to 6.47 % and 3.60 % of the average scene depth (30 m), respectively.

As reported by the small errors in Table H.1, overall our event-based algorithm is able
to accurately track the pose of the DVS also outdoors. This shows that, in spite of the
limited resolution of the DVS (128× 128 pixels), the accuracy of the results provided
by our event-based algorithm is comparable to that obtained by a standard camera
processing 20× higher resolution images (752× 480 pixels). This is made possible by
the DVS temporal resolution being ten thousand times larger than the standard camera.
We expect that the results provided by our approach would be even more accurate
with the next generation of event-based sensors currently being developed [19, 75],
which will have higher spatial resolution (640× 480 pixels). Finally, observe that in
the building sequence (Fig. H.7, bottom row), our method gracefully tracks the pose in
spite of the considerable amount of events generated by moving objects (e.g., people)
in the scene (see Figure H.8).

174

H.5. Experimental Results

Figure H.8: The algorithm is able to track the DVS pose in spite of the considerable amount of
events generated by moving objects (e.g., people) in the scene.

0 2 4 6 8 10 12
time [s]

-0.2

-0.1

0

0.1

0.2

po
si

tio
n

[m
]

X Y Z

0 2 4 6 8 10 12
time [s]

-40

-30

-20

-10

0

10

20

30

or
ie

nt
at

io
n

[d
eg

]

roll pitch yaw

Figure H.9: Indoor experiment with 6-DOF motion. Left: Image of the standard camera overlaid
with events (during mild motion). Events are displayed in red and green, according to polarity.
Estimated position (center) and orientation (right) from our event-based algorithm (solid line),
a frame-based method (dash-dot line) and ground truth (black line) from a motion capture
system.

H.5.1 Tracking during High-Speed Motions

In addition to the error plots in Fig. H.4, we show in Fig. H.9 the actual values of the
trajectories (position and orientation) acquired by the motion capture system (dashed
line) and estimated by the event-based method (solid line) and frame-based method
(dash-dot). Notice that they are all are almost indistinguishable relative to the amplitude
of the motion excitation, which gives a better appreciation of the small errors reported
in Figs. H.4 and H.5.

Figure H.10 shows a magnified version of the estimated trajectories during high-speed
motions (occurring at t ≥ 7 s in Fig. H.9). The frame-based method is able to track
in the shaded region, up to t ≈ 8.66 s (indicated by a vertical dashed line), at which
point it loses tracking due to motion blur, while our event-based method continues to
accurately estimate the pose.

175

Appendix H. Event-based Dense Tracking

8 8.5 9 9.5 10
time [s]

-0.2

-0.1

0

0.1

0.2

po
si

tio
n

[m
]

X Y Z

8 8.5 9 9.5 10
time [s]

-20

-10

0

10

20

o
ri
e
n
ta

ti
o
n
 [
d
e
g
]

roll pitch yaw

Figure H.10: Zoom of Fig. H.9. Left: Image of the standard camera overlaid with events (red
and green points, according to polarity) during high-speed motion. Center and right: estimated
trajectories. Due to the very high temporal resolution, our algorithm can still track the motion
even when the images of the standard camera are sufficiently blurred so that the frame-based
method (FB) failed. The event-based method (EB) provides pose updates even in high-speed
motions, whereas the frame-based method loses track (it only provides pose updates in the
region marked with the shaded area, then it fails).

0 5 10 15 20 25 30
Time [s]

-0.4

-0.2

0

0.2

0.4

0.6

P
os

iti
on

 [m
]

X
Y
Z

0 5 10 15 20 25 30
Time [s]

-60

-40

-20

0

20

40

O
rie

nt
at

io
n

[d
eg

]

roll
pitch
yaw

0 5 10 15 20 25
Time [s]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

P
os

iti
on

 [m
]

X
Y
Z

0 5 10 15 20 25
Time [s]

-40

-30

-20

-10

0

10

20

30

O
rie

nt
at

io
n

[d
eg

]

roll
pitch
yaw

0 5 10
Time [s]

-0.5

0

0.5

1

1.5

P
os

iti
on

 [m
]

X
Y
Z

0 5 10
Time [s]

-60

-40

-20

0

20

40

O
rie

nt
at

io
n

[d
eg

]

roll
pitch
yaw

Figure H.11: Experiments on scenes with significant depth variation and occlusions. Scene
impressions (1st column): boxes, pipe, and bicycles. Estimated position (2nd column, in
meters) and orientation (3rd column, in degrees) from our event-based algorithm (solid line)
compared with ground truth (dashed line). The mean scene depths are 1.8 m, 2.7 m, and 2.3 m,
respectively.

H.5.2 Experiments with Large Depth Variation

In the following set of experiments, we also assessed the accuracy of our method
on scenes with large depth variation and, therefore larger parallax than in previous
176

H.5. Experimental Results

Table H.2: Error measurements of the sequences in Fig. H.11. Translation errors are relative
(i.e., scaled by the mean scene depth).

Position error [%] Orientation error [◦]
RMS µ σ RMS µ σ

boxes 2.50 2.23 1.17 1.88 1.65 1.02
pipe 4.04 3.04 2.66 2.90 2.37 1.67
bicycles 2.14 1.724 1.27 1.46 1.19 0.84

experiments. We recorded seven sequences with ground truth from a motion-capture
system of a scene consisting of a set of textured boxes (Fig. H.11, top row). We also
recorded two outdoor sequences: pipe and bicycles (middle and bottom rows of
Fig. H.11). The pipe sequence depicts a creek going through a pipe, surrounded
by rocks and grass; the bicycle sequence depicts some parked bicycles next to a
building; both outdoor scenes present some occlusions. All sequences exhibit significant
translational and rotational motion.

Fig. H.12 summarizes the position and orientation error statistics of our algorithm on
the boxes sequences (compared with ground truth from the motion-capture system).
The position error is given relative to the mean scene depth, which is 1.9 m. As it
is observed, the errors are very similar to those in Fig. H.5, meaning that our pose
tracking method can handle arbitrary 3D scenes, i.e., not necessarily nearly planar.

Table H.2 reports the numerical values of the trajectory errors in both indoors and
outdoor sequences. The row corresponding to the boxes sequences is the average of the
errors in the seven indoor sequences (Fig. H.12). For the position error, the mean scene
depths of the pipe and bicycles sequences are 2.7 m and 2.2 m, respectively. The mean
RMS errors in position and orientation are in the range 2.5–4.0 % of the mean scene
depth and 1.4–2.9◦, respectively, which are in agreement with the values in Table H.1
for the scenes with mean depths smaller than 3 m. It is remarkable that the method is
able to track despite some lack of texture (as in the pipe sequence, where there are only
few strong edges), and in the presence of occlusions, which are more evident in the
bicycles sequence.

H.5.3 Computational Effort

We measured the computational cost of our algorithm on a single core of an Intel(R) i7
processor at 2.60 GHz. The processing time per event is 32 µs, resulting in a processing
event rate of 31.000 events per second. Depending on the texture of the scene and
the speed of motion, the data rate produced by an event camera ranges from tens of
thousands (moderate motion) to over a million events per second (high-speed motion).
Our implementation is not optimal; many computations can be optimized, cached, and
parallelized to increase the runtime performance.

177

Appendix H. Event-based Dense Tracking

RMS Mean Std
0

1

2

3

4

P
os

iti
on

 e
rr

or
 [%

]

RMS Mean Std
0

1

2

3

4

O
rie

nt
at

io
n

er
ro

r
[d

eg
]

Figure H.12: Error in position (relative to a mean scene depth of 1.9 m) and orientation (in
degrees) of the trajectories recovered by our method for all boxes sequences (ground truth is
given by a motion-capture system). We provide box plots of the root-mean-square (RMS) errors,
the mean errors and the standard deviation (Std) of the errors.

H.6 Conclusion

We have presented a novel, event-based probabilistic approach to track the pose of an
arbitrarily moving event camera in 6-DOF in natural scenes. Our approach follows
a Bayesian filtering methodology: the sensor model is given by a mixture-model
likelihood that takes into account both the event-generation process and the presence
of noise and outliers; the posterior distribution of the system state is approximated
according to the relative-entropy criterion using distributions in the exponential family
and conjugate priors. This yields a robust EKF-like filter that provides pose updates
for every incoming event, at microsecond time resolution.

We have compared our method against ground truth provided by a motion capture
system or a state-of-the-art frame-based pose-tracking pipeline. The experiments
revealed that the proposed method accurately tracks the pose of the event-based
camera, both in indoor and outdoor experiments in scenes with significant depth
variation, and under motions with excitations in all 6-DOFs. In future, we plan to
extend the proposed framework to a full event-based SLAM (Simultaneous Localization
and Mapping) in 6-DOF.

Appendix: Rewriting the Likelihood Function

A distribution in the exponential family can be written as

p(x; η) = h(x) exp (η · T(x)− A(η)) , (H.24)

where η are the natural parameters, T(x) are the sufficient statistics of x, A(η) is the
log-normalizer, and h(x) is the base measure.

178

H.6. Conclusion

The likelihood (H.15) can be rewritten as:

p(ok|sk) =
1√
2π

exp(ln(πm)− ln(σm) (H.25)

− 1
2

[
Ji
k Ji

k
s̃i

k s̃j
k

σ2
m

+ 2M̄k Ji
k

s̃i
k

σ2
m
+

M̄2
k

σ2
m

]
+ exp(ln((1− πm)/(Mmax −Mmin))),

where we use the Einstein summation convention for the indices of Jk = (Ji
k) and

s̃k = (s̃i
k). Collecting the sufficient statistics into

T(sk) =

[
s̃i

k s̃j
k

σ2
m

,
s̃i

k
σ2

m
,

1
σ2

m
, ln(σm), ln(πm), ln(1− πm)

]
,

the likelihood can be conveniently rewritten as a sum of two exponential families (H.16),
j = 1, 2, with h(s) = 1,

ηo,1 =

[
−1

2
Ji
k J j

k,−M̄k Ji
k,−1

2
M̄2

k ,−1, 1, 0
]

(H.26)

ηo,2 =
[
0ij, 0i, 0, 0, 1

]
(H.27)

Ao,1 = ln
√

2π (H.28)

Ao,2 = − ln(Mmax −Mmin). (H.29)

179

I Continuous-Time Visual-Inertial
Trajectory Estimation

This chapter is a reprint of the article currently under review as:

E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza. “Continuous-Time Visual-
Inertial Trajectory Estimation with Event Cameras”. In: IEEE Trans. Robot. (2017). under
review

A shorter version of this article was previously published as:

E. Mueggler, G. Gallego, and D. Scaramuzza. “Continuous-Time Trajectory Estimation
for Event-based Vision Sensors”. In: Robotics: Science and Systems (RSS). 2015. doi:
10.15607/RSS.2015.XI.036

181

http://dx.doi.org/10.15607/RSS.2015.XI.036

Appendix I. Continuous-Time Visual-Inertial Trajectory Estimation

Continuous-Time Visual-Inertial Trajectory
Estimation with Event Cameras

Elias Mueggler, Guillermo Gallego, Henri Rebecq and Davide Scaramuzza

Abstract — Event cameras are bio-inspired vision sensors that output
pixel-level brightness changes instead of standard intensity frames.
They offer significant advantages over standard cameras, namely
a very high dynamic range, no motion blur, and a latency in the
order of microseconds. However, due to the fundamentally different
structure of the sensor’s output, new algorithms that exploit the high
temporal resolution and the asynchronous nature of the sensor are
required. Recent work has shown that a continuous-time represen-
tation of the trajectory to estimate can deal with the high temporal
resolution and asynchronous nature of the event camera in a princi-
pled way. In this paper, we leverage a continuous-time representation
to perform visual-inertial odometry with an event camera. This rep-
resentation allows direct integration of the asynchronous events with
micro-second accuracy and the inertial measurements at high fre-
quency. The pose trajectory is approximated by a smooth curve in the
space of rigid-body motions using cubic splines. This formulation
significantly reduces the number of variables in trajectory estimation
problems. We evaluate our method on real data from several scenes
and compare the results against ground truth from a motion-capture
system. We show superior performance of the proposed technique
compared to non-batch event-based algorithms. We also show that
both the map orientation and scale can be recovered accurately by
fusing events and inertial data. To the best of our knowledge, this is
the first work on visual-inertial fusion with event cameras using a
continuous-time framework.

182

I.1. Introduction

I.1 Introduction

Event cameras, such as the Dynamic Vision Sensor (DVS) [77], the DAVIS [19] or the
ATIS [116], work very differently from a traditional camera. They have independent
pixels that only send information (called “events”) in presence of brightness changes in
the scene at the time they occur. Thus, the output is not an intensity image but a stream
of asynchronous events at micro-second resolution, where each event consists of its
space-time coordinates and the sign of the brightness change (i.e., no intensity). Event
cameras have numerous advantages over standard cameras: a latency in the order
of microseconds, low power consumption, and a very high dynamic range (130 dB
compared to 60 dB of standard cameras). Most importantly, since all the pixels are
independent, such sensors do not suffer from motion blur.

However, because the output it produces—an event stream—is fundamentally different
from video streams of standard cameras, new algorithms are required to deal with
these data.

In this paper, we aim to use event cameras in combination with an Inertial Measurement
Unit (IMU) for ego-motion estimation. This task, called Visual-Inertial Odometry (VIO),
has important applications in various fields, such as mobile robotics and augment-
ed/virtual reality (AR/VR) applications.

The approach provided by traditional visual-odometry frameworks, which estimate
the camera pose at discrete times (naturally, the times the images are acquired), is no
longer appropriate for event cameras, mainly due to two issues. First, a single event
does not contain enough information to estimate the six degrees of freedom (DOF) pose
of a calibrated camera. Second, it is not appropriate to simply consider several events
for determining the pose using standard computer-vision techniques, such as PnP [68],
because the events typically all have different timestamps, and so the resulting pose
will not correspond to any particular time. Third, an event camera can easily transmit
up to several million events per second, and, therefore, it can become intractable to
estimate the pose of the event camera at the discrete times of all events due to the
rapidly growing size of the state vector needed to represent all such poses.

To tackle the above-mentioned issues, we adopt a continuous-time framework [112].
Regarding the first two issues, an explicit continuous temporal model is a natural
representation of the pose trajectory T(t) of the event camera since it unambiguously
relates each event, occurring at time tk, with its corresponding pose, T(tk). To solve the
third issue, the trajectory is described by a smooth parametric model, with significantly
fewer parameters than events, hence achieving state space size reduction and computa-
tional efficiency. For example, to remove unnecessary states for the estimation of the
trajectory of dynamic objects, [13] proposed to use cubic splines, reporting state-space
size compression of 70–90 %. Cubic splines [52] or, in more general, Wavelets [5]

183

Appendix I. Continuous-Time Visual-Inertial Trajectory Estimation

0.00 0.02 0.04 0.06 0.08

time [s]

frames

IMU

events

continuous

Figure I.1: While the frames and inertial measurements arrive at a constant frequency, events
are transmitted asynchronously and at much higher frequency. We model the camera trajectory
as continuous in time, which allows direct integration of all measurements using their precise
timestamps.

are common basis functions for continuous-time trajectories. The continuous-time
framework was also motivated to allow data fusion of multiple sensors working at
different rates and to enable increased temporal resolution [13]. This framework has
been applied to camera-IMU fusion [52, 112], rolling-shutter cameras [112], actuated
lidar [4], and RGB-D rolling shutter cameras [65].

Contribution

The use of a continuous-time framework for ego motion estimation with event cameras
was first introduced in our previous conference paper [101]. In the present paper, we
extend [101] in several ways:

• While in [101] we used the continuous time framework for trajectory estimation
of an event camera only, here we tackle the problem of trajectory estimation by
fusing an event camera with an inertial measurement unit. We show that the
assimilation of inertial data allows us (i) to produce more accurate trajectories
than with visual data alone and (ii) to estimate the absolute scale and orientation
(alignment with respect to gravity).

• While [101] was limited to line-based maps, we extend the approach to work on
natural scenes using point-based maps.

• We also show that our approach can be used to refine the poses estimated by an
event-based visual-odometry method [124].

• We demonstrate the capabilities of the extended approach with new experiments,
including natural scenes.

The paper is organized as follows: Section I.2 briefly introduces the principle of

184

I.2. Event Cameras

(a) The DAVIS sensor from iniLabs (Figure
adapted from [38]).

(b) Visualization of the event output of a
DAVIS in space-time. Blue dots mark indi-
vidual asynchronous events. The polarity of
the events is not shown.

Figure I.2: The DAVIS camera and visualization of its output.

operation of event cameras, Section I.3 reviews previous work on ego-motion estimation
with event cameras, Sections I.4 to I.6 present our method for continuous time trajectory
optimization using visual-inertial event data fusion, Section I.7 presents the experiments
carried out using the event camera to track two types of maps (point-based and line-
based), Section I.8 discusses the results, and Section I.9 draws final conclusions.

I.2 Event Cameras

Standard cameras acquire frames (i.e., images) at fixed rates. On the other hand,
event cameras such as the DAVIS [19] (Fig. I.2) have independent pixels that output
brightness changes (called “events”) asynchronously, at the time they occur. Specifically,
if L(u, t) .

= ln I(u, t) is the logarithmic brightness or intensity at pixel u = (x, y)> in
the image plane, the DAVIS generates an event ek

.
= 〈xk, yk, tk, pk〉 if the change in

logarithmic brightness at pixel uk = (xk, yk)
> reaches a threshold C (typically 10-15%

relative brightness change):

∆L(uk, tk)
.
= L(uk, tk)− L(uk, tk − ∆t) = pkC, (I.1)

where tk is the timestamp of the event, ∆t is the time since the previous event at the
same pixel uk and pk = ±1 is the polarity of the event (the sign of the brightness
change). Events are timestamped and transmitted asynchronously at the time they
occur using a sophisticated digital circuitry.

Event cameras have the same optics as traditional perspective cameras, therefore,
standard camera models (e.g., pinhole) still apply. In this work, we use the DAVIS
240C [19] that provides events and global-shutter images from the same physical
pixels. In addition to the events and images, it contains a synchronized IMU. This

185

Appendix I. Continuous-Time Visual-Inertial Trajectory Estimation

work solely uses the images for camera calibration, initialization and visualization
purposes. The sensor’s spatial resolution is 240× 180 pixels and it is connected via
USB. A visualization of the output of the DAVIS is shown in Fig. I.2b. An additional
advantage of the DAVIS is its very high dynamic range of 130 dB (compared to 60 dB
of high quality traditional image sensors).

I.3 Related Work: Ego-Motion Estimation with Event Cameras

A particle-filter approach for robot self-localization using the DVS was introduced
in [145] and later extended to SLAM in [146]. However, the system was limited to
planar motions and planar scenes parallel to the plane of motion, and scenes consisted
of B&W line patterns.

In several works, conventional vision sensors have been attached to the event camera
to simplify the ego-motion estimation problem. For example, [26] proposed an event-
based probabilistic framework to update the relative pose of a DVS with respect to the
last frame of an attached standard camera. The 3-D SLAM system in [144] relied on a
frame-based RGB-D camera attached to the DVS to provide depth estimation, and thus
build a voxel grid map that was used for pose tracking. The system in [70] used the
intensity images from the DAVIS camera to detect features that were tracked using the
events and were then fed into a 3-D visual odometry pipeline.

Robot localization in 6-DOF with respect to a map of B&W lines was demonstrated
using a DVS, without additional sensing, during high-speed maneuvers of a quadro-
tor [102], where rotational speeds of up to 1,200 ◦/s were measured. In natural scenes,
[53] presented a probabilistic filter to track high-speed 6-DOF motions with respect to
a map containing both depth and brightness information.

A system with two probabilistic filters operating in parallel was presented in [66] to
estimate the rotational motion of a DVS and reconstruct the scene brightness in a
high-resolution panorama. The system was extended in [67] using three filters that
operated in parallel to estimate the 6-DOF pose of the event camera, and the depth and
brightness of the scene.

More recently, [124] presented a geometric parallel-tracking-and-mapping approach for
6-DOF pose estimation and 3-D reconstruction with an event camera in natural scenes.

All previous methods operate in an event-by-event basis producing estimates of the
event camera pose in a discrete, filter-like manner. This paper leverages a continuous-
time representation of the trajectory of the event camera to couple the estimated poses
in a tractable batch optimization that also allows to fuse event and inertial data.

186

I.4. Continuous-Time Trajectories

I.4 Continuous-Time Trajectories

Traditional visual odometry and SLAM formulations use a discrete-time approach, i.e.,
the camera pose is calculated at the time the image was acquired. Recent works have
shown that, for high-frequency data, a continuous-time formulation is preferable to
keep the size of the optimization problem bounded [52, 112]. Temporal basis functions,
such as B-splines, were proposed for camera-IMU calibration, where the frequencies of
the two sensor modalities differ by an order of magnitude. While previous approaches
use continuous-time representations mainly to reduce the computational complexity,
in the case of an event-based sensor this representation is required to cope with the
asynchronous nature of the events. Unlike a standard camera image, an event does
not carry enough information to estimate the sensor pose by itself. A continuous-
time trajectory can be evaluated at any time, in particular at each event’s and inertial
measurement’s timestamp, yielding a well-defined pose for every event and well-
defined derivatives. Thus, our method is not only computationally effective, but it is
also necessary for a proper formulation.

I.4.1 Camera Pose Transformations

Following [112], we represent Euclidean space transformations between finite cam-
eras [59, p. 157] by means of 4× 4 matrices of the form

Tb,a =

[
Rb,a ta

0> 1

]
, (I.2)

where R ∈ SO(3) (the rotation group) and t ∈ R3 are the rotational and translational
components of the rigid-body motion, respectively. In homogeneous coordinates, a 3-D
point in coordinate system a is mapped to a point in coordinate system b by the change
of coordinates Xb ∝ Tb,aXa. Transformations (I.2) form the special Euclidean group
SE(3) [88, p. 30], which has the structure of both a group and a differentiable manifold,
i.e., a Lie group. A curve on SE(3) physically represents the motion of a rigid body,
e.g., the event camera. The tangent space of SE(3) at the identity is se(3), which has
the structure of a Lie algebra. It corresponds to the space of twists, represented by 4× 4
matrices of the form

ξ̂ =

[
ω̂ v
0> 0

]
, (I.3)

where v ∈ R3 and ω̂ is the 3× 3 skew-symmetric matrix representing the cross product:
ω̂b = ω× b, ∀ω, b ∈ R3. Variables ω and v physically represent the angular and
linear velocity vectors of the moving sensor.

Based on the theory of Lie groups, the exponential map from se(3) to SE(3) can be

187

Appendix I. Continuous-Time Visual-Inertial Trajectory Estimation

defined, which gives the Euclidean transformation associated to a twist, T = exp(ξ̂).
The inverse of the exponential map is the logarithmic map ξ̂ = ln(T). Moreover, every
rigid-body motion T ∈ SE(3) can be represented in such an exponential parametrization,
but the resulting twist may not be unique [88, p. 33]. However, to avoid this ambiguity,
we adopt a local-chart approach (on the manifold SE(3)) by means of incremental
rigid-body motions (T = exp(ξ̂) with small matrix norm ‖ξ̂‖) given by the relative
transformation between two nearby poses along the trajectory of the event camera
(see (I.8)). In addition, this parametrization is free from singularities. Closed-form
formulas for the exp and ln maps are given in [88].

The vee operator [·]∨, inverse of the lift operator ·̂, maps a 3× 3 skew-symmetric matrix
to its corresponding vector, 0 −z y

z 0 −x
−y x 0

∨

=

x
y
z

 . (I.4)

We can “linearly” interpolate between two poses at the extremes of an interval [0, ∆t] 3 t
using formula

Tw(t) = Tw,a exp
(

t
1

∆t
ln
(
T−1

w,aTw,b

))
, (I.5)

where w denotes the world coordinate system.

I.4.2 Cubic Spline Camera Trajectories in SE(3)

We use B-splines to represent continuous-time trajectories in SE(3) for several reasons:
they (i) are smooth (C2 continuity in case of cubic splines), (ii) have local support,
(iii) have analytical derivatives and integrals, (iv) interpolate the pose at any point in
time, thus enabling data fusion from both asynchronous and synchronous sensors with
different rates.

The continuous trajectory of the event camera is parametrized by control camera
poses Tw,i at times ti, i ∈ {0, . . . , n}, where, according to the notation in (I.2), Tw,i is
the transformation from the event-camera coordinate system at time ti to a world
coordinate system (w). Due to the locality of the cubic B-spline basis, the value of
the spline curve at any time t only depends on four control poses: for t ∈ [ti, ti+1)

such control poses occur at times {ti−1, . . . , ti+2}. Following the cumulative cubic B-
splines formulation [112], we use one absolute pose, Tw,i−1, and three incremental poses,
parameterized by twists (I.3) ξ̂q ≡ Ωq (local approach on SE(3)). More specifically, the

188

I.4. Continuous-Time Trajectories

SE(3)

Tw,s(t)

Ωi

Ωi+1 Ωi+2

Tw,i−1

Tw,i
Tw,i+1

Tw,i+2

Figure I.3: Geometric interpretation of the cubic spline interpolation given by formula (I.6).
The cumulative formulation uses one absolute control pose Tw,i−1 and three incremental control
poses Ωi, Ωi+1, Ωi+2 to compute the interpolated pose Tw,s.

spline trajectory is given by

Tw,s

(
u(t)

) .
= Tw,i−1

3

∏
j=1

exp
(

B̃j

(
u(t)

)
Ωi+j−1

)
, (I.6)

where, for simplicity, we assume that the control poses are uniformly spaced in
time [112], at ti = i∆t, thus u(t) = (t− ti)/∆t ∈ [0, 1) is used in the cumulative basis
functions for the B-splines,

B̃(u) = C

1
u
u2

u3

 , C =
1
6

6 0 0 0
5 3 −3 1
1 3 3 −2
0 0 0 1

 , (I.7)

which are obtained from the matrix representation of the De Boor-Cox formula [121]. A
graphical illustration of the difference between the standard and the cumulative basis
functions for the B-splines is given in Fig. 2 of [112]. In (I.6), B̃j is the j-th entry (0 based)
of the cubic polynomial vector. The incremental pose from the coordinate system at
ti−1 to the coordinate system at ti in terms of world-referenced poses is encoded by the
twist

Ωi = ln(T−1
w,i−1Tw,i). (I.8)

Figure I.3 visualizes the evaluation of the pose Tw,s(t) ≡ Tw,s(u(t)) using one control
pose Tw,i−1 and three incremental poses Ω.

By the chain rule, the first and second temporal derivatives of the spline trajectory (I.6)

189

Appendix I. Continuous-Time Visual-Inertial Trajectory Estimation

are, using Newton’s dot notation for differentiation,

Ṫw,s(u) = Tw,i−1

 Ȧ0A1A2

+A0Ȧ1A2

+A0A1Ȧ2

 , (I.9)

T̈w,s(u) = Tw,i−1

 Ä0A1A2 + A0Ä1A2

+A0A1Ä2 + 2Ȧ0Ȧ1A2

+2Ȧ0A1Ȧ2 + 2A0Ȧ1Ȧ2

 , (I.10)

respectively, where

Aj
.
= exp

(
Ωi+jB̃(u)j+1

)
, (I.11)

Ȧj = AjΩi+j
˙̃B(u)j+1, (I.12)

Äj = ȦjΩi+j
˙̃B(u)j+1 + AjΩi+j

¨̃B(u)j+1, (I.13)

˙̃B =
1

∆t
C

0
1

2u
3u2

 , ¨̃B =
1

∆t2 C

0
0
2

6u

 . (I.14)

Analytical derivatives of Tw,s(u) with respect to the control poses are provided in the
supplementary material of [65].

I.4.3 Visual and Inertial Predictions

A continuous trajectory model allows us to compute the velocity and acceleration
of the event camera at any time. These quantities can be compared against IMU
measurements and the resulting mismatch can be used to refine the modeled trajectory.
Similarly to [112], the predictions of the IMU measurements, in angular velocity ω and
linear acceleration a, are given by

ω̂(u) .
=
(
R>w,s(u) · Ṙw,s(u)

)∨
+ bω, (I.15)

â(u) .
=
(
R>w,s(u) · (s̈w(u) + gw) + ba, (I.16)

190

I.5. Map Representation

where Ṙw,s(u) is the upper-left 3× 3 sub-matrix of Ṫw,s

(
u
)

, and s̈w(u) is the upper-right

3× 1 sub-matrix of T̈w,s

(
u
)

. bω and ba are the gyroscope and accelerometer biases,
and gw is the acceleration due to gravity in the world coordinate system. The vee
operator ∨ is defined in (I.4).

I.5 Map Representation

To focus on the event-camera trajectory estimation problem, we assume that the map of
the scene is given and is time invariant. Specifically, the mapM is either a set of 3-D
points or 3-D line segments. We provide experiments using both geometric primitives.

In case of a map consisting of a set of points

M = {Xi}, (I.17)

since events are caused by the apparent motion of edges, each 3-D point Xi represents
a scene edge. Given a 3× 4 projection matrix P modeling the perspective projection
carried out by the event camera, the event coordinates are, in homogeneous coordinates,
ui ∝ PXi.

In the case of lines, the map is

M = {`j}, (I.18)

where each line segment `j is parametrized by its start and end points Xs
j , Xe

j ∈ R3. The
lines of the mapM can be projected to the image plane by projecting the endpoints
of the segments. The homogeneous coordinates of the projected line through the j-th
segment are

lj ∝ (PXs
j)× (PXe

j). (I.19)

I.6 Trajectory Optimization

In this section, we formulate the camera trajectory estimation problem from visual and
inertial data in a probabilistic framework and derive the maximum likelihood solution
(Section I.6.1). Then, to find a tractable solution, we reduce the dimensionality of the
problem (Section I.6.2) by using the parametrized cubic spline trajectory representation
introduced in Section I.4.2.

191

Appendix I. Continuous-Time Visual-Inertial Trajectory Estimation

I.6.1 Probabilistic Approach

In general, the trajectory estimation problem over an interval [0, T] can be cast in a
probabilistic form [52], seeking an estimate of the joint posterior density p(x(t)|M,Z)
of the state x(t) (event camera trajectory) over the interval, given the map M and
the set of all visual-inertial measurements, Z = E ∪W ∪A, which consists of: events
E .
= {ek}N

k=1 (where ek = (xk, yk)
> is the event location at time tk), angular velocities

W .
= {ωj}M

j=1 and linear accelerations A .
= {aj}M

j=1. Using Bayes’ rule, and assuming
that the map is independent of the event camera trajectory, we may rewrite the posterior
as

p(x(t) |M, E ,W ,A) ∝ p(x(t)) p(E ,W ,A | x(t),M). (I.20)

In the absence of prior belief for the state, p(x(t)), the optimal trajectory is the one
maximizing the likelihood p(E ,W ,A | x(t),M). Assuming that the measurements
E ,W ,A are independent of each other given the trajectory and the map, and using the
fact that the inertial measurements do not depend on the map, the likelihood factorizes:

p(E ,W ,A|x(t),M) = p(E|x(t),M) p(W|x(t)) p(A | x(t)). (I.21)

The first term in (I.21) comprises the visual measurements only. Under the assumption
that the measurements ek are independent of each other (given the trajectory and the
map) and that the measurement error in the image coordinates of the events follows a
zero-mean Gaussian distribution with variance σ2

e , we have

ln
(

p(E | x(t),M)
)

(I.22)

= ln

(
∏

k
p(ek|x(tk),M)

)
(I.23)

= ln

(
∏

k
K1 exp

(
−‖ek − êk(x(tk),M)‖2

2σ2
e

))
(I.24)

= K̃1 −
1
2 ∑

k

1
σ2

e
‖ek − êk(x(tk),M)‖2 (I.25)

where K1
.
= 1/

√
2πσ2

e and K̃1
.
= ∑k ln K1 are constants (i.e., independent of the state

x(t)). Let us denote by êk(x(tk),M) the predicted value of the event location computed
using the state x(t) and the map (I.18),M. Such a prediction is a point on one of the
projected 3-D primitives: in case of a map of points (I.17), ê is the projected point,
and the norm in (I.25) is the standard reprojection error between two points; in case
of a map of 3-D line segments (I.18), ê is a point on the projected line segment, and
the norm in (I.25) is the Euclidean (orthogonal) distance from the observed point to

192

I.6. Trajectory Optimization

the corresponding line segment [101]. In both cases, (i) the prediction is computed
using the event camera trajectory at the time of the event, ti, and (ii) we assume
the data association to be known, i.e., the correspondences between events and map
primitives.1 The likelihood (I.25) models only the error in the spatial domain, and
not in the temporal domain since the latter is negligible: event timestamps have an
accuracy in the order of a few dozen microseconds.

Following similar steps as those in (I.22)-(I.25) (independence and Gaussian error
assumptions), the second and third terms in (I.21) lead to

ln
(

p(W|x(t))
)
= K̃2 −

1
2 ∑

j

1
σ2

ω

‖ωj − ω̂j(x(tj))‖2, (I.26)

ln
(

p(A|x(t))
)
= K̃3 −

1
2 ∑

j

1
σ2

a
‖aj − âj(x(tj))‖2, (I.27)

where ω̂j and âj are predictions of the angular velocity and linear acceleration of the
event camera computed using the modeled trajectory x(t), such as those given by (I.15)
and (I.16) in the case of a cubic spline trajectory.

Collecting terms (I.25)-(I.27), the maximization of the likelihood (I.21), or equivalently,
its logarithm, leads to the minimization of the objective function

F .
=

1
N

N

∑
k=1

1
σ2

e
‖ek − êk(x(tk),M)‖2 (I.28)

+
1
M

M

∑
j=1

1
σ2

ω

‖ωj − ω̂j(x(tj))‖2 +
1
M

M

∑
j=1

1
σ2

a
‖aj − âj(x(tj))‖2,

where we omitted unnecessary constants. The first sum comprises the visual errors
measured in the image plane and the last two sums comprise the inertial errors.

I.6.2 Constrained Optimization in Finite Dimensions

The objective function (I.28) is optimized with respect to the trajectory x(t) of the event
camera, which in general is represented by an arbitrary curve in SE(3), i.e., a “point”
in an infinite-dimensional function space. However, because we represent the curve in
terms of a finite set of known temporal basis functions (B-splines, formalized in (I.6)),
the trajectory is parametrized by control poses Tw,i and, therefore, the optimization
problem becomes finite dimensional. In particular, it is a non-linear least squares
problem, for which standard numerical solvers such as Gauss-Newton or Levenberg-

1In practice, we solve the data association using event-based pose-tracking algorithms that we run
as a preprocessing step. Note that these algorithms rely only on the events. Details are provided in the
experiments of Section I.7.

193

Appendix I. Continuous-Time Visual-Inertial Trajectory Estimation

Marquardt can be applied.

In addition to the control poses, we optimize with respect to model parameters θ =

(b>ω , b>a , s, o>)>, consisting of the IMU biases bω and ba, and the map scale s and
orientation with respect to the gravity direction o. The map orientation o is composed of
roll and pitch angles, o = (α, β)>. Maps obtained by monocular systems, such as [124,
67], lack information about absolute map scale and orientation, so it is necessary
to estimate them in such cases. We estimate the trajectory and additional model
parameters by minimizing the objective function (I.28),

{T∗w,i, θ∗} = arg min
T,θ

F. (I.29)

This optimization problem is solved in an iterative way using the Ceres solver [2], an
efficient numerical implementation for non-linear least squares problems.

One final remark: the inertial predictions are computed as described in (I.15) and (I.16),
using Tw,s and its derivatives, whereas the visual predictions require the computation
of T−1

w,s. More specifically, for each event ek, triggered at time tk in the interval [ti, ti+1),
we compute its pose Tw,s(uk) using (I.6), where uk = (tk − ti)/∆t. We then project
the map point or line segment into the current image plane using projection matrices
P(tk) ∝ K(I|0)T−1

w,s(tk), K being the time-invariant intrinsic parameter matrix of the event
camera (after radial distortion compensation), and compute the distance between the
event location ek and the corresponding point êk in the projected primitive. To take
into account the map scale s and orientation o, we right-multiply P(tk) by a similarity
transformation with scale s and rotation R(o) before projecting the map primitives.

I.7 Experiments

We evaluate our method on several datasets using the two different map representations
in Section I.5: lines-based maps and point-based maps. These two representations allow
us to evaluate the effect of two different visual error terms, which are the line-to-point
distance and point-to-point reprojection errors presented in Section I.6.1. In both
cases, we quantify the trajectory accuracy using the ground truth of a motion-capture
system.2 We use the same hand-eye calibration method as described in [103]. Having a
monocular setup, the absolute scale is not observable from visual observations alone.
However, we are able to estimate the absolute scale since the fused IMU measurements
grant scale observability. The following two sections describe the experiments with
line-based maps and point-based maps, respectively. In these experiments, we used
σe = 0.1 pixel, σω = 0.03 rad/s, and σa = 0.1 m2/s. We chose the values for the
standard deviations of the inertial measurements to be around ten times higher than

2We use a NaturalPoint OptiTrack system with 14 motion-capture cameras spanning a volume of
100 m3. The system reported a calibration accuracy of 0.105 mm and provides measurements at 200 Hz.

194

I.7. Experiments

those measured at rest.

I.7.1 Trajectory Estimation in Line-based Maps

These experiments are similar to the ones presented in [101]. Here, however, we
use the DAVIS instead of the DVS, which provides the following advantages. First,
it has a higher spatial resolution of 240 × 180 pixels (instead of 128 × 128 pixels).
Second, it provides inertial measurements (at 1 kHz) that are time-synchronized with
the events. Third, it also outputs global-shutter intensity images (at 24 Hz) that we use
for initialization, visualization, and a more accurate intrinsic camera calibration than
that achieved using events.

Tracking Method

This method tracks a set of lines in a given metric map. Event-based line tracking is
done using [102], which also provides data association between events and lines. This
data association is used in the optimization of I.29. Events that are not close to any line
(such as the keyboard and mouse in Fig. I.4a) are not considered to be part of the map
and, therefore, are ignored in the optimization. Pose estimation is then done using the
Gold Standard PnP algorithm [59, p.181] on the intersection points of the lines. Fig. I.4
shows tracking of two different shapes.

Experiment

We moved the DAVIS sensor by hand in a motion-capture system above a square
pattern, as shown in Fig. I.5a. The corresponding error plots in position and orientation
are shown in Fig. I.5b: position error is measured using the Euclidean distance, whereas
orientation error is measured using the geodesic distance in SO(3) (the angle of the
relative rotation between the true rotation and the estimated one) [62]. The excitation
in each degree of freedom and the corresponding six error plots are shown in Fig. I.9.
The error statistics are summarized in Table I.1.

We compare three algorithms against ground truth from a motion-capture system: (i)
the event-based tracking algorithm in [102] (in cyan), (ii) the proposed spline-based
optimization without IMU measurements (blue color), and (iii) the proposed spline-
based optimization (with IMU measurements, in red color). As it can be seen in the
figures and in Table I.1, the proposed spline-based optimization (“Spline (ev.+IMU)”
label) is more accurate than the event-based tracking algorithms: the mean, standard
deviation, and maximum errors in both position and orientation are the smallest among
all methods (last row of Table I.1). The mean position error is 0.5 % of the average scene
depth and the mean orientation error is 0.37◦. The errors are up to five times smaller

195

Appendix I. Continuous-Time Visual-Inertial Trajectory Estimation

compared to the event-based tracking method (cf. rows 1 and 3 in Table I.1). Hence, the
proposed method is very accurate. The benefit of including the inertial measurements
in the optimization is also reported: the vision-only spline-based optimization method
is better than the event-based tracking algorithm [102] (by approximately a factor of
1.5). However, when inertial measurements are included in the optimization the errors
are reduced by a factor of 4 approximately (by comparing rows 2 and 3 of Table I.1).
Therefore, there is a significant gain in accuracy (×4 in this experiment) due to the
fusion of inertial measurements and the event data to estimate the sensor’s trajectory.

For this experiment, we placed control poses at an interval of 0.1 s. This leads to ratios
of about 5000 events and 100 inertial measurements per control pose. We initialize the
control poses by fitting a spline trajectory through the initial tracker poses.

Scale Estimation In further experiments, we also estimate the absolute scale s of the
map as an additional parameter. As we know the map size precisely, we report the
relative error. The square shape has a side length of 10 cm. For these experiments,
we set the initial length to 0.1 cm, 1 cm, 1 m, and 10 m (two orders of magnitude in
both directions). The optimization converged to virtually the same minimum and the
relative error was below 7 % for all cases. This error is in the same ballpark as the
magnitude error of the IMU, which we measured to be about 5 % (10.30 m/s2 instead
of 9.81 m/s2 when the sensor is at rest).

I.7.2 Trajectory Estimation in Point-based Maps

The following experiments show that the proposed continuous-time trajectory estima-
tion also works on natural scenes, i.e., without requiring strong artificial gradients
to generate the events. For this, we used three sequences from the Event-Camera
Dataset [103], which we refer to as desk, boxes and dynamic (see Figs. I.6a, I.7a, and I.8a).
The desk scene features a desktop with some office objects (books, a screen, a keyboard,
etc.); the boxes scene features some boxes on a carpet, and the dynamic scene consists of
a desk with objects and a person moving them. All datasets were recorded hand-held
and contain data from the DAVIS (events, frames, and inertial measurements) as well
as ground-truth pose measurements from a motion-capture system (at 200 Hz). We
processed the data with EVO [124], an event-based visual-odometry algorithm, that
we describe below, which also returns a point-based map of the scene. Then, we used
the events and the point-based map of EVO for batch trajectory optimization in the
continuous-time framework, showing that we achieve higher accuracy and a smoother
trajectory.

196

I.7. Experiments

(a) Square shape. (b) Star shape.

Figure I.4: Screenshots of the line-based tracking algorithm. The lines and the events used for
its representation are in red and cyan, respectively. The image is only used for initialization
and visualization.

X [m]
−0.05

0.00
0.05Y

[m]
−0.05

0.00
0.05

Z
[m

]

0.00

0.05

0.10

0.15

0.20

0.25

Ground truth

Tracker (ev.)

Spline (ev.)

Spline (ev.+IMU)

(a) Estimated trajectories and 3D map.

0

2

4

p
os
it
io
n

er
ro
r
[c
m
]

0 1 2 3 4 5 6 7 8 9

time [s]

0

2

4

6

8

or
ie
n
ta
ti
on

er
ro
r
[d
eg
]

(b) Trajectory error in position and orientation.
Legend as in Fig. I.5a.

Figure I.5: Results on Line-based Tracking and Pose Estimation.

Table I.1: Results on Line-based Tracking and Pose Estimation. Position and orientation errors.

Position error (abs. [cm] and rel. [%]) Orientation error [◦]
µ % σ % max % µ σ max

Tracker (ev.) [102] 1.11 3.43 0.75 2.31 7.96 24.56 1.87 1.13 9.61
Spline (ev.) 0.64 1.98 0.51 1.57 3.85 11.87 1.08 0.75 4.55
Spline (ev.+IMU) 0.16 0.50 0.08 0.26 0.46 1.41 0.37 0.19 0.93

Relative errors are given with respect to the mean scene depth.

Tracking Method

EVO [124] returns both a map and a set of 6-DOF discrete, asynchronous poses of the
event camera. In a post-processing step, we extracted the correspondences between

197

Appendix I. Continuous-Time Visual-Inertial Trajectory Estimation

the events and the map points that are required to optimize (I.29). We project the map
points onto the image plane for each pose of EVO and establish a correspondence if
a projected map point and an event are present in the same pixel. Events that cannot
be associated with a map point are treated as noise and are therefore ignored in the
optimization. Figs. I.6b, I.7b, and I.8b show typical point-based maps produced by
EVO, projected onto the image plane and colored according to depth with respect to the
camera. The same plots also show all the observed events, colored in gray. Notice that
the projected map is aligned with the observed events, as expected from an accurate
tracking algorithm. The corresponding scenes are shown in Figs. I.6a, I.7a, and I.8a,
respectively.

Experiments

Figs. I.6–I.8 and Tables I.2–I.4 summarize the results obtained on the three datasets.
Fig. I.6c, I.7c, and I.8c show the 3D maps and the event camera trajectories. Figs. I.6d,
I.7d and I.8d show the position and orientation errors obtained by comparing the
estimated trajectories against motion-capture ground truth. Error statistics are provided
in Tables I.2, I.3 and I.4. In additional plots in the Appendix (Figs. I.9 to I.12), we show
the individual degrees of freedom and their errors, respectively.

We compare four methods against ground truth from the motion-capture system: (i)
event-based pose tracking using EVO (in cyan color in the figures), (ii) spline-based
trajectory optimization without IMU measurements (in blue color), (iii) spline-based
trajectory optimization (events and inertial measurements, in red color), and (iv) spline-
based trajectory and absolute scale optimization (in magenta). The output trajectory of
each of the first three methods was aligned with respect to ground truth using a 3D
similarity transformation (rotation, translation, and uniform scaling); thus, the absolute
scale is externally provided. Although a Euclidean alignment suffices (rotation and
translation, without scaling) for the spline-based approach with events and IMU, we
also used a similarity alignment for a fair comparison with respect to other methods.
The fourth method has the same optimized trajectory as the third one, but the alignment
with respect to the ground truth trajectory is Euclidean (6-DOF): the absolute scale is
recovered from the inertial measurements. As it can be seen in Tables I.2, I.3, and I.4,
the spline-based approach without inertial measurements consistently achieves smaller
errors than EVO (cf. rows 1 and 2 of the tables). Using also the inertial measurements
further improves the results (cf. rows 2 and 3 of the tables). When using the estimated
absolute map scale, the results are comparable to those where the scale was provided
by ground-truth alignment with a similarity transform, even though a low-cost IMU
was used (cf. rows 3 and 4 of the tables). In such a case, the mean position error is less
than 1.05 % of the average scene depth, and the mean orientation error is less than 1.03◦.
The standard deviations of the errors are also very small: less than 0.43 % and less
than 0.57◦, respectively, in all datasets. The results are remarkably accurate. The gain

198

I.7. Experiments

in accuracy due to incorporating the inertial measurements in the optimization (with
respect to the visual-only approach) is less than a factor of two, which is not as large as
in the case of line-based maps (a factor of four) because EVO [124] already provides
very good results compared with the line-based tracker of [102]. Nevertheless, the gain
is still significant, making the event-inertial optimization consistently outperforming
the event-only one.

We placed the knots (the timestamps of the control poses Tw,i) at a time interval of 0.2 s,
0.15 s, and 0.15 s for the desk, boxes, and dynamic datasets, respectively. This leads to
a ratio of about 104 events and 150–200 inertial measurements per control pose. We
initialize the control poses by fitting a spline through the initial tracker poses.

Absolute Map Scale and Gravity Alignment

In the above experiments with IMU, we also estimated the absolute scale s and ori-
entation o of the map as additional parameters. Since EVO is monocular, it cannot
estimate the absolute scale. However, by fusing the inertial data with EVO, it is possible
to recover the absolute scale and to align the map with gravity. We found that the
absolute scale deviated from the true value by 4.1 %, 6.5 %, and 2.8 % for the desk, boxes,
and dynamic datasets, respectively. For the alignment with gravity, we found that the
estimated gravity direction deviated from the true value by 3.83◦, 20.18◦, and 3.34◦ for
the desk, boxes, and dynamic datasets, respectively. The high alignment error for the
boxes dataset is likely due to the dominant translational motion of the camera.

I.7.3 Computational Cost

Table I.5 reports the runtime for the least-squares optimization of (I.29) using the Ceres
library [2] and the number of iterations taken to converge to a tolerance of 10−3 in
the change of the objective function value. The table also provides an overview of
the experiments (dataset duration, number of events and inertial measurements, and
number of control poses used). The experiments were conducted on a laptop with an
Intel Core i7-3720QM CPU at 2.60 GHz.

The optimization process typically converges within a few iterations (ten or less).
Depending on the number of iterations, our approach is around three to ten times slower
than real-time. Most of the computation time (around 80 %) is devoted to the evaluation
of Jacobians, which is done using automatic differentiation. The optimization could be
made real time by adding more computational power (such as a GPU), by following a
sliding-window approach, or by using analytical derivatives and approximations, such
as using the same pose derivative for several measurements that are close in time.

199

Appendix I. Continuous-Time Visual-Inertial Trajectory Estimation

(a) Scene desk
(b) Event-based tracking. Events (gray) and
reprojected map (colored using depth).

X
[m] 1.6

1.8
2.0

2.2
2.4

Y [m]

−0.2
0.0

0.2
0.4

0.6
0.8

Z
[m

]

0.8

1.0

1.2

1.4

1.6

1.8

Ground truth

EVO (ev.+abs. scale)

Spline (ev.+abs. scale)

Spline (ev.+IMU+abs. scale)

Spline (ev.+IMU)

(c) Estimated trajectories and 3D map.

0

1

2

3
p
os
it
io
n

er
ro
r
[c
m
]

0 5 10 15 20

time [s]

0

1

2

3

4

or
ie
n
ta
ti
on

er
ro
r
[d
eg
]

(d) Trajectory error in position and orientation.
Legend as in Fig. I.6c.

Figure I.6: Results for desk dataset.

Table I.2: Results for desk dataset.

Position error (abs. [cm] and rel. [%]) Orientation error [◦]
µ % σ % max % µ σ max

EVO (ev.+abs. scale) 1.08 0.54 0.53 0.27 4.64 2.33 1.31 0.68 3.55
Spline (ev.+abs. scale) 0.78 0.39 0.40 0.20 2.30 1.16 0.98 0.58 3.56
Spline (ev.+IMU+abs. scale) 0.69 0.35 0.37 0.18 1.65 0.83 0.93 0.56 3.45
Spline (ev.+IMU) 0.79 0.39 0.48 0.24 2.13 1.07 0.93 0.56 3.45

Relative errors are given with respect to the mean scene depth.

I.8 Discussion

Event cameras provide visual measurements asynchronously and at very high rate.
Traditional formulations, which describe the camera trajectory using poses at discrete
timestamps, are not appropriate to deal with such almost continuous data streams
because of the difficulty in establishing correspondences between the discrete sets of
events and poses, and because the preservation of the temporal information of the
events would require a very large number of poses (one per event). The continuous-time

200

I.8. Discussion

(a) Scene boxes
(b) Event-based tracking. Events (gray) and
reprojected map (colored using depth).

X [m] 0.0
0.2

0.4
0.6

0.8
1.0

Y
[m
]

−0.2
0.0

0.2
0.4

0.6
0.8

1.0

Z
[m

]

0.6

0.8

1.0

1.2

1.4

Ground truth

EVO (ev.+abs. scale)

Spline (ev.+abs. scale)

Spline (ev.+IMU+abs. scale)

Spline (ev.+IMU)

(c) Estimated trajectories and 3D map.

0

2

4

6

p
o
si
ti
o
n

er
ro
r
[c
m
]

0 2 4 6 8 10 12 14 16

time [s]

0

1

2

3

or
ie
n
ta
ti
on

er
ro
r
[d
eg
]

(d) Trajectory error in position and orientation.
Legend as in (c).

Figure I.7: Results for boxes dataset.

Table I.3: Results for boxes dataset.

Position error (abs. [cm] and rel. [%]) Orientation error [◦]
µ % σ % max % µ σ max

EVO (ev.+abs. scale) 1.66 0.62 0.88 0.33 6.83 2.56 0.99 0.50 2.77
Spline (ev.+abs. scale) 1.58 0.59 0.89 0.34 4.72 1.77 0.99 0.54 3.28
Spline (ev.+IMU+abs. scale) 1.34 0.50 0.62 0.23 3.59 1.35 0.91 0.49 3.24
Spline (ev.+IMU) 1.77 0.66 0.93 0.35 4.87 1.82 0.91 0.49 3.24

Relative errors are given with respect to the mean scene depth.

framework is a convenient representation of the camera trajectory since it has many
desirable properties, among them: (i) it solves the issue of establishing correspondences
between events and poses (since the pose at the time of the event is well-defined), and
(ii) it is a natural framework for data fusion: it deals with the asynchronous nature
of the events as well the synchronous samples from the IMU. As demonstrated in the
experiments, such event-inertial data fusion allows significantly increasing the accuracy
of the estimated camera motion over event-only–based approaches (e.g., by a factor of

201

Appendix I. Continuous-Time Visual-Inertial Trajectory Estimation

(a) Scene dynamic
(b) Event-based tracking. Events (gray) and
reprojected map (colored using depth).

X
[m
]

2.0

2.5

3.0

3.5

4.0

Y [m]

−2.5−2.0−1.5−1.0−0.5

Z
[m

]

0.6

0.8

1.0

1.2

1.4

Ground truth

EVO (ev.+abs. scale)

Spline (ev.+abs. scale)

Spline (ev.+IMU+abs. scale)

Spline (ev.+IMU)

(c) Estimated trajectories and 3D map.

0

2

4

6
p
o
si
ti
o
n

er
ro
r
[c
m
]

0 2 4 6 8 10 12 14 16

time [s]

0

1

2

3

or
ie
n
ta
ti
on

er
ro
r
[d
eg
]

(d) Trajectory error in position and orientation.
Legend as in (c).

Figure I.8: Results for dynamic dataset.

Table I.4: Results for dynamic dataset.

Position error (abs. [cm] and rel. [%]) Orientation error [◦]
µ % σ % max % µ σ max

EVO (ev.+abs. scale) 1.94 1.39 0.94 0.68 7.06 5.07 1.08 0.58 3.66
Spline (ev.+abs. scale) 1.74 1.25 0.74 0.53 6.40 4.59 1.08 0.56 3.42
Spline (ev.+IMU+abs. scale) 1.60 1.14 0.64 0.46 3.62 2.59 1.02 0.51 3.43
Spline (ev.+IMU) 1.78 1.27 0.62 0.45 3.23 2.32 1.02 0.51 3.43

Relative errors are given with respect to the mean scene depth.

four).

The proposed parametric B-spline model makes the trajectory optimization computa-
tionally feasible since it has local basis functions (i.e., sparse Hessian matrix), analytical
derivatives (i.e., fast to compute), and it is a compact representation: few parame-
ters (control poses) suffice to assimilate several hundred thousand events and inertial
measurements while providing a smooth trajectory. Additionally, batch optimization (si-

202

I.8. Discussion

Table I.5: Dataset Statistics and Computational Cost of the Optimization (I.29)

Dataset Statistics Computational Cost
Events-only Events + IMU

Experiment # Events # IMU # Control Poses Duration [s] Time [s] Iterations Time [s] Iterations

line-based 450,416 8,842 92 8.8 28.4 2 48.0 3
desk 883,449 19,317 99 19.3 110.7 8 181.0 7
boxes 2,064,028 14,977 103 15.0 82.0 1 407.7 8
dynamic 879,143 14,976 103 15.0 35.1 1 216.9 10

multaneous estimation of poses by exploiting their coupling), as opposed to filter-based
approaches, is the preferred strategy to achieve maximum accuracy, at the expense of
introducing some processing latency [49]. In this sense, our method demonstrated its
usefulness to refine trajectories from state-of-the-art event-based pose trackers such as
EVO, with or without inertial measurements. The current implementation runs off-line,
as a post-processing stage, but the method can be adapted for on-line processing in
a temporal sliding-window manner; the local support of the B-spline basis functions
enables such type of local temporal processing.

Another reason for adopting the continuous-time trajectory framework is that it is
agnostic to the map representation. We showed that the proposed method is flexible,
capable of estimating accurate camera trajectories in scenes with line-based maps as
well as point-based maps. In fact, the probabilistic (maximum likelihood) justification
of the optimization approach gracefully unifies both formulations, lines and points,
in the same objective function in a principled way. In this manner, we extended the
method in [101] and broadened its applicability to different types of maps (i.e., scenes).
The probabilistic formulation also allows a straightforward generalization to other error
distributions besides the normal one. More specifically, the results of the proposed
method on line-based and point-based maps show similar remarkable accuracy, with
mean position error of less than 1 % of the average scene depth, and mean orientation
error of less than 1◦. The absolute scale and gravity direction are recovered in both
types of maps, with an accuracy of approximately 5 %, which matches the accuracy of
the IMU accelerometer; thus, the proposed method takes full advantage of the accuracy
of the available sensor.

Using cumulative B-splines in SE(3) sets a prior on the shape of the trajectory. While
smooth rigid-body motions are well-approximated with such basis functions, they are
not suitable to fit discontinuities (such as bumps or crashes). In this work, we use fixed
temporal spacing of the control poses, which is not optimal when the motion speed
changes abruptly within a dataset. Choosing the optimal number of control poses and
their temporal spacing is beyond the scope of this paper and is left for future work.

203

Appendix I. Continuous-Time Visual-Inertial Trajectory Estimation

I.9 Conclusion

In this paper, we presented a visual-inertial odometry method for event cameras using
a continuous-time framework. This approach can deal with the asynchronous nature
of the events and the high frequency of the inertial measurements in a principled
way while providing a compact and smooth representation of the trajectory using
a parametric model. The pose trajectory is approximated by a smooth curve in the
space of rigid-body motions using cubic splines. The approximated trajectory is
then optimized according to a geometrically meaningful error measure in the image
plane and a direct inclusion of the inertial measurements, which have probabilistic
justifications. We tested our method on real data from two recent algorithms: a simple
line-based tracker and an event-based visual-odometry algorithm that works on natural
scenes. In all experiments, our method outperformed previous algorithms when
comparing to ground truth, with a remarkable accuracy: mean position error of less
than 1 % of the average scene depth, and mean orientation error of less than 1◦.

204

I.9. Conclusion

−20

−10

0

10

x
[c
m
]

Ground truth Tracker (ev.) Spline (ev.) Spline (ev.+IMU)

0

2

4

−26

−22

−18

−14

−10

y
[c
m
]

0

2

4

15

25

35

45

z
[c
m
]

0

2

4

−165

−155

−145

ro
ll
[d
eg
]

0

2

4

6

8

−30

−10

10

30

p
it
ch

[d
eg
]

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9

time [s]

−80

−40

0

40

ya
w

[d
eg
]

0 1 2 3 4 5 6 7 8 9

time [s]

0

2

4

6

8

Figure I.9: line-based dataset. Plots of the 6-DOF (left column) and error (right column) of the
estimated trajectories in Fig. I.5a.

205

Appendix I. Continuous-Time Visual-Inertial Trajectory Estimation

130

150

170

190

x
[c
m
]

Ground truth

EVO (ev.+abs. scale)

Spline (ev.+abs. scale)

Spline (ev.+IMU+abs. scale)

Spline (ev.+IMU)

0

1

2

3

−5

5

15

25

35

y
[c
m
]

0

1

2

3

135

145

155

z
[c
m
]

0

1

2

3

−135

−125

−115

ro
ll
[d
eg
]

0

1

2

3

4

−20

0

20

40

p
it
ch

[d
eg
]

0

1

2

3

4

0 5 10 15 20

time [s]

−135

−125

−115

−105

−95

ya
w

[d
eg
]

0 5 10 15 20

time [s]

0

1

2

3

4

Figure I.10: desk dataset. Plots of the 6-DOF (left column) and error (right column) of the
estimated trajectories in Fig. I.6c.

206

I.9. Conclusion

0

20

40

60

x
[c
m
]

Ground truth

EVO (ev.+abs. scale)

Spline (ev.+abs. scale)

Spline (ev.+IMU+abs. scale)

Spline (ev.+IMU)

0

2

4

6

110

130

150

170

y
[c
m
]

0

2

4

6

110

130

150

170

z
[c
m
]

0

2

4

6

−145

−135

−125

−115

−105

ro
ll
[d
eg
]

0

1

2

3

−8

−4

0

4

p
it
ch

[d
eg
]

0

1

2

3

0 2 4 6 8 10 12 14 16

time [s]

−185

−175

−165

−155

ya
w

[d
eg
]

0 2 4 6 8 10 12 14 16

time [s]

0

1

2

3

Figure I.11: boxes dataset. Plots of the 6-DOF (left column) and error (right column) of the
estimated trajectories in Fig. I.7c.

207

Appendix I. Continuous-Time Visual-Inertial Trajectory Estimation

170

190

210

230

x
[c
m
]

Ground truth

EVO (ev.+abs. scale)

Spline (ev.+abs. scale)

Spline (ev.+IMU+abs. scale)

Spline (ev.+IMU)

0

1

2

3

4

−200

−160

−120

y
[c
m
]

0

1

2

3

4

100

120

140

160

z
[c
m
]

0

1

2

3

4

−145

−135

−125

−115

−105

ro
ll
[d
eg
]

0

1

2

3

−25

−15

−5

5

15

p
it
ch

[d
eg
]

0

1

2

3

0 2 4 6 8 10 12 14 16

time [s]

−150

−130

−110

−90

ya
w

[d
eg
]

0 2 4 6 8 10 12 14 16

time [s]

0

1

2

3

Figure I.12: dynamic dataset. Plots of the 6-DOF (left column) and error (right column) of the
estimated trajectories in Fig. I.8c

208

J Slot-Car Racing

c©2015 IEEE. Reprinted, with permission, from:

T. Delbruck, M. Pfeiffer, R. Juston, G. Orchard, E. Müggler, A. Linares-Barranco, and
M. W. Tilden. “Human vs. Computer Slot Car Racing using an Event and Frame-Based
DAVIS Vision Sensor”. In: IEEE Int. Symp. Circuits Syst. (ISCAS). Lisbon, Portugal,
May 2015, pp. 2409–2412. doi: 10.1109/ISCAS.2015.7169170

209

http://dx.doi.org/10.1109/ISCAS.2015.7169170

Appendix J. Slot-Car Racing

Human vs. Computer Slot Car Racing
using an Event and Frame-Based DAVIS

Vision Sensor

Tobi Delbruck, Michael Pfeiffer, Raphaël Juston, Garrick Orchard, Elias

Müggler, Alejandro Linares-Barranco and Mark W. Tilden

Abstract — This paper describes an open-source implementation
of an event-based dynamic and active pixel vision sensor (DAVIS)
for racing human vs. computer on a slot car track. The DAVIS is
mounted in “eye-of-god” view. The DAVIS image frames are only
used for setup and are subsequently turned off because they are not
needed. The dynamic vision sensor (DVS) events are then used to
track both the human and computer controlled cars. The precise
control of throttle and braking afforded by the low latency of the
sensor output enables consistent out-performance of human drivers
at a laptop CPU load of <3 % and update rate of 666 Hz. The sparse
output of the DVS event stream results in a data rate that is about
1000 times smaller than from a frame-based camera with the same
resolution and update rate. The scaled average lap speed of the 1/64
scale cars is about 450 km/h which is twice as fast as the fastest
Formula 1 lap speed. A feedback-controller mode allows competitive
racing by slowing the computer controlled car when it is ahead of
the human. In tests of human vs. computer racing the computer still
won more than 80 % of the races.

J.1 Introduction

The DAVIS is a neuromorphic camera that outputs static image frames concurrently
with dynamic vision sensor (DVS) temporal contrast events [77, 19]. DVS address-

210

J.2. Hardware and Software Setup

Figure J.1: A track layout with the stream of DVS events (dots) caused by a moving car shown
as dots in 3D space-time. The average event rate caused by a moving car is about 5k events/sec.

events (AEs) asynchronously signal changes of log intensity. The AE timestamp (in
microseconds) codes the time of the events. Pixels with DVS output are neuromorphic
abstractions of retinal ganglion cells in biological retinas. Their sub-ms latency, sparse
output, and kHz pixel bandwidth has led to applications requiring high speed object
tracking with short-latency feedback, e.g. [16, 34]. In this work, we use the DVS outputs
to track slot cars and control one of the cars to race competitively against human drivers.
In this application, the DAVIS static frames were useful for setting up the sensor and
adjusting focusing, but subsequently the frames were not needed and were turned off.

J.2 Hardware and Software Setup

Fig. J.1 shows a racetrack together with sample DVS data produced by a single car
driving around the track. The 240x180 pixel DAVIS was mounted in “eye of god” view
over the table using a wide angle 2.6 mm lens with a horizontal field of view of 81◦

to cover the slot car track. As the cars go around the track, they create DVS events,
which are shown superimposed as 3D space-time events over the photo of the track.
These events are used as described later to track the cars and to control the computer
car throttle and braking. The events captured from the DAVIS are transmitted to the
host PC over a USB interface. Individual events are time-stamped with 1 µs resolution.

Slot cars contain a DC motor, a pin to guide the car along the slot in the track, two
brass brushes that pick up power from the metal rails of the track, and a magnet that
helps hold the car onto the steel track rails. Power to the car is normally regulated by
a simple throttle controller consisting of a wire-wound resistor. Racers attempt to go
as fast as possible around the track without flying off it. We used a HO-scale (1/64)
system from AFX Racing (www.afxracing.com) with car chassis type SRT. The cars
are 7 cm in length, and the track (Fig. J.2) had 15 turns in a length of 805 cm, or 900
pixels on the sensor image. The fastest lap times are about 4.1 s. The slot car speed of

211

www.afxracing.com

Appendix J. Slot-Car Racing

Figure J.2: Display of the slot car track with state information.

200 cm/s scaled to Formula 1 size is 450 km/h; for reference, the fastest average lap
speed achieved in a Formula 1 race was 248 km/h on a track with 11 turns (Monza
2003). Cars can accelerate to full speed in about 300 ms and decelerate by friction in
about the same time. The electronic motor braking (described later) slows the car even
faster, allowing more aggressive driving.

Implementation The software implementation of the slot car racer is open-sourced
in the jAER project 1 in the package ch.unizh.ini.jaer.projects.virtualslotcar.2 The main slot
car racer class is SlotCarRacer. The throttle controller described in this paper is the class
HumanVsComputerThrottleController.

J.2.1 Car Tracking, Track Model, and Track Masking

The operator sees a view of the track and other information superimposed on the
DAVIS sensor output as shown in Fig. J.2. Different parts of this display are labeled
and are referred to below.

Tracking (computed by the class CarTracker) uses a model of the car consisting of a
rectangle that is constrained to move along the track model, which is a list of track
vertices in sensor pixel coordinates. A CarCluster is a software object based on [34] that
has a 2D pixel position and a velocity along the track in track vertices per second. The
track model is obtained in a semi-automated way in TrackDefineFilter by driving each
car around alone, collecting a 2D event histogram, and then extracting a list of vertices
spaced by minimum distances, starting from the peak of the histogram. This list is then

1jAER Open Source Project (2007): http://jaerproject.org
2http://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/virtualslotcar

(r5522)

212

http://jaerproject.org
http://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src /ch/unizh/ini/jaer/projects/virtualslotcar

J.2. Hardware and Software Setup

Figure J.3: Mapping from each pixel location to the nearest track vertex speeds up lookup of
the nearest track vertex (number at each pixel location).

updated manually using a GUI to drag, add, and delete vertices.

Fig. J.4 illustrates the car tracking update. Each DVS event input to CarTracker is first
used to update the current car position according to the car velocity along the track,
using the last update time and the current event time. This update implements the
model inertia. Then the event is checked if it is near the location of the tracked car
(shaded rectangle in Fig. J.4 and boundaries of boxes surrounding cars in Fig. J.2). If
so, the car model is updated by either advancing or retarding the car position along
the track depending on whether the DVS event leads or lags the current car position.
The amount of advancement or retarding is set by a ‘mixing factor’ (typically about
0.02) that mixes the DVS event position with the current car position with the mixing
factor proportion. The update is done by projecting the vector ve from current car
position to the event onto the track vector vt connecting the nearest track vertex to
the next one along the track. A 2D lookup table (Fig. J.3) maps pixel coordinates to
the nearest track vertex, to speed up the search for the nearest track vertex. The car’s
track velocity is updated when the nearest vertex changes. The car tracker lifetime is
managed by a ‘mass’ that decays away exponentially with time between DVS events
and is incremented with each event. If the mass falls below a certain value, the car is
considered to be lost and tracking must be reinitialized.

J.2.2 Slot Car Throttle and Braking Hardware

We designed a slot car controller PCB (Fig. J.5) to control the power to up to 4 slot
car tracks from a computer over a full-speed USB2.0 interface. This controller controls
power to the cars by 1.5 kHz PWM modulation of the 17 V track power, and also
can short the car motor across a 20 Ω resistor for electronic braking. Only one track
controller is currently used and the other track is controlled by the human using the
standard throttle. The controller is updated with polling interval of 1 ms. The full

213

Appendix J. Slot-Car Racing

Figure J.4: CarTracker car position update.

PCB design of this controller and its firmware are available in the jAER project.3 A
prototype design did not use optocouplers and the results were frequent resets of
the USB microcontroller due to large voltage transients caused by sparking of the car
contact to the track which propagated back through the electronics. The final design of
Fig. J.5 uses optocouplers to correct this problem.

J.2.3 Throttle Control

Controlling the computer car consists of setting the throttle value or applying the brake
at each vertex of the track model based on a vector of throttle/brake settings called
a throttle profile. An example throttle profile is shown in Fig. J.6. We investigated
a number of methods to optimize the throttle profile. Eventually we found that
the fastest method is to 1) determine an initial throttle profile by settings derived
automatically from the track curvature so that straight sections have higher initial
throttle; 2) examining the car visually and then gradually increasing the throttle or
applying brake by eye, using a GUI interface to “paint” throttle and brake settings.
An evolutionary method was also developed to learn the optimum throttle profile by
inserting throttle increases and seeing if they result in successful laps. After a crash,
the insertion is removed or braking points are inserted. The required learning time is
currently still considerably longer than by manual adjustment of the profile and more
work needs to be done to understand the optimum strategy.

To make racing more competitive, a mode can be enabled that slows the computer
down from its optimum throttle value to a minimum value, depending on how far
ahead is the computer car. Typically a value of one third of the total track for complete
slow-down is effective for resulting in exciting side-by-side racing.

3http://sourceforge.net/p/jaer/code/HEAD/tree/devices/pcbs/SlotCarControllerPCB/ (r5522)

214

http://sourceforge.net/p/jaer/code/HEAD/tree/devices/pcbs/S lotCarControllerPCB/

J.2. Hardware and Software Setup

Figure J.5: The slot car controller PCB controls up to 4 lanes.3 A: interface circuit of a single lane
for throttle and brake control. The optocoupler pulldown outputs (OptThrOut & OutBrOut)
feed the power MOSFET gates through RC low pass filters with τ = 0.5 ms. A fuse F1 protects
against shorts. R16 is a power resistor for motor braking. B: Fabricated PCB with USB cable
(bottom) and track/power connections (top).

Figure J.6: Throttle and brake profile that achieves 4.1 s lap times on track in Fig. J.2.

215

Appendix J. Slot-Car Racing

Figure J.7: Slot car position and speed vs. time on a different track. Two laps are completed
successfully using motor braking to slow down just after track vertex 0. On the last lap, motor
braking is disabled, resulting in a crash.

J.3 Results

A series of YouTube videos document the evolution of the slot car racer since 2010.456

The final video shows the setup and a race between computer and human, including
control that slows the computer car when it is ahead of the human.

A sample of two recorded laps by the computer controlled car is shown in Fig. J.7. This
data is taken from a different track. Over two laps, the car position increases and then
wraps back to vertex 0. At the end of the straightway, motor braking rapidly decreases
the car speed, as indicated by the “braking” arrow. During the last lap, motor braking
is disabled (“No braking”), resulting in a crash after the straightway.

A series of ten 3-lap races between human and computer had the following results: The
first human had 1 win, 2 losses, and 7 DNF (did not finish, i.e. crashed). The second
human had 3 wins, 4 losses, and 3 DNFs, however after the feedback control to slow
the computer car was turned off halfway through the series of ten races, the second
human was no longer able to win.

Processing cost and throughput Processing SlotCarRacer on a Lenovo W510 Core i7
laptop results in a CPU load of 1 % to 3 % for the Java virtual machine, when graphical
rendering is disabled.

The update interval on the host computer was determined by instrumenting the USB
data packets received by the high-priority USB processing thread using the Java method
System.nanoTime(). All the slot car racer processing is done in this thread, rather than
the display rendering thread, which runs at most 60 Hz. The DAVIS camera includes
a feature called ‘early packet timer’ which ensures that USB FIFOs are committed to

4slotCarRacingTelluride2010.wmv (2010): http://youtu.be/ALneVn-Ls2Q
5Slot car racer controlled by DVS Capo Caccia 2014: http://youtu.be/CnGPGiZuFRI
6Slot Car Racing with DAVIS neuromorphic vision sensor: http://youtu.be/AsO1TWS8_VA

216

http://youtu.be/ALneVn-Ls2Q
http://youtu.be/CnGPGiZuFRI
http://youtu.be/AsO1TWS8_VA

J.4. Conclusion

the host with intervals of at most 1.5 ms, and on the host side the processing intervals
closely matched this interval.

J.4 Conclusion

Conventional machine vision using frame-based sensors faces a fundamental latency-
power tradeoff. Low latency can only be achieved by processing at a high frame rate,
which burns more power. The CPU load of less than 3 % achieved in the slot car racer
is a result of the low data rate averaging 5keps (thousand events per second) per car.
The staring camera scenario is ideal for using the DVS, since only the small moving
slot cars create DVS events. The early packet timer transmits available events from
the camera at a minimum rate of 1/1.5 ms = 666 Hz, which means that most packets
sent to the host contain only about 7 events per car. This is a small amount of data to
process. By comparison, if the 240x180 pixel image could be transmitted to the host at
666 Hz, it would mean a data rate of 29M pixels/s, which would be a factor of about
1,000 times more data.

The slot car racer robot is a popular demonstration of the use of a DAVIS sensor, mainly
because racing is fun and it is a contest between human and computer that involves
quick reaction times. The principle of operation is simple and easy to explain. In
practice, because the computer is so precise, and because it can use motor braking,
it is practically unbeatable and so to produce the illusion of a competitive race it is
necessary to enable the mode where the computer car is slowed down if it is ahead.

The control of the car is in some sense open-loop because the throttle and brake are
applied according to the instantaneous position of the car on the track, regardless of
the car’s speed. Future enhancements could focus on developing an adaptive model-
based controller that regulates the speed of the car to a desired level that is safe for the
curvature. Our attempts to do this were not successful because the model is surprisingly
complex. The physics of car movement along the track and the action of the power
applied to the car on its speed are complicated by track curvature, friction, individual
car variability, motor heating, etc. However the short latency ofsensor measurement
could enable visual feedback on throttle control.

217

Bibliography

[1] E. H. Adelson and J. R. Bergen. “Spatiotemporal energy models for the per-
ception of motion”. In: J. Opt. Soc. Am. A 2.2 (1985), pp. 284–299. doi: 10 .
1364/JOSAA.2.000284.

[2] A. Agarwal, K. Mierle, et al. Ceres Solver. http://ceres-solver.org.

[3] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N.
Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. B.
Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha. “TrueNorth: Design
and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic
Chip”. In: IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 34.10 (2015),
pp. 1537–1557. issn: 0278-0070. doi: 10.1109/TCAD.2015.2474396.

[4] H. S. Alismail, L. D. Baker, and B. Browning. “Continuous trajectory estimation
for 3D SLAM from actuated lidar”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2014,
pp. 6096–6101. doi: 10.1109/ICRA.2014.6907757.

[5] S. Anderson, F. Dellaert, and T. D. Barfoot. “A hierarchical wavelet decomposi-
tion for continuous-time SLAM”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2014,
pp. 373–380. doi: 10.1109/ICRA.2014.6906884.

[6] P. Bardow, A. J. Davison, and S. Leutenegger. “Simultaneous Optical Flow and
Intensity Estimation From an Event Camera”. In: Proc. IEEE Int. Conf. Comput.
Vis. Pattern Recog. 2016. doi: 10.1109/CVPR.2016.102.

[7] F. Barranco, C. Fermuller, Y. Aloimonos, and T. Delbruck. “A Dataset for Visual
Navigation with Neuromorphic Methods”. In: Front. Neurosci. 10 (2016), p. 49.
doi: 10.3389/fnins.2016.00049.

[8] A. N. Belbachir. Smart Cameras. Springer US, 2009. isbn: 9781441909534.

[9] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and C. Bartolozzi. “Event-Based
Visual Flow”. In: IEEE Trans. Neural Netw. Learn. Syst. 25.2 (2014), pp. 407–417.
doi: 10.1109/TNNLS.2013.2273537.

[10] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M. Srinivasan. “Asyn-
chronous frameless event-based optical flow”. In: Neural Netw. 27 (2012), pp. 32–
37. doi: 10.1016/j.neunet.2011.11.001.

[11] R. Benosman, S.-H. Ieng, P. Rogister, and C. Posch. “Asynchronous Event-Based
Hebbian Epipolar Geometry”. In: IEEE Trans. Neural Netw. 22.11 (2011), pp. 1723–
1734. doi: 10.1109/TNN.2011.2167239.

[12] P. J. Besl and N. D. McKay. “A method for registration of 3-D shapes”. In: IEEE
Trans. Pattern Anal. Machine Intell. 14.2 (1992), pp. 239–256. doi: 10.1109/34.
121791.

219

http://dx.doi.org/10.1364/JOSAA.2.000284
http://dx.doi.org/10.1364/JOSAA.2.000284
http://ceres-solver.org
http://dx.doi.org/10.1109/TCAD.2015.2474396
http://dx.doi.org/10.1109/ICRA.2014.6907757
http://dx.doi.org/10.1109/ICRA.2014.6906884
http://dx.doi.org/10.1109/CVPR.2016.102
http://dx.doi.org/10.3389/fnins.2016.00049
http://dx.doi.org/10.1109/TNNLS.2013.2273537
http://dx.doi.org/10.1016/j.neunet.2011.11.001
http://dx.doi.org/10.1109/TNN.2011.2167239
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/34.121791

Bibliography

[13] C. Bibby and I. D. Reid. “A hybrid SLAM representation for dynamic marine
environments”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2010, pp. 257–264. doi:
10.1109/ROBOT.2010.5509262.

[14] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New
York, Inc., 2006.

[15] K. Boahen. “A Retinomorphic Chip with Parallel Pathways: Encoding INCREAS-
ING, ON, DECREASING, and OFF Visual Signals”. In: Analog Integr. Circuits
Signal Process. 30.2 (2002), pp. 121–135. doi: 10.1023/A:1013751627357.

[16] A. Bolopion, Z. Ni, J. Agnus, R. Benosman, and S. Régnier. “Stable Haptic
Feedback based on a Dynamic Vision Sensor for Microrobotics”. In: IEEE/RSJ
Int. Conf. Intell. Robot. Syst. (IROS). 2012. doi: 10.1109/IROS.2012.6385557.

[17] J.-Y. Bouguet. Camera Calibration Toolbox for Matlab. url: http://www.vision.
caltech.edu/bouguetj/calib_doc/.

[18] C. Braendli, J. Strubel, S. Keller, D. Scaramuzza, and T. Delbruck. “ELiSeD - An
Event-Based Line Segment Detector”. In: Int. Conf. Event-Based Control, Comm.
Signal Proc. (EBCCSP). Krakow, Poland, June 2016. doi: 10.1109/EBCCSP.2016.
7605244.

[19] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck. “A 240x180 130dB
3us Latency Global Shutter Spatiotemporal Vision Sensor”. In: IEEE J. Solid-State
Circuits 49.10 (2014), pp. 2333–2341. issn: 0018-9200. doi: 10.1109/JSSC.2014.
2342715.

[20] C. Brandli, L. Muller, and T. Delbruck. “Real-time, high-speed video decompres-
sion using a frame- and event-based DAVIS sensor”. In: IEEE Int. Symp. Circuits
Syst. (ISCAS). June 2014, pp. 686–689. doi: 10.1109/ISCAS.2014.6865228.

[21] W. G. Breckenridge. Quaternions proposed standard conventions. Tech. rep. NASA
Jet Propulsion Laboratory, Oct. 1979.

[22] D. Brescianini, M. Hehn, and R. D’Andrea. “Quadrocopter Pole Acrobatics”.
In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). Nov. 2013, pp. 3472–3479. doi:
10.1109/IROS.2013.6696851.

[23] J. Canny. “A Computational Approach to Edge Detection”. In: IEEE Trans. Pattern
Anal. Machine Intell. PAMI-8.6 (Nov. 1986), pp. 679–698. doi: 10.1109/TPAMI.
1986.4767851.

[24] J. Carneiro, S.-H. Ieng, C. Posch, and R. Benosman. “Event-based 3D recon-
struction from neuromorphic retinas”. In: Neural Netw. 45 (2013), pp. 27–38. doi:
10.1016/j.neunet.2013.03.006.

[25] S. Caviglia, L. Pinna, M. Valle, and C. Bartolozzi. “Spike-Based Readout of
POSFET Tactile Sensors”. In: IEEE Trans. Circuits Syst. I, Reg. Papers PP.99 (2016),
pp. 1–11. doi: 10.1109/TCSI.2016.2561818.

[26] A. Censi and D. Scaramuzza. “Low-Latency Event-Based Visual Odometry”. In:
IEEE Int. Conf. Robot. Autom. (ICRA). 2014. doi: 10.1109/IROS.2016.7758089.

220

http://dx.doi.org/10.1109/ROBOT.2010.5509262
http://dx.doi.org/10.1023/A:1013751627357
http://dx.doi.org/10.1109/IROS.2012.6385557
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://dx.doi.org/10.1109/EBCCSP.2016.7605244
http://dx.doi.org/10.1109/EBCCSP.2016.7605244
http://dx.doi.org/10.1109/JSSC.2014.2342715
http://dx.doi.org/10.1109/JSSC.2014.2342715
http://dx.doi.org/10.1109/ISCAS.2014.6865228
http://dx.doi.org/10.1109/IROS.2013.6696851
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1016/j.neunet.2013.03.006
http://dx.doi.org/10.1109/TCSI.2016.2561818
http://dx.doi.org/10.1109/IROS.2016.7758089

Bibliography

[27] A. Censi, J. Strubel, C. Brandli, T. Delbruck, and D. Scaramuzza. “Low-latency
localization by Active LED Markers tracking using a Dynamic Vision Sensor”.
In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2013. doi: 10.1109/IROS.2013.
6696456.

[28] X. Clady, C. Clercq, S.-H. Ieng, F. Houseini, M. Randazzo, L. Natale, C. Bar-
tolozzi, and R. Benosman. “Asynchronous visual event-based time-to-contact”.
In: Front. Neurosci. 8.9 (2014). doi: 10.3389/fnins.2014.00009.

[29] X. Clady, S.-H. Ieng, and R. Benosman. “Asynchronous event-based corner
detection and matching”. In: Neural Netw. 66 (2015), pp. 91–106. issn: 0893-6080.
doi: 10.1016/j.neunet.2015.02.013.

[30] C. Tomasi and T. Kanade. Detection and Tracking of Point Features. Tech. rep.
Carnegie Mellon University, 1991.

[31] J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, R. J. Douglas, and T. Delbruck.
“A Pencil Balancing Robot using a Pair of AER Dynamic Vision Sensors”. In:
IEEE Int. Symp. Circuits Syst. (ISCAS). 2009, pp. 781–784. doi: 10.1109/ISCAS.
2009.5117867.

[32] M. Cook, L. Gugelmann, F. Jug, C. Krautz, and A. Steger. “Interacting maps
for fast visual interpretation”. In: Int. Joint Conf. Neural Netw. (IJCNN). 2011,
pp. 770–776. doi: 10.1109/IJCNN.2011.6033299.

[33] T. Delbruck. “Frame-free dynamic digital vision”. In: Proc. Int. Symp. Secure-Life
Electron. 2008, pp. 21–26.

[34] T. Delbruck and M. Lang. “Robotic Goalie with 3ms Reaction Time at 4% CPU
Load Using Event-Based Dynamic Vision Sensor”. In: Front. Neurosci. 7.223
(2013). doi: 10.3389/fnins.2013.00223.

[35] T. Delbruck and P. Lichtsteiner. “Fast sensory motor control based on event-
based hybrid neuromorphic-procedural system”. In: IEEE Int. Symp. Circuits
Syst. (ISCAS). May 2007, pp. 845–848. doi: 10.1109/ISCAS.2007.378038.

[36] T. Delbruck, B. Linares-Barranco, E. Culurciello, and C. Posch. “Activity-driven,
event-based vision sensors”. In: IEEE Int. Symp. Circuits Syst. (ISCAS). May 2010,
pp. 2426–2429. doi: 10.1109/ISCAS.2010.5537149.

[37] T. Delbruck, M. Pfeiffer, R. Juston, G. Orchard, E. Müggler, A. Linares-Barranco,
and M. W. Tilden. “Human vs. Computer Slot Car Racing using an Event and
Frame-Based DAVIS Vision Sensor”. In: IEEE Int. Symp. Circuits Syst. (ISCAS).
Lisbon, Portugal, May 2015, pp. 2409–2412. doi: 10.1109/ISCAS.2015.7169170.

[38] T. Delbruck, V. Villanueva, and L. Longinotti. “Integration of dynamic vision
sensor with inertial measurement unit for electronically stabilized event-based
vision”. In: IEEE Int. Symp. Circuits Syst. (ISCAS). June 2014, pp. 2636–2639. doi:
10.1109/ISCAS.2014.6865714.

[39] J. Delmerico, A. Giusti, E. Mueggler, L. M. Gambardella, and D. Scaramuzza.
““On-the-spot Training” for Terrain Classification in Autonomous Air-Ground
Collaborative Teams”. In: Int. Symp. Experimental Robotics (ISER). 2016. doi:
10.1007/978-3-319-50115-4_50.

221

http://dx.doi.org/10.1109/IROS.2013.6696456
http://dx.doi.org/10.1109/IROS.2013.6696456
http://dx.doi.org/10.3389/fnins.2014.00009
http://dx.doi.org/10.1016/j.neunet.2015.02.013
http://dx.doi.org/10.1109/ISCAS.2009.5117867
http://dx.doi.org/10.1109/ISCAS.2009.5117867
http://dx.doi.org/10.1109/IJCNN.2011.6033299
http://dx.doi.org/10.3389/fnins.2013.00223
http://dx.doi.org/10.1109/ISCAS.2007.378038
http://dx.doi.org/10.1109/ISCAS.2010.5537149
http://dx.doi.org/10.1109/ISCAS.2015.7169170
http://dx.doi.org/10.1109/ISCAS.2014.6865714
http://dx.doi.org/10.1007/978-3-319-50115-4_50

Bibliography

[40] J. Delmerico, E. Mueggler, J. Nitsch, and D. Scaramuzza. “Active Autonomous
Aerial Exploration for Ground Robot Path Planning”. In: IEEE Robot. Autom.
Lett. 2.2 (2017), pp. 664–671. doi: 10.1109/LRA.2017.2651163.

[41] D. Drazen, P. Lichtsteiner, P. Häfliger, T. Delbrück, and A. Jensen. “Toward real-
time particle tracking using an event-based dynamic vision sensor”. In: Experi-
ments in Fluids 51.5 (2011), pp. 1465–1469. issn: 0723-4864. doi: 10.1007/s00348-
011-1207-y.

[42] D. Drubach. The Brain Explained. Upper Saddle River, NJ, USA: Prentice-Hall,
2000.

[43] R. O. Duda and P. E. Hart. “Use of the Hough Transformation to Detect Lines
and Curves in Pictures”. In: Commun. ACM 15.1 (1972), pp. 11–15. doi: 10 .
1145/361237.361242.

[44] P. Dudek and P. J. Hicks. “A general-purpose processor-per-pixel analog SIMD
vision chip”. In: IEEE Trans. Circuits Syst. I, Reg. Papers 52.1 (2005), pp. 13–20.
doi: 10.1109/TCSI.2004.840093.

[45] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scara-
muzza. “Autonomous, Vision-based Flight and Live Dense 3D Mapping with
a Quadrotor MAV”. In: J. Field Robot. 33.4 (2016), pp. 431–450. issn: 1556-4967.
doi: 10.1002/rob.21581.

[46] M. Faessler, E. Mueggler, K. Schwabe, and D. Scaramuzza. “A Monocular Pose
Estimation System based on Infrared LEDs”. In: IEEE Int. Conf. Robot. Autom.
(ICRA). 2014, pp. 907–913. doi: 10.1109/ICRA.2014.6906962.

[47] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza. “Aggressive Quadro-
tor Flight through Narrow Gaps with Onboard Sensing and Computing”. In:
IEEE Int. Conf. Robot. Autom. (ICRA). 2017.

[48] M. A. Fischler and R. C. Bolles. “Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography”.
In: Commun. ACM 24.6 (1981), pp. 381–395. issn: 0001-0782. doi: http://doi.acm.
org/10.1145/358669.358692.

[49] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza. “On-Manifold Preintegra-
tion for Real-Time Visual-Inertial Odometry”. In: IEEE Trans. Robot. 33.1 (2017),
pp. 1–21. doi: 10.1109/TRO.2016.2597321.

[50] C. Forster, M. Pizzoli, and D. Scaramuzza. “SVO: Fast Semi-Direct Monocular
Visual Odometry”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2014, pp. 15–22. doi:
10.1109/ICRA.2014.6906584.

[51] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Temple, and
A. D. Brown. “Overview of the SpiNNaker System Architecture”. In: IEEE Trans.
Comput. 62.12 (2013), pp. 2454–2467. issn: 0018-9340. doi: 10.1109/TC.2012.142.

[52] P. Furgale, T. D. Barfoot, and G. Sibley. “Continuous-Time Batch Estimation
using Temporal Basis Functions”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2012,
pp. 2088–2095. doi: 10.1109/ICRA.2012.6225005.

222

http://dx.doi.org/10.1109/LRA.2017.2651163
http://dx.doi.org/10.1007/s00348-011-1207-y
http://dx.doi.org/10.1007/s00348-011-1207-y
http://dx.doi.org/10.1145/361237.361242
http://dx.doi.org/10.1145/361237.361242
http://dx.doi.org/10.1109/TCSI.2004.840093
http://dx.doi.org/10.1002/rob.21581
http://dx.doi.org/10.1109/ICRA.2014.6906962
http://dx.doi.org/http://doi.acm.org/10.1145/358669.358692
http://dx.doi.org/http://doi.acm.org/10.1145/358669.358692
http://dx.doi.org/10.1109/TRO.2016.2597321
http://dx.doi.org/10.1109/ICRA.2014.6906584
http://dx.doi.org/10.1109/TC.2012.142
http://dx.doi.org/10.1109/ICRA.2012.6225005

Bibliography

[53] G. Gallego, J. E. A. Lund, E. Mueggler, H. Rebecq, T. Delbruck, and D. Scara-
muzza. “Event-based, 6-DOF Camera Tracking for High-Speed Applications”.
arXiv:1607.03468. 2016.

[54] G. Gallego, J. E. A. Lund, E. Mueggler, H. Rebecq, T. Delbruck, and D. Scara-
muzza. “Event-based, 6-DOF Camera Tracking for High-Speed Applications”.
In: IEEE Trans. Pattern Anal. Machine Intell. (2017). under review.

[55] G. Gallego and D. Scaramuzza. “Accurate Angular Velocity Estimation with
an Event Camera”. In: IEEE Robot. Autom. Lett. 2 (2 2017), pp. 632–639. issn:
2377-3766. doi: 10.1109/LRA.2016.2647639.

[56] T. A. Gibson, S. Heath, R. P. Quinn, A. H. Lee, J. T. Arnold, T. S. Sonti, A.
Whalley, G. P. Shannon, B. T. Song, J. A. Henderson, and J. Wiles. “Event-Based
Visual Data Sets for Prediction Tasks in Spiking Neural Networks”. In: Int. Conf.
Artificial Neural Netw. 2014. doi: 10.1007/978-3-319-11179-7_80.

[57] S. Grzonka, G. Grisetti, and W. Burgard. “A Fully Autonomous Indoor Quadro-
tor”. In: IEEE Trans. Robot. 28.1 (2012), pp. 90–100. doi: 10.1109/TRO.2011.
2162999.

[58] C. Harris and M. Stephens. “A combined corner and edge detector”. In: Proc.
Fourth Alvey Vision Conf. Vol. 15. Manchester, UK, 1988, pp. 147–151.

[59] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Second
Edition. Cambridge University Press, 2003.

[60] R. Hoffmann, D. Weikersdorfer, and J. Conradt. “Autonomous indoor explo-
ration with an event-based visual SLAM system”. In: Eur. Conf. Mobile Robots
(ECMR). 2013, pp. 38–43. doi: 10.1109/ECMR.2013.6698817.

[61] Y. Hu, H. Liu, M. Pfeiffer, and T. Delbruck. “DVS Benchmark Datasets for Object
Tracking, Action Recognition, and Object Recognition”. In: Front. Neurosci. 10
(2016), p. 405. doi: 10.3389/fnins.2016.00405.

[62] D. Q. Huynh. “Metrics for 3D Rotations: Comparison and Analysis”. In: J. Math.
Imaging Vis. 35.2 (2009), pp. 155–164. doi: 10.1007/s10851-009-0161-2.

[63] R. Kalman. “A New Approach to Linear Filtering and Prediction Problems”. In:
J. Basic Eng. 82 (1 1960), pp. 35–45.

[64] R. Käslin, P. Fankhauser, E. Stumm, Z. Taylor, E. Mueggler, J. Delmerico, D.
Scaramuzza, R. Siegwart, and M. Hutter. “Collaborative localization of aerial and
ground robots through elevation maps”. In: IEEE Int. Symp. Safety, Security, and
Rescue Robot. (SSRR). Oct. 2016, pp. 284–290. doi: 10.1109/SSRR.2016.7784317.

[65] C. Kerl, J. Stückler, and D. Cremers. “Dense Continuous-Time Tracking and
Mapping with Rolling Shutter RGB-D Cameras”. In: Int. Conf. Comput. Vis.
(ICCV). 2015. doi: 10.1109/ICCV.2015.261.

[66] H. Kim, A. Handa, R. Benosman, S.-H. Ieng, and A. J. Davison. “Simultaneous
Mosaicing and Tracking with an Event Camera”. In: British Machine Vis. Conf.
(BMVC). 2014. doi: 10.5244/C.28.26.

[67] H. Kim, S. Leutenegger, and A. J. Davison. “Real-Time 3D Reconstruction and
6-DoF Tracking with an Event Camera”. In: Eur. Conf. Comput. Vis. (ECCV). 2016,
pp. 349–364. doi: 10.1007/978-3-319-46466-4_21.

223

http://dx.doi.org/10.1109/LRA.2016.2647639
http://dx.doi.org/10.1007/978-3-319-11179-7_80
http://dx.doi.org/10.1109/TRO.2011.2162999
http://dx.doi.org/10.1109/TRO.2011.2162999
http://dx.doi.org/10.1109/ECMR.2013.6698817
http://dx.doi.org/10.3389/fnins.2016.00405
http://dx.doi.org/10.1007/s10851-009-0161-2
http://dx.doi.org/10.1109/SSRR.2016.7784317
http://dx.doi.org/10.1109/ICCV.2015.261
http://dx.doi.org/10.5244/C.28.26
http://dx.doi.org/10.1007/978-3-319-46466-4_21

Bibliography

[68] L. Kneip, D. Scaramuzza, and R. Siegwart. “A novel parametrization of the
perspective-three-point problem for a direct computation of absolute camera
position and orientation”. In: Proc. IEEE Int. Conf. Comput. Vis. Pattern Recog.
2011, pp. 2969–2976. doi: 10.1109/CVPR.2011.5995464.

[69] J. Kogler, C. Sulzbachner, and W. Kubinger. “Bio-inspired Stereo Vision System
with Silicon Retina Imagers”. In: Int. Conf. Comput. Vis. Syst. (ICVS). 2009,
pp. 174–183. doi: 10.1007/978-3-642-04667-4_18.

[70] B. Kueng, E. Mueggler, G. Gallego, and D. Scaramuzza. “Low-latency Visual
Odometry using Event-based Feature Tracks”. In: IEEE/RSJ Int. Conf. Intell.
Robot. Syst. (IROS). Daejeon, Korea, Oct. 2016, pp. 16–23. doi: 10.1109/IROS.
2016.7758089.

[71] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In: Ann. Math.
Statist. 22.1 (1951), pp. 79–86. doi: 10.1214/aoms/1177729694.

[72] X. Lagorce, C. Meyer, S.-H. Ieng, D. Filliat, and R. Benosman. “Asynchronous
Event-Based Multikernel Algorithm for High-Speed Visual Features Tracking”.
In: IEEE Trans. Neural Netw. Learn. Syst. 26.8 (Aug. 2015), pp. 1710–1720. issn:
2162-237X. doi: 10.1109/TNNLS.2014.2352401.

[73] D. N. Lee. “A theory of visual control of braking based on information about
time-to-collision.” In: Perception 5.4 (1976), pp. 437–459. doi: 10.1068/p050437.

[74] J. Lee, T. Delbruck, P. K. J. Park, M. Pfeiffer, C.-W. Shin, H. Ryu, and B. C.
Kang. “Live demonstration: Gesture-Based remote control using stereo pair of
dynamic vision sensors”. In: IEEE Int. Symp. Circuits Syst. (ISCAS). 2012. doi:
10.1109/ISCAS.2012.6272144.

[75] C. Li, C. Brandli, R. Berner, H. Liu, M. Yang, S.-C. Liu, and T. Delbruck. “An
RGBW Color VGA Rolling and Global Shutter Dynamic and Active-Pixel Vision
Sensor”. In: International Image Sensor Workshop (IISW). Vaals, Netherlands, June
2015.

[76] C. Li, C. Brandli, R. Berner, H. Liu, M. Yang, S.-C. Liu, and T. Delbruck. “Design
of an RGBW color VGA rolling and global shutter dynamic and active-pixel vi-
sion sensor”. In: IEEE Int. Symp. Circuits Syst. (ISCAS). 2015. doi: 10.1109/ISCAS.
2015.7168734.

[77] P. Lichtsteiner, C. Posch, and T. Delbruck. “A 128×128 120 dB 15 µs latency
asynchronous temporal contrast vision sensor”. In: IEEE J. Solid-State Circuits
43.2 (2008), pp. 566–576. doi: 10.1109/JSSC.2007.914337.

[78] P. Lichtsteiner, C. Posch, and T. Delbruck. “A 128x128 120dB 30mW asyn-
chronous vision sensor that responds to relative intensity change”. In: IEEE Intl.
Solid-State Circuits Conf. (ISSCC). Feb. 2006, pp. 2060–2069. doi: 10.1109/ISSCC.
2006.1696265.

[79] M. Litzenberger, A. N. Belbachir, N. Donath, G. Gritsch, H. Garn, B. Kohn, C.
Posch, and S. Schraml. “Estimation of Vehicle Speed Based on Asynchronous
Data from a Silicon Retina Optical Sensor”. In: IEEE Intell. Transp. Sys. Conf. Sept.
2006, pp. 653–658. doi: 10.1109/ITSC.2006.1706816.

224

http://dx.doi.org/10.1109/CVPR.2011.5995464
http://dx.doi.org/10.1007/978-3-642-04667-4_18
http://dx.doi.org/10.1109/IROS.2016.7758089
http://dx.doi.org/10.1109/IROS.2016.7758089
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1109/TNNLS.2014.2352401
http://dx.doi.org/10.1068/p050437
http://dx.doi.org/10.1109/ISCAS.2012.6272144
http://dx.doi.org/10.1109/ISCAS.2015.7168734
http://dx.doi.org/10.1109/ISCAS.2015.7168734
http://dx.doi.org/10.1109/JSSC.2007.914337
http://dx.doi.org/10.1109/ISSCC.2006.1696265
http://dx.doi.org/10.1109/ISSCC.2006.1696265
http://dx.doi.org/10.1109/ITSC.2006.1706816

Bibliography

[80] M. Litzenberger, C. Posch, D. Bauer, A. N. Belbachir, P. Schön, B. Kohn, and
H. Garn. “Embedded Vision System for Real-Time Object Tracking using an
Asynchronous Transient Vision Sensor”. In: Digital Signal Processing Workshop.
Sept. 2006, pp. 173–178. doi: 10.1109/DSPWS.2006.265448.

[81] H. Liu, D. P. Moeys, G. Das, D. Neil, S.-C. Liu, and T. Delbruck. “Combined
frame- and event-based detection and tracking”. In: IEEE Int. Symp. Circuits Syst.
(ISCAS). 2016, pp. 2511–2514. doi: 10.1109/ISCAS.2016.7539103.

[82] S.-C. Liu and T. Delbruck. “Neuromorphic sensory systems”. In: Current Opinion
in Neurobiology 20.3 (2010), pp. 288–295. doi: 10.1016/j.conb.2010.03.007.

[83] S.-C. Liu, T. Delbruck, G. Indiveri, A. Whatley, and R. Douglas. Event-Based
Neuromorphic Systems. John Wiley & Sons, 2015.

[84] S.-C. Liu, A. van Schaik, B. A. Minch, and T. Delbruck. “Asynchronous Binaural
Spatial Audition Sensor With 2x64x4 Channel Output”. In: IEEE Trans. Biomed.
Circuits Syst. 8.4 (2014), pp. 453–464. doi: 10.1109/TBCAS.2013.2281834.

[85] B. D. Lucas and T. Kanade. “An Iterative Image Registration Technique with an
Application to Stereo Vision”. In: Int. Joint Conf. Artificial Intell. 1981, pp. 674–679.

[86] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and R.
D’Andrea. “A platform for aerial robotics research and demonstration: The
Flying Machine Arena”. In: J. Mechatronics 24.1 (Feb. 2014), pp. 41–54. doi:
10.1016/j.mechatronics.2013.11.006.

[87] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea. “A simple learning
strategy for high-speed quadrocopter multi-flips”. In: IEEE Int. Conf. Robot.
Autom. (ICRA). May 2010, pp. 1642–1648. doi: 10.1109/ROBOT.2010.5509452.

[88] Y. Ma, S. Soatto, J. Košecká, and S. Sastry. An Invitation to 3-D Vision: From Images
to Geometric Models. Springer, 2004.

[89] M. Mahowald. “The Silicon Retina”. In: An Analog VLSI System for Stereoscopic
Vision. Boston, MA: Springer US, 1994, pp. 4–65. isbn: 978-1-4615-2724-4. doi:
10.1007/978-1-4615-2724-4_2.

[90] M. Mahowald. “VLSI Analogs of Neuronal Visual Processing: A Synthesis of
Form and Function”. PhD thesis. Pasadena, California: California Institute of
Technology, May 1992.

[91] C. A. Mead and M. Mahowald. “A silicon model of early visual processing”. In:
Neural Netw. 1.1 (1989), pp. 91–97. doi: 10.1016/0893-6080(88)90024-X.

[92] D. Mellinger and V. Kumar. “Minimum snap trajectory generation and control
for quadrotors”. In: IEEE Int. Conf. Robot. Autom. (ICRA). May 2011, pp. 2520–
2525. doi: 10.1109/ICRA.2011.5980409.

[93] D. Mellinger, N. Michael, and V. Kumar. “Trajectory generation and control for
precise aggressive maneuvers with quadrotors”. In: Int. J. Robot. Research 31.5
(2012), pp. 664–674. doi: 10.1177/0278364911434236.

225

http://dx.doi.org/10.1109/DSPWS.2006.265448
http://dx.doi.org/10.1109/ISCAS.2016.7539103
http://dx.doi.org/10.1016/j.conb.2010.03.007
http://dx.doi.org/10.1109/TBCAS.2013.2281834
http://dx.doi.org/10.1016/j.mechatronics.2013.11.006
http://dx.doi.org/10.1109/ROBOT.2010.5509452
http://dx.doi.org/10.1007/978-1-4615-2724-4_2
http://dx.doi.org/10.1016/0893-6080(88)90024-X
http://dx.doi.org/10.1109/ICRA.2011.5980409
http://dx.doi.org/10.1177/0278364911434236

Bibliography

[94] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von Hofsten,
K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, and L. Montesano. “The
iCub humanoid robot: An open-systems platform for research in cognitive
development”. In: Neural Netw. 23 (8–9 2010), pp. 1125–1134. doi: 10.1016/j.
neunet.2010.08.010.

[95] D. P. Moeys, F. Corradi, E. Kerr, P. Vance, G. Das, D. Neil, D. Kerr, and T.
Delbruck. “Steering a Predator Robot using a Mixed Frame/Event-Driven Con-
volutional Neural Network”. In: Int. Conf. Event-Based Control, Comm. Signal Proc.
(EBCCSP). 2016. doi: 10.1109/EBCCSP.2016.7605233.

[96] E. Mueggler, C. Bartolozzi, and D. Scaramuzza. “Fast Event-based Corner
Detection”. In: British Machine Vis. Conf. (BMVC). 2017.

[97] E. Mueggler, N. Baumli, F. Fontana, and D. Scaramuzza. “Towards Evasive
Maneuvers with Quadrotors using Dynamic Vision Sensors”. In: Eur. Conf.
Mobile Robots (ECMR). 2015, pp. 1–8. doi: 10.1109/ECMR.2015.7324048.

[98] E. Mueggler, M. Faessler, F. Fontana, and D. Scaramuzza. “Aerial-guided Navi-
gation of a Ground Robot among Movable Obstacles”. In: IEEE Int. Symp. Safety,
Security, and Rescue Robot. (SSRR). 2014, pp. 1–8. doi: 10.1109/SSRR.2014.7017662.

[99] E. Mueggler, C. Forster, N. Baumli, G. Gallego, and D. Scaramuzza. “Lifetime
Estimation of Events from Dynamic Vision Sensors”. In: IEEE Int. Conf. Robot.
Autom. (ICRA). 2015, pp. 4874–4881. doi: 10.1109/ICRA.2015.7139876.

[100] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza. “Continuous-Time
Visual-Inertial Trajectory Estimation with Event Cameras”. In: IEEE Trans. Robot.
(2017). under review.

[101] E. Mueggler, G. Gallego, and D. Scaramuzza. “Continuous-Time Trajectory
Estimation for Event-based Vision Sensors”. In: Robotics: Science and Systems
(RSS). 2015. doi: 10.15607/RSS.2015.XI.036.

[102] E. Mueggler, B. Huber, and D. Scaramuzza. “Event-based, 6-DOF Pose Tracking
for High-Speed Maneuvers”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS).
2014, pp. 2761–2768. doi: 10.1109/IROS.2014.6942940.

[103] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza. “The
Event-Camera Dataset and Simulator: Event-based Data for Pose Estimation,
Visual Odometry, and SLAM”. In: Int. J. Robot. Research 36 (2 2017), pp. 142–149.
doi: 10.1177/0278364917691115.

[104] E. Mueller, A. Censi, and E. Frazzoli. “Low-latency Heading Feedback Control
with Neuromorphic Vision Sensors using Efficient Approximated Incremental
Inference”. In: IEEE Conf. Decision Control (CDC). 2015. doi: 10.1109/CDC.2015.
7402002.

[105] M. Mueller, S. Lupashin, and R. D’Andrea. “Quadrocopter ball juggling”. In:
IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2011, pp. 4972–4978. doi: 10 .
1109/IROS.2012.6385963.

[106] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. “DTAM: Dense Tracking and
Mapping in Real-Time”. In: Int. Conf. Comput. Vis. (ICCV). Nov. 2011, pp. 2320–
2327.

226

http://dx.doi.org/10.1016/j.neunet.2010.08.010
http://dx.doi.org/10.1016/j.neunet.2010.08.010
http://dx.doi.org/10.1109/EBCCSP.2016.7605233
http://dx.doi.org/10.1109/ECMR.2015.7324048
http://dx.doi.org/10.1109/SSRR.2014.7017662
http://dx.doi.org/10.1109/ICRA.2015.7139876
http://dx.doi.org/10.15607/RSS.2015.XI.036
http://dx.doi.org/10.1109/IROS.2014.6942940
http://dx.doi.org/10.1177/0278364917691115
http://dx.doi.org/10.1109/CDC.2015.7402002
http://dx.doi.org/10.1109/CDC.2015.7402002
http://dx.doi.org/10.1109/IROS.2012.6385963
http://dx.doi.org/10.1109/IROS.2012.6385963

Bibliography

[107] Z. Ni, C. Pacoret, R. Benosman, S. Ieng, and S. Regnier. “Asynchronous event-
based high speed vision for microparticle tracking”. In: Journal of Microscopy
245.3 (2012), pp. 236–244. doi: 10.1111/j.1365-2818.2011.03565.x.

[108] Z. Ni, A. Bolopion, J. Agnus, R. Benosman, and S. Regnier. “Asynchronous
Event-Based Visual Shape Tracking for Stable Haptic Feedback in Microrobotics”.
In: IEEE Trans. Robot. 28 (5 2012), pp. 1081–1089. doi: 10.1109/TRO.2012.2198930.

[109] Z. Ni, S.-H. Ieng, C. Posch, S. Régnier, and R. Benosman. “Visual Tracking Using
Neuromorphic Asynchronous Event-Based Cameras”. In: Neural Computation 27
(4 2015), pp. 925–953. doi: 10.1162/NECO_a_00720.

[110] D. Nistér. “An efficient solution to the five-point relative pose problem”. In: IEEE
Trans. Pattern Anal. Machine Intell. 26.6 (2004), pp. 756–777. doi: 10.1109/TPAMI.
2004.17.

[111] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor. “Converting Static Image
Datasets to Spiking Neuromorphic Datasets Using Saccades”. In: Front. Neurosci.
9 (2015), p. 437. doi: 10.3389/fnins.2015.00437.

[112] A. Patron-Perez, S. Lovegrove, and G. Sibley. “A Spline-Based Trajectory Repre-
sentation for Sensor Fusion and Rolling Shutter Cameras”. In: Int. J. Comput. Vis.
113.3 (2015), pp. 208–219. doi: 10.1007/s11263-015-0811-3.

[113] E. Piatkowska, A. N. Belbachir, S. Schraml, and M. Gelautz. “Spatiotemporal
multiple persons tracking using Dynamic Vision Sensor”. In: IEEE Int. Conf.
Comput. Vis. Pattern Recog. Workshop. June 2012, pp. 35–40. doi: 10.1109/CVPRW.
2012.6238892.

[114] M. Pizzoli, C. Forster, and D. Scaramuzza. “REMODE: Probabilistic, Monocular
Dense Reconstruction in Real Time”. In: IEEE Int. Conf. Robot. Autom. (ICRA).
2014, pp. 2609–2616. url: http://dx.doi.org/10.1109/ICRA.2014.6907233.

[115] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat. “Comparing ICP Variants
on Real-World Data Sets”. In: Auton. Robots 34.3 (Feb. 2013), pp. 133–148. doi:
10.1007/s10514-013-9327-2.

[116] C. Posch, D. Matolin, and R. Wohlgenannt. “A QVGA 143 dB Dynamic Range
Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression
and Time-Domain CDS”. In: IEEE J. Solid-State Circuits 46.1 (Jan. 2011), pp. 259–
275. issn: 0018-9200. doi: 10.1109/JSSC.2010.2085952.

[117] C. Posch, D. Matolin, and R. Wohlgenannt. “A QVGA 143dB dynamic range
asynchronous address-event PWM dynamic image sensor with lossless pixel-
level video compression”. In: IEEE Intl. Solid-State Circuits Conf. (ISSCC). Feb.
2010, pp. 400–401. doi: 10.1109/ISSCC.2010.5433973.

[118] C. Posch, D. Matolin, and R. Wohlgenannt. “An asynchronous time-based image
sensor”. In: IEEE Int. Symp. Circuits Syst. (ISCAS). May 2008, pp. 2130–2133. doi:
10.1109/ISCAS.2008.4541871.

[119] X. Qi, X. Guo, and J. Harris. “A time-to-first spike CMOS imager”. In: IEEE Int.
Symp. Circuits Syst. (ISCAS). 2004. doi: 10.1109/ISCAS.2004.1329131.

227

http://dx.doi.org/10.1111/j.1365-2818.2011.03565.x
http://dx.doi.org/10.1109/TRO.2012.2198930
http://dx.doi.org/10.1162/NECO_a_00720
http://dx.doi.org/10.1109/TPAMI.2004.17
http://dx.doi.org/10.1109/TPAMI.2004.17
http://dx.doi.org/10.3389/fnins.2015.00437
http://dx.doi.org/10.1007/s11263-015-0811-3
http://dx.doi.org/10.1109/CVPRW.2012.6238892
http://dx.doi.org/10.1109/CVPRW.2012.6238892
http://dx.doi.org/10.1109/ICRA.2014.6907233
http://dx.doi.org/10.1007/s10514-013-9327-2
http://dx.doi.org/10.1109/JSSC.2010.2085952
http://dx.doi.org/10.1109/ISSCC.2010.5433973
http://dx.doi.org/10.1109/ISCAS.2008.4541871
http://dx.doi.org/10.1109/ISCAS.2004.1329131

Bibliography

[120] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, and
G. Indiveri. “A reconfigurable on-line learning spiking neuromorphic processor
comprising 256 neurons and 128K synapses”. In: Front. Neurosci. 9 (2015), p. 141.
issn: 1662-453X. doi: 10.3389/fnins.2015.00141.

[121] K. Qin. “General matrix representations for B-splines”. In: The Visual Computer
16.3–4 (2000), pp. 177–186.

[122] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng. “ROS: an open-source Robot Operating System”. In: ICRA Workshop
Open Source Softw. Vol. 3. 2. 2009, p. 5.

[123] H. Rebecq, G. Gallego, and D. Scaramuzza. “EMVS: Event-based Multi-View
Stereo”. In: British Machine Vis. Conf. (BMVC). Sept. 2016.

[124] H. Rebecq, T. Horstschäfer, G. Gallego, and D. Scaramuzza. “EVO: A Geometric
Approach to Event-based 6-DOF Parallel Tracking and Mapping in Real-Time”.
In: IEEE Robot. Autom. Lett. 2 (2 2017), pp. 593–600. issn: 2377-3766. doi: 10.
1109/LRA.2016.2645143.

[125] C. Reinbacher, G. Graber, and T. Pock. “Real-Time Intensity-Image Reconstruc-
tion for Event Cameras Using Manifold Regularisation”. In: British Machine Vis.
Conf. (BMVC). 2016.

[126] E. Rosten and T. Drummond. “Machine learning for high-speed corner detec-
tion”. In: Eur. Conf. Comput. Vis. (ECCV). Graz, Austria, 2006, pp. 430–443. doi:
10.1007/11744023_34.

[127] B. Rueckauer and T. Delbruck. “Evaluation of Event-Based Algorithms for
Optical Flow with Ground-Truth from Inertial Measurement Sensor”. In: Front.
Neurosci. 10.176 (2016). doi: 10.3389/fnins.2016.00176.

[128] P.-F. Rüedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P.-Y. Burgi, S. Gyger, and
P. Nussbaum. “A 128x128 pixel 120-dB dynamic-range vision-sensor chip for
image contrast and orientation extraction”. In: IEEE J. Solid-State Circuits 38.12
(2003), pp. 2325–2333. doi: 10.1109/JSSC.2003.819169.

[129] S. Schraml, A. N. Belbachir, and H. Bischof. “Event-driven stereo matching for
real-time 3D panoramic vision”. In: Proc. IEEE Int. Conf. Comput. Vis. Pattern
Recog. June 2015, pp. 466–474. doi: 10.1109/CVPR.2015.7298644.

[130] S. Schraml, A. N. Belbachir, N. Milosevic, and P. Schön. “Dynamic Stereo Vision
System for Real-time Tracking”. In: IEEE Int. Symp. Circuits Syst. (ISCAS). 2010,
pp. 1409–1412. doi: 10.1109/ISCAS.2010.5537289.

[131] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-
Vicente, F. Gomez-Rodriguez, L. Camunas-Mesa, R. Berner, M. Rivas-Perez, T.
Delbruck, S.-C. Liu, R. Douglas, P. Hafliger, G. Jimenez-Moreno, A. C. Ballcels, T.
Serrano-Gotarredona, A. J. Acosta-Jimenez, and B. Linares-Barranco. “CAVIAR:
A 45k Neuron, 5M Synapse, 12G Connects/s AER Hardware Sensory-Processing-
Learning-Actuating System for High-Speed Visual Object Recognition and
Tracking”. In: IEEE Trans. Neural Netw. 20.9 (2009), pp. 1417–1438. doi: 10 .
1109/TNN.2009.2023653.

228

http://dx.doi.org/10.3389/fnins.2015.00141
http://dx.doi.org/10.1109/LRA.2016.2645143
http://dx.doi.org/10.1109/LRA.2016.2645143
http://dx.doi.org/10.1007/11744023_34
http://dx.doi.org/10.3389/fnins.2016.00176
http://dx.doi.org/10.1109/JSSC.2003.819169
http://dx.doi.org/10.1109/CVPR.2015.7298644
http://dx.doi.org/10.1109/ISCAS.2010.5537289
http://dx.doi.org/10.1109/TNN.2009.2023653
http://dx.doi.org/10.1109/TNN.2009.2023653

Bibliography

[132] S. Shen, N. Michael, and V. Kumar. “Autonomous multi-floor indoor navigation
with a computationally constrained MAV”. In: IEEE Int. Conf. Robot. Autom.
(ICRA). May 2011, pp. 20–25. doi: 10.1109/ICRA.2011.5980357.

[133] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar. “Vision-based state esti-
mation and trajectory control towards aggressive flight with a quadrotor”. In:
Robotics: Science and Systems (RSS). June 2013. doi: 10.15607/RSS.2013.IX.03.

[134] J. Shi and C. Tomasi. “Good features to track”. In: Proc. IEEE Int. Conf. Comput.
Vis. Pattern Recog. June 1994, pp. 593–600. doi: 10.1109/CVPR.1994.323794.

[135] B. Son, Y. Suh, S. Kim, H. Jung, J.-S. Kim, C. Shin, K. Park, K. Lee, J. Park, J. Woo,
Y. Roh, H. Lee, Y. Wang, I. Ovsiannikov, and H. Ryu. “A 640x480 dynamic vision
sensor with a 9um pixel and 300Meps address-event representation”. In: IEEE
Intl. Solid-State Circuits Conf. (ISSCC). 2017. doi: 10.1109/ISSCC.2017.7870263.

[136] R. Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer
Science. Springer, 2010. isbn: 9781848829343.

[137] C. Tan, S. Lallee, and G. Orchard. “Benchmarking neuromorphic vision: lessons
learnt from computer vision”. In: Front. Neurosci. 9 (2015), p. 374. issn: 1662-453X.
doi: 10.3389/fnins.2015.00374.

[138] D. Tedaldi, G. Gallego, E. Mueggler, and D. Scaramuzza. “Feature Detection
and Tracking with the Dynamic and Active-pixel Vision Sensor (DAVIS)”. In:
Int. Conf. Event-Based Control, Comm. Signal Proc. (EBCCSP). Krakow, Poland,
June 2016, pp. 1–7. doi: 10.1109/EBCCSP.2016.7605086.

[139] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT Press, Cam-
bridge, MA, 2005.

[140] R. Y. Tsai and R. K. Lenz. “A New Technique for Fully Autonomous and Efficient
3D Robotics Hand/Eye Calibration”. In: IEEE Trans. Robot. 5.3 (1989), pp. 345–
358. doi: 10.1109/70.34770.

[141] D. R. Valeiras, G. Orchard, S.-H. Ieng, and R. B. Benosman. “Neuromorphic
Event-Based 3D Pose Estimation”. In: Front. Neurosci. 9 (2016), p. 522. doi:
10.3389/fnins.2015.00522.

[142] V. Vasco, A. Glover, and C. Bartolozzi. “Fast event-based Harris corner detection
exploiting the advantages of event-driven cameras”. In: IEEE/RSJ Int. Conf. Intell.
Robot. Syst. (IROS). 2016. doi: 10.1109/IROS.2016.7759610.

[143] G. Vogiatzis and C. Hernández. “Video-based, Real-Time Multi View Stereo”.
In: Image Vis. Comput. 29.7 (2011), pp. 434–441. doi: 10.1016/j.imavis.2011.01.006.

[144] D. Weikersdorfer, D. B. Adrian, D. Cremers, and J. Conradt. “Event-based 3D
SLAM with a depth-augmented dynamic vision sensor”. In: IEEE Int. Conf.
Robot. Autom. (ICRA). June 2014, pp. 359–364. doi: 10.1109/ICRA.2014.6906882.

[145] D. Weikersdorfer and J. Conradt. “Event-based Particle Filtering for Robot Self-
Localization”. In: IEEE Int. Conf. Robot. Biomimetics (ROBIO). 2012, pp. 866–870.
doi: 10.1109/ROBIO.2012.6491077.

[146] D. Weikersdorfer, R. Hoffmann, and J. Conradt. “Simultaneous Localization and
Mapping for event-based Vision Systems”. In: Int. Conf. Comput. Vis. Syst. (ICVS).
2013, pp. 133–142. doi: 10.1007/978-3-642-39402-7_14.

229

http://dx.doi.org/10.1109/ICRA.2011.5980357
http://dx.doi.org/10.15607/RSS.2013.IX.03
http://dx.doi.org/10.1109/CVPR.1994.323794
http://dx.doi.org/10.1109/ISSCC.2017.7870263
http://dx.doi.org/10.3389/fnins.2015.00374
http://dx.doi.org/10.1109/EBCCSP.2016.7605086
http://dx.doi.org/10.1109/70.34770
http://dx.doi.org/10.3389/fnins.2015.00522
http://dx.doi.org/10.1109/IROS.2016.7759610
http://dx.doi.org/10.1016/j.imavis.2011.01.006
http://dx.doi.org/10.1109/ICRA.2014.6906882
http://dx.doi.org/10.1109/ROBIO.2012.6491077
http://dx.doi.org/10.1007/978-3-642-39402-7_14

Bibliography

[147] S. Weiss, M. W. Achtelik, S. Lynen, M. C. Achtelik, L. Kneip, M. Chli, and R.
Siegwart. “Monocular Vision for Long-term Micro Aerial Vehicle State Estima-
tion: A Compendium”. In: J. Field Robot. 30.5 (Aug. 2013), pp. 803–831. doi:
10.1002/rob.21466.

[148] M. Yang, S.-C. Liu, and T. Delbruck. “A Dynamic Vision Sensor With 1% Tem-
poral Contrast Sensitivity and In-Pixel Asynchronous Delta Modulator for
Event Encoding”. In: IEEE J. Solid-State Circuits 50.9 (2015), pp. 2149–2160. doi:
10.1109/JSSC.2015.2425886.

[149] W. Yuan and S. Ramalingam. “Fast Localization and Tracking using Event
Sensors”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2016, pp. 4564–4571. doi:
10.1109/ICRA.2016.7487657.

[150] Z. Zhang. “A Flexible New Technique for Camera Calibration”. In: IEEE Trans.
Pattern Anal. Machine Intell. 22.11 (Nov. 2000), pp. 1330–1334. issn: 0162-8828.
doi: 10.1109/34.888718.

[151] A. Z. Zhu, N. Atanasov, and K. Daniilidis. “Event-Based Feature Tracking with
Probabilistic Data Association”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2017.

230

http://dx.doi.org/10.1002/rob.21466
http://dx.doi.org/10.1109/JSSC.2015.2425886
http://dx.doi.org/10.1109/ICRA.2016.7487657
http://dx.doi.org/10.1109/34.888718

Elias Mueggler
Curriculum Vitae

Andreasstrasse 15, AND 2.16
8050 Zurich, Switzerland

T +41 44 635 43 41
B mueggler@ifi.uzh.ch

Education
2012–2017 Ph.D. Student in Computer Science, University of Zurich, Switzerland.

Advisor: Prof. Dr. Davide Scaramuzza
Committee: Prof. Dr. Tobi Delbruck, Prof. Dr. Kostas Daniilidis

2013 Teaching Certificate in Mechanical Engineering, ETH Zurich, Switzerland.
24 ECTS didactics program including a teaching internship

2012 Master of Science in Mechanical Engineering, ETH Zurich, Switzerland.
Advisor: Prof. Dr. Raffaello D’Andrea
GPA 5.69/6.0, Year Average: 5.43, Standard Deviation: 0.28

2009 Bachelor of Science in Mechanical Engineering, ETH Zurich, Switzerland.
GPA 5.22/6.0, Year Average: 4.92, Standard Deviation: 0.32

Exchange
Jan–Mar

2017
Visiting PhD Student at the iCub Facility, Italian Institute of Technology (IIT),
Genoa, Italy.

Jan–Jun 2012 Visiting Research Student at CSAIL, Massachusetts Institute of Technology
(MIT), Cambridge, MA, USA.

Jan–Jun 2009 Erasmus Exchange Student, Chalmers University of Technology, Gothenburg,
Sweden.

Theses
Master Thesis (Jan – Jun 2012)

Title Mapping of Unknown Space Targets for Relative Navigation and Inspection
School CSAIL, Massachusetts Institute of Technologie (MIT), Cambridge, MA, USA
Advisor Prof. Dr. John J. Leonard

Description Implementation of visual SLAM algorithms.
Successfully tested aboard the International Space Station (ISS).

Grade 6.0/6.0

Semester Thesis (Feb – Jul 2011)
Title Robotic calligraphy – A robot that learns how to write Chinese calligraphy

School Institute for Dynamic Systems and Control, ETH, Zurich, Switzerland
Advisor Prof. Dr. Raffaello D’Andrea

231

Description Control of a robotic manipulator with 7 degrees of freedom (KUKA LWR).
Implementation of an iterative learning controller.

Grade 6.0/6.0

Bachelor Thesis (Jan – Jun 2009)
Title Elimination of Slugs – Defending a Security Line against Slugs

School Institution for Signals and Systems, Chalmers University of Technology, Gothenburg,
Sweden

Advisor Prof. Dr. Jonas Fredriksson
Description Mechanical and electrical design and prototype building.

Controller implementation on microprocessor.
Implementation of a visual slug detector.

Grade 6.0/6.0

Matriculation Thesis (2004 – 2006)
Title Realisation of a Book Scanner, and Programming of an OCR Software

School High School, Kreuzlingen, Switzerland
Advisor Guido Lang

Description Designing and building a working prototype.
Programming pneumatic logic on PLC (Siemens S7-200).
Own implementation of an optical character recognition system (OCR).
Winner of Swiss Contest for Young Scientists 2006, Basel, Switzerland.
Qualification for EU Contest for Young Scientists 2006, Stockholm, Sweden.

Grade 6.0/6.0

Teaching Experience
2015 Teaching Assistant for Computer Vision, University of Zurich, Zurich,

Switzerland.
Exercise sessions
Supervisor: Prof. Dr. Davide Scaramuzza

2013 Teaching Internship for Control Theory, Zurich University of Applied Science
(ZHAW), Winterthur, Switzerland, Grade 5.75/6.0.
Classes and laboratory sessions (20 lessons total)
Supervisor: Prof. Dr. Roland Büchi

2010 Teaching Assistant for Calculus, ETH, Zurich, Switzerland.
Preparation and supervision of exercises.
Supervisor: Prof. Dr. Marc Burger

2008 Teaching Assistant for Mechanics, Center of Mechanics, ETH, Zurich,
Switzerland.
Preparation and supervision of exercises and exams (plus grading).
Supervisor: Prof. Dr. Jürg Dual

232

Professional Experience
Jan–Jun 2010 Industrial Internship, MTU Aero Engines GmbH, Munich, Germany.

Pre-design tool to analyse multi-dody damping in blades and vane clusters.
2007 – 2008 Side Job, energieburo.ch, Zurich, Switzerland.

Creating photo-realistic 3D-CAD models of solar panels.
Feb–Mar

2007
Workshop Internship, MOWAG GmbH, Kreuzlingen, Switzerland.
Practical training on drilling, milling, lathing, and welding.

2006 Web Developer, High School Burggraben, St. Gallen, Switzerland.
Development of an online room reservation system.
200+ users, 100+ rooms, 1M+ reservations. Still in use (2017).

Awards
2017 Misha Mahowald Prize for Neuromorphic Engineering
2016 NCCR Robotics PhD/Postdoc Exchange Grant
2016 IROS 16 Best Application Paper Award Finalist
2016 Qualcomm Innovation Fellowship Europe ($40.000)
2014 SSRR 14 Best Paper Award Finalist
2014 Winner of KUKA Innovation Award (e20.000)
2014 Convergent Science Network of Biomimetics and Neurotechnology CapoCaccia

Fellowship
2012 Hans und Wilma Stutz Foundation Scholarship
2006 Winner of Swiss Contest for Young Scientists
2006 Technorama Prize for Young Scientists
2006 Metrohm Foundation Prize for Young Scientists
2004 1st Place in Category at ThinkQuest Swiss Web Award

Other Activities
2014 – 2015 Ph.D. Representative, Department of Informatics, University of Zurich, Zurich,

Switzerland.
2003 – 2011 Scouts Leader, Jungwacht Weinfelden, Switzerland.

Head of Organization (2008 – 2009)
Organization has 25 leaders and 80 kids.

2005 – 2006 President of Student Organization, High School, Kreuzlingen, Switzerland.

Public Exhibitions
Sep 2015 Scientifica, Zurich, Switzerland 25.000 visitors
May 2015 SwissCore 20th Anniversary, Brussels, Belgium.

Research demonstration to EU and SNSF officials, including Jean-Pierre Bourguignon (ERC
president), Martin Vetterli (President of the Research Council of the SNSF) and Michael
Hengartner (President of the University of Zurich)

Jun 2014 AUTOMATICA, Munich, Germany 31.000 visitors

233

Sep 2013 tunZurich, Zurich, Switzerland 2.500 visitors
Aug 2013 Scientifica, Zurich, Switzerland 20.000 visitors
Apr 2013 Festival de Robotique, Lausanne, Switzerland 20.000 visitors
Mar 2013 Robots on Tour, Zurich, Switzerland 4.000 visitors

Talks
Mar 28, 2017 Robotics and Interactions (RIS) Group Seminar, LAAS-CNRS Toulouse.

“Towards Agile Flight of Vision-controlled Drones” (with Davide Falanga)
Mar 15, 2017 Volkshochschule Winterthur, ZHAW Winterthur, Switzerland.

“Autonom fliegende Roboter” (in German)
Nov 17, 2016 EMBE HSG Alumni, Technopark Zurich, Switzerland.

“Autonome Flugroboter” (in German)
Oct 25, 2016 Naturwissenschaftliche Gesellschaft Thurgau, Kreuzlingen, Switzerland.

“Autonome Flugroboter auf Rettungsmission” (in German)
Jun 9, 2016 Kiwanis, Küsnacht, Switzerland.

“Autonom fliegende Quadrokopter” (in German)
May 10, 2016 Qualcomm Innovation Fellowship Finals, University of Amsterdam.

“Event-based Vision for High-Speed Robotics”
Sep 8, 2015 “Technologieoutlook und IT-Trends als Chance für Europa — Digital Society

and Economy 4.0”, University of Zurich.
“Autonom fliegende Quadrokopter” (in German)

Aug 12, 2015 Science Week 2015, High School Kreuzlingen.
“Autonom fliegende Quadrokopter” (in German)

Oct 27, 2014 Workshop on “Obstacles on the way to a broad deployment of robot tech-
nology in disaster response”, SSRR 2014.
“NCCR Robotics: Switzerland’s Rescue Robotics Grand Challenge”

Sep 18, 2014 3rd Workshop on Visual Control of Mobile Robots, IROS 2014.
“Appearance-based, active vision applied to autonomous mapping from micro aerial vehicles”

Sep 15, 2014 Aerial Open Source Robotics Workshop, IROS 2014.
“Open-Source Packages for Real-Time Pose Estimation of Micro Aerial Vehicles”

Jun 27, 2014 Institute for Computer Science and Control, Hungarian Academy of Sciences,
Budapest, Hungary, Dr. Andras Majdik.
“Event-based, 6-DOF Pose Tracking for High-Speed Maneuvers”

Aug 1, 2012 Autonomous Intelligent Systems, University of Freiburg, Germany, Prof. Dr.
Wolfram Burgard.
“Visual Mapping of Unknown Space Targets for Relative Navigation and Inspection”

Jul 19, 2012 fortiss, TU Munich, Germany, Dr. Markus Rickert.
“Visual Mapping of Unknown Space Targets for Relative Navigation and Inspection”

Jul 16, 2012 Institute for Computer Graphics and Vision, TU Graz, Austria, Prof. Dr.
Horst Bischof.
“Visual Mapping of Unknown Space Targets for Relative Navigation and Inspection”

234

Attended Summer Schools
May 2014 CapoCaccia Cognitive Neuromorphic Engineering Workshop, Alghero, Italy.
Oct 2013 Rescue Robotics Camp, Linkoping, Sweden.
Jul 2013 International Computer Vision Summer School (ICVSS), Calabria, Italy.

Attended Conferences
Jun 2016 International Conference on Event-Based Control, Communication and Sig-

nal Processing (EBCCSP), Krakow, Poland.
Sep 2015 European Conference on Mobile Robots (ECMR), Lincoln, United Kingdom.
July 2015 Robotics: Science and Systems (RSS), Rome, Italy.
May 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle

WA, USA.
Oct 2014 IEEE International Symposium on Safety, Security, and Rescue Robotics

(SSRR), Toyako-cho, Japan.
Sep 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), Chicago IL, USA.
Sep 2014 European Conference on Computer Vision (ECCV), Zurich, Switzerland.
May 2013 IEEE International Conference on Robotics and Automation (ICRA), Karl-

sruhe, Germany.
Jun 2013 International Workshop on the Algorithmic Foundations of Robotics

(WAFR), Cambridge MA, USA.

Students
2016 Timo Horstschäfer, ETH Zurich, Master Thesis, awarded Fritz Kutter Award

2016.
“Parallel Tracking, Depth Estimation, and Image Reconstruction with an Event Camera”

2016 Jonathan Huber, ETH Zurich, Semester Thesis.
“Ground Robot Localization in Aerial 3D Maps”

2016 Julia Nitsch, University of Graz, NCCR Internship.
“Terrain Classification in Search-and-Rescue Scenarios”

2016 Beat Küng, ETH Zurich, Master Thesis.
“Visual Odometry pipeline for the DAVIS camera”

2015 Mathis Kappeler, University of Zurich, Master Project.
“Exposure Control for Robust Visual Odometry”

2015 Imanol Studer, University of Zurich, Master Project.
“Head Pose Tracking with Quadrotors”

2015 Jon Lund, University of Zurich, Master Thesis.
“Towards SLAM for Dynamic Vision Sensors”

2015 Micha Brunner, ETH Zurich, Semester Thesis.
“Flying Motion Capture System”

235

2015 Igor Bozic, University of Zurich, Master Project.
“High-Frequency Position Control of the KUKA youBot Arm”

2015 Joachim Ott, ETH Zurich, Semester Thesis.
“Vision-Based Surface Classification for Micro Aerial Vehicles”

2015 David Tedaldi, ETH Zurich, Semester Thesis.
“Feature Tracking based on Frames and Events”

2015 Nathan Baumli, ETH Zurich, Master Thesis.
“Towards Evasive Maneuvers for Quadrotors using Stereo Dynamic Vision”

2014 Amos Zweig, ETH Zurich, Semester Thesis.
“Event-based Depth Estimation”

2014 Nathan Baumli, ETH Zurich, Semester Thesis.
“Event-Based Full-Frame Visualization”

2014 Basil Huber, EPFL Lausanne, Master Thesis, awarded Fritz Kutter Award 2014.
“High-Speed Pose Estimation using a Dynamic Vision Sensor”

2013 Karl Schwabe, ETH Zurich, Master Thesis.
“A Monocular Pose Estimation System based on Infrared LEDs”

2013 Benjamin Keiser, ETH Zurich, Master Thesis, awarded KUKA Best Student
Project Award 2013.
“Torque Control of a KUKA youBot Arm”

Service
Journal Reviewer

TPAMI IEEE Transactions on Pattern Analysis and Machine Intelligence 2017
JFR Journal of Field Robotics 2017

TNNLS IEEE Transactions on Neural Networks and Learning Systems 2015

Conference Reviewer
IROS IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems 2014–2016
ICRA IEEE Intl. Conf. on Robotics and Automation 2014–2017

EBCCSP IEEE Intl. Conf. on Event-Based Control Comm. Signal Process. 2015
ISCAS IEEE Intl. Symp. on Circuits and Systems 2016
ISER Intl. Symp. on Experimental Robotics 2016
SSRR IEEE Intl. Symp. on Safety, Security, and Rescue Robotics 2016

Student Volunteer
IFI Summer School 2015, 2017

ECCV European Conference on Computer Vision 2014

Committee
bugnplay.ch Swiss Youth Contest for Media and Robotics 2015, 2016

236

Journal Articles
[1] G. Gallego, J. E. Lund, E. Mueggler, H. Rebecq, T. Delbruck, and D. Scaramuzza, “Event-based,

6-DOF camera tracking for high-speed applications,” IEEE Trans. Pattern Anal. Machine Intell., 2017.
[2] H. Rebecq, G. Gallego, E. Mueggler, and D. Scaramuzza, “EMVS: Event-based multi-view stereo: 3D

reconstruction with an event camera,” International Journal of Computer Vision, 2017, under review.
[3] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza, “Continuous-time visual-inertial trajectory

estimation with event cameras,” IEEE Trans. Robotics, 2017, under review.
[4] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza, “The event-camera dataset

and simulator: Event-based data for pose estimation, visual odometry, and SLAM,” Intl. J. of Robotics
Research, vol. 36, pp. 142–149, 2 2017.

[5] J. Delmerico, E. Mueggler, J. Nitsch, and D. Scaramuzza, “Active autonomous aerial exploration for
ground robot path planning,” IEEE Robotics and Automation Letters, vol. 2, pp. 664–671, 2 2017.

[6] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scaramuzza, “Autonomous,
vision-based flight and live dense 3D mapping with a quadrotor micro aerial vehicle,” J. of Field
Robotics, vol. 33, no. 4, pp. 431–450, 2016, issn: 1556-4967.

[7] C. Graber and E. Müggler, “Vom Buch zur Textdatei. Bau und Programmierung einer Bucheinscann-
maschine,” Junge Wissenschaft, vol. 76, pp. 10–15, 2007, in German.

Peer-Reviewed Conference Papers
[1] E. Mueggler, C. Bartolozzi, and D. Scaramuzza, “Fast event-based corner detection,” in British

Machine Vision Conf. (BMVC), under review, 2017.
[2] V. Vasco, A. Glover, E. Mueggler, D. Scaramuzza, L. Natale, and C. Bartolozzi, “Independent motion

detection with event-driven cameras,” in IEEE Intl. Conf. on Advanced Robotics (ICAR), Hong Kong,
China, Jul. 2017.

[3] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, “Aggressive quadrotor flight through
narrow gaps with onboard sensing and computing using active vision,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), Singapore, May 2017.

[4] R. Kaeslin, P. Fankhauser, E. Stumm, Z. Taylor, E. Mueggler, J. Delmerico, D. Scaramuzza, R.
Siegwart, and M. Hutter, “Collaborative localization of aerial and ground robots through elevation
maps,” in IEEE Intl. Symp. on Safety, Security, and Rescue Robotics (SSRR), Lausanne, Switzerland,
Oct. 2016.

[5] B. Kueng, E. Mueggler, G. Gallego, and D. Scaramuzza, “Low-latency visual odometry using event-
based feature tracks,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Daejeon,
Korea, Oct. 2016.

[6] D. Tedaldi, G. Gallego, E. Mueggler, and D. Scaramuzza, “Feature detection and tracking with the
dynamic and active-pixel vision sensor (DAVIS),” in Intl. Conf. on Event-Based Control, Comm. and
Signal Proc. (EBCCSP), Krakow, Poland, Jun. 2016.

[7] J. Delmerico, E. Mueggler, A. Giusti, and D. Scaramuzza, “‘On-the-spot training’ for terrain classifi-
cation in autonomous air-ground collaborative teams,” in Intl. Sym. on Experimental Robotics (ISER),
Tokyo, Japan, Oct. 2016.

[8] E. Mueggler, N. Baumli, F. Fontana, and D. Scaramuzza, “Towards evasive maneuvers with quadrotors
using dynamic vision sensors,” in Eur. Conf. on Mobile Robots (ECMR), Lincoln, England, Sep. 2015.

[9] E. Mueggler, G. Gallego, and D. Scaramuzza, “Continuous-time trajectory estimation for event-based
vision sensors,” in Robotics: Science and Systems (RSS), Rome, Italy, Jul. 2015.

237

[10] E. Mueggler, C. Forster, N. Baumli, G. Gallego, and D. Scaramuzza, “Lifetime estimation of events
from dynamic vision sensors,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), Seattle, WA,
May 2015.

[11] T. Delbruck, M. Pfeiffer, R. Juston, G. Orchard, E. Müggler, A. Linares-Barranco, and M. W. Tilden,
“Human vs. computer slot car racing using an event and frame-based DAVIS vision sensor,” in IEEE
Intl. Symp. on Circuits and Systems (ISCAS), Lisbon, Portugal, May 2015.

[12] E. Mueggler, M. Faessler, F. Fontana, and D. Scaramuzza, “Aerial-guided navigation of a ground
robot among movable obstacles,” in IEEE Intl. Symp. on Safety, Security, and Rescue Robotics (SSRR),
Toyako-cho, Japan, Oct. 2014.

[13] E. Mueggler, B. Huber, and D. Scaramuzza, “Event-based, 6-DOF pose tracking for high-speed
maneuvers,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Chicago, IL, Sep.
2014.

[14] M. Faessler, E. Mueggler, K. Schwabe, and D. Scaramuzza, “A monocular pose estimation system
based on infrared LEDs,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), Hong Kong, China,
May 2014.

[15] N. Huebel, E. Mueggler, M. Waibel, and R. D’Andrea, “Towards robotic calligraphy,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, Oct. 2012.

[16] B. E. Tweddle, E. Müggler, A. Saenz-Otero, and D. W. Miller, “The SPHERES VERTIGO goggles:
Vision based mapping and localization onboard the International Space Station,” in Intl. Symp. on
Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), Turin, Italy, Sep. 2012.

Other Publications
[1] M. Faessler, E. Mueggler, and D. Scaramuzza, Happy Easter from the AI Lab, Video Competition at

International Joint Conferences on Artificial Intelligence (IJCAI), Beijing, China, Aug. 2013.
[2] M. F. Fallon, H. Johannsson, M. Kaess, D. M. Rosen, E. Muggler, and J. J. Leonard, Mapping the

MIT Stata Center: Large-scale integrated visual and RGB-D SLAM, RGB-D Workshop at Robotics:
Science and Systems Conference (RSS), Sydney, Australia, Jul. 2012.

238

	Acknowledgements
	Abstract
	List of Contributions
	Introduction
	Event Cameras for Mobile Robots
	Working Principle
	Advantages
	Challenges
	Historic Development of Event Cameras

	State of the Art on Event Cameras
	Infrastructure for Event-based Vision for Robotics
	Event-based Feature Detection
	Event-based Tracking
	Event-based Motion Estimation
	Event-based Motion Control

	Summary

	Contributions
	Infrastructure for Event-based Vision
	Paper A1: Event Camera Driver and Calibration
	Paper B1: Event Camera Delay Characterization
	Paper C: Event Camera Dataset and Simulator

	Event-based Feature Detection
	Paper D: Lifetime of Events
	Paper E: Event-based Feature Detection

	Event-based Feature Tracking
	Paper A2: Tracking Polygonal Shapes
	Paper B2: Ball Tracking
	Paper F: Event-based Feature Tracking

	Event-based Ego-Motion Estimation
	Paper G: Sparse Visual Odometry
	Paper H: Dense 6-DOF Tracking
	Paper I: Continuous-Time Trajectory Estimation

	Event-based Robot Control
	Paper J: Slot-Car Racing

	Unrelated Contributions
	Quadrotor Navigation
	Heterogeneous Robot Collaboration

	Future Directions
	Event-based Pose Tracking
	Introduction
	Motivation
	Related Work
	Contributions and Outline

	Dynamic Vision Sensor
	Calibration
	Event-based Pose Estimation
	Initialization
	Line tracking
	Pose estimation

	DVS Simulation
	Experimental Evaluation
	Simulated Data
	Real Data

	Conclusion

	Towards Evasive Maneuvers with Quadrotors
	Introduction
	Related Work
	Dynamic Vision Sensors
	Working Principle
	Calibration

	Sensor Latencies
	Experimental Setup
	Results

	Algorithm
	Event-based Circle Tracker
	Stereo Matching
	Sub-Pixel Disparity Estimation
	Extended Kalman Filter
	Trajectory Propagation
	Maneuver Decision

	Experiments
	Experimental Setup
	Circle Tracking
	EKF Performance
	Comparison with Ground Truth
	Time Margin for Evasive Maneuver

	Conclusion

	Event-Camera Dataset and Simulator
	Introduction
	Related Datasets

	The DAVIS Sensor
	DAVIS IMU

	DAVIS Simulator
	Datasets
	Data Format
	List of Datasets

	Calibration
	Intrinsic Camera Calibration
	Hand-Eye Calibration

	Known Issues
	Clock Drift and Offset

	Event Lifetime
	Introduction
	Motivation
	Related Work
	Contributions and Outline

	Dynamic Vision Sensor
	Algorithm
	Event-Based Visual Flow and Lifetime
	Local Plane-fitting Algorithm

	Experimental Evaluation
	Experiment 1: Line Pattern at Constant Velocity
	Experiment 2: Complex Patterns at Constant Velocity
	Experiment 3: Quadrotor Flips
	Experiment 4: Urban Environment

	Conclusion

	Event-based Feature Detection
	Introduction
	Method
	Evaluation
	Ground Truth
	Event-based Harris Detector
	Detector Performance
	Computational Performance

	Discussion
	Conclusion

	Event-based Feature Tracking
	Introduction
	Related Work
	From Frame-based to Event-based Tracking
	Event-based Tracking Literature

	The Dynamic and Active-pixel VIsion Sensor
	Feature Detection and Tracking with the DAVIS
	Feature Detection From Frames
	Feature Tracking From the Event Stream

	Experiments
	Large-Contrast Scene (``Star'')
	Cartoon Scene (``Lucky Luke'')
	Natural Scene (``Leaves'')

	Conclusions

	Sparse Visual Odometry with Feature Tracks
	Introduction
	The Dynamic and Active-pixel Vision Sensor
	Related Work
	Event-based Feature Detection and Tracking
	Event-based Motion Estimation

	Feature Detection and Tracking with the DAVIS
	Feature Detection using the Frames
	Feature Tracking using the Events
	Tracking Improvements

	Visual Odometry
	3D Mapping using Depth Filters
	Pose Tracking by Reprojection Error Minimization
	Bootstrapping

	Experiments
	Feature Tracking
	Visual Odometry
	Runtime Analysis

	Conclusion

	Event-based Dense Tracking
	Introduction
	Related work on Event-based Ego-Motion Estimation
	Event-based cameras. The Dynamic Vision Sensor (DVS)
	Probabilistic approach
	Bayesian Filtering
	Motion model
	Measurement Model
	Posterior Approximation and Filter Equations

	Experimental Results
	Tracking during High-Speed Motions
	Experiments with Large Depth Variation
	Computational Effort

	Conclusion

	Continuous-Time Visual-Inertial Trajectory Estimation
	Introduction
	Event Cameras
	Related Work: Ego-Motion Estimation with Event Cameras
	Continuous-Time Trajectories
	Camera Pose Transformations
	Cubic Spline Camera Trajectories in SE(3)
	Visual and Inertial Predictions

	Map Representation
	Trajectory Optimization
	Probabilistic Approach
	Constrained Optimization in Finite Dimensions

	Experiments
	Trajectory Estimation in Line-based Maps
	Trajectory Estimation in Point-based Maps
	Computational Cost

	Discussion
	Conclusion

	Slot-Car Racing
	Introduction
	Hardware and Software Setup
	Car Tracking, Track Model, and Track Masking
	Slot Car Throttle and Braking Hardware
	Throttle Control

	Results
	Conclusion

	Bibliography
	Curriculum Vitae

