Relational AI Systems: In Pursuit of Simplicity

Dan Olteanu
April 24, 2023

DEPARTMENT OF INFORMATICS, UNIVERSITY OF ZURICH

What is this Talk about?

My research agenda:

- Investigate the principles behind computational challenges for data processing
- Design simple and scalable solutions towards these challenges in both academia and industry

This talk: Two ideas in relational AI

What is this Talk about?

My research agenda:

- Investigate the principles behind computational challenges for data processing
- Design simple and scalable solutions towards these challenges in both academia and industry

This talk: Two ideas in relational AI

- But first: Why relational?

Relational Model: Jewel in the Data Management Crown

Simple model rooted in logic, invented by Codd at IBM in 1969

- The most widely deployed software paradigm of any type Similar reach: zip, libpng, libjpeg
- $>$ trillion SQLite active instances:
- Android/iPhone/iOS devices
- Mac/Windows10 machines
- Firefox/Chrome/Safari browsers
- Skype, iTunes, PhP, Python
- smart TV sets
- automotive multimedia systems

Why is the Relational Paradigm Ubiquitous?

It is not for lack of trying something else..

- Transactional databases were initially navigational
- Relational took over:

Oracle (née Relational Software) Current Market Cap: \$250.4B Ingres (née Relational Technology) Informix (née Relational Databases)

Why is the Relational Paradigm Ubiquitous?

It is not for lack of trying something else..

- Analytic databases were initially multidimensional arrays (tensors)
- Relational took over:

Tableau Software
Market Cap at sale: \$11.6B

Why is the Relational Paradigm Ubiquitous?

It is not for lack of trying something else..

- Big Data systems were initially MapReduce/Spark
- Relational took over:

Snowflake Software
Current Market Cap: \$97.5B
Spark turned relational
Google BigQuery
AWS Cloud Databases

Relational Always Wins!

Relational Always Wins!

Teradata

relational|AI
oraclé
Microstrategy
1990
2000
2010
2020
2030
1970

$$
1980
$$

-

snowflake

"Making the simple complicated is commonplace; making the complicated simple, that's creativity." - C. Mingus
(graphic courtesy of Molham Aref, RelationalAI CEO)

But Really Why is the Relational Paradigm Ubiquitous?

- Very simple data model rooted in logic

First principles then implementation

But Really Why is the Relational Paradigm Ubiquitous?

- Very simple data model rooted in logic

First principles then implementation

- Separation of What from How

Relational systems are declarative

But Really Why is the Relational Paradigm Ubiquitous?

- Very simple data model rooted in logic

First principles then implementation

- Separation of What from How

Relational systems are declarative

- Automatic Programming
query optimization, memory mgt, parallelization, incrementalization

But Really Why is the Relational Paradigm Ubiquitous?

- Very simple data model rooted in logic

First principles then implementation

- Separation of What from How

Relational systems are declarative

- Automatic Programming
query optimization, memory mgt , parallelization, incrementalization
- Easy to understand by domain experts

Domain experts are cheaper and more plentiful than programmers

But Really Why is the Relational Paradigm Ubiquitous?

- Very simple data model rooted in logic

First principles then implementation

- Separation of What from How

Relational systems are declarative

- Automatic Programming
query optimization, memory mgt , parallelization, incrementalization
- Easy to understand by domain experts

Domain experts are cheaper and more plentiful than programmers

- Easy to implement in practice

Tables have rows, all row have the same columns :)

Relational Data Processing Poses Technical Challenges

Achilles heel: Rigid data format that encourages redundancy

Redundancy in data begets redundancy in computation

- Redundancy hides the true computational complexity
- Key reason for lack of efficiency and scalability

Relational Data Processing Poses Technical Challenges

Achilles heel: Rigid data format that encourages redundancy

Redundancy in data begets redundancy in computation

- Redundancy hides the true computational complexity
- Key reason for lack of efficiency and scalability

This talk looks at redundancy when:

- Reasoning under uncertainty
- Training machine learning models over relational data

Probabilistic Databases

Many Worlds Interpretation

Data may admit many interpretations or possible worlds

- Different runs of scientific and social experiments may have (slightly) different outcomes

Example: Manually Completed Census Forms

Example: Manually Completed Census Forms

Several interpretations of the above simple forms are possible

- What is the marital status of Smith or Brown?
- What are their social security numbers? 185? 186? 785?
- Some interpretations more likely (probable) than others

Interpretations of the Manually Completed Census Forms

SSN	Name	Status	Prob
185	Smith	Single	0.2
185	Brown	Single	0.2

Interpretations of the Manually Completed Census Forms

SSN	Name	Status	Prob	SSN	Name	Status	Prob
185	Smith	Single	0.2	785	Smith	Single	0.3
185	Brown	Single	0.2	185	Brown	Single	0.2

Interpretations of the Manually Completed Census Forms

SSN	Name	Status	Prob	SSN	Name	Status	Prob
185	Smith	Single	0.2	785	Smith	Single	0.3
185	Brown	Single	0.2	185	Brown	Single	0.2

Interpretations of the Manually Completed Census Forms

SSN	Name	Status	Prob	SSN	Name	Status	Prob
185	Smith	Single	0.2	785	Smith	Single	0.3
185	Brown	Single	0.2	185	Brown	Single	0.2

for each interpretation for Smith, each possible interpretation for Brown
Total interpretations $=32: 4($ for Smith $) \times 8($ for Brown $)$

Computational Challenges in Probabilistic Databases

How to represent compactly the very many worlds?

Computational Challenges in Probabilistic Databases

How to represent compactly the very many worlds?

- Very many $\approx 10^{10^{6}}$ worlds (in our experiments)
- Each world needs ≈ 1 Gigabyte (678,000 book pages)
- Each world has a likelihood (probability) for being true

Computational Challenges in Probabilistic Databases

How to represent compactly the very many worlds?

- Very many $\approx 10^{10^{6}}$ worlds (in our experiments)
- Each world needs ≈ 1 Gigabyte (678,000 book pages)
- Each world has a likelihood (probability) for being true

Answer: Avoid redundancy in the representation

Computational Challenges in Probabilistic Databases

How to represent compactly the very many worlds?

- Very many $\approx 10^{10^{6}}$ worlds (in our experiments)
- Each world needs ≈ 1 Gigabyte (678,000 book pages)
- Each world has a likelihood (probability) for being true

Answer: Avoid redundancy in the representation

- $10^{10^{6}}$ worlds need ≈ 6 Gigabytes (in our experiments)

Computational Challenges in Probabilistic Databases

How to efficiently query all the worlds?

Computational Challenges in Probabilistic Databases

How to efficiently query all the worlds?

- Efficient \neq Query one world at a time
- Ideal: Time to query all worlds \approx time to query one world

Computational Challenges in Probabilistic Databases

How to efficiently query all the worlds?

- Efficient \neq Query one world at a time
- Ideal: Time to query all worlds \approx time to query one world

Distinguish fast queries from slow queries

- Syntactic characterization of queries by their computational complexity \Rightarrow Dichotomy for query answering

Dichotomy for Query Answering

Dichotomy for Query Answering

Queries are either easy and can be solved efficiently
or hard and cannot be solved efficiently

Gl Bravel "Dichotom

Dichotomies sound simple yet are very challenging to prove.
"Simple can be harder than complex." -Steve Jobs

Dichotomy for Query Answering

Queries are either easy and can be solved efficiently

- Exact computation feasible or hard and cannot be solved efficiently
- Approximate computation feasible

Dichotomies sound simple yet are very challenging to prove.
"Simple can be harder than complex." -Steve Jobs

How Do Hard Queries Look Like?

How Do Easy Queries Look Like?

MAYBE

Systems and Theory for Probabilistic Databases

Systems and Theory for Probabilistic Databases

Application: Probabilistic Google Search

Googie squared
comedy movies

	Item Nam	- \quad \%	Language ∇	Director $\mathrm{V} \times$	Release Date
X	The Mask		English	Chuck Russell	29 July 1994
X	Scary M	English language for the mask www.infibeam.com - all 9 sources »		Chuck Russell directed by for The Mask www.infibeam.com - all 9 sources »	
X	Superba	Other possible valuesEnglish Language Low confidence language for Mask www.freebase.com		Other possible valuesJohn R. Dilworth Low confidence director for The Mask www.freebase.com	
X	Music	english, french Low confidence languages for the mask www.dvdreview.comItalian Language Low confidence language for The Mask www.freebase.com		Fiorella Infascelli Low confidence directed by for The Mask www.freebase.com - all 2 sources	
X	Knockec			Charles Russell Low confidence directed by for The Mask www.freebase.com - all 2 sources »	

Probabilistic Google Search with SPROUT ${ }^{2}$

Probabilistic Google Search with SPROUT ${ }^{2}$

Factorized Databases

$$
(2 * 100)+(3 * 100)
$$

$$
(2 * 100)+(3 * 100)=(2+3) * 100
$$

$$
(x \text { and } y) \text { or }(z \text { and } y)=(x \text { or } z) \text { and } y
$$

$$
\left(\begin{array}{lll}
R_{1} & \times & S
\end{array}\right) \cup\left(R_{2} \times \quad S\right) \quad=\left(R_{1} \cup R_{2}\right) \times \quad S
$$

where \times is Cartesian product and \bigcup is union; R_{1}, R_{2}, S are relations

All previous identities are instances of the same distributivity law of an algebraic structure called the ring with sum-product operations:

Identity

$$
\begin{array}{llll}
\hline(a * b)+(c * b)=(a+c) * b & + & * & \text { Reals } \\
(x \text { and } y) \text { or }(z \text { and } y)=(x \text { or } z) \text { and } y & \vee & \wedge & \text { Booleans } \\
\left(R_{1} \times S\right) \cup\left(R_{2} \times S\right)=\left(R_{1} \cup R_{2}\right) \times S & \cup & \times & \text { Relations }
\end{array}
$$

Sum Product Domain

Why Factorize?

Factorization reduces redundant computation

Why Factorize?

Factorization reduces redundant computation

"The ability to simplify means to eliminate the unnecessary so that the necessary may speak." - Hans Hofmann

Key Advantage of Factorization

Key Advantage of Factorization

Key Advantage of Factorization

Factorized form (left):

- Lossless representation
- More compact
- Supports computation:
- Database queries
- Matrix computation
- Model training

Example:
Compute Count $(R \times S)$
as Count (R) * Count(S)

State of Affairs in Learning over Relational Data

Relational Data

10,000s of Features

Training Dataset

Factorized Learning over Relational Data

Feature Extraction

Demographics

Relational Data

Factorized computation

 drastically improvesthe time and accuracy
of model training
over relational data

Factorization can Achieve 1000x Speedup

Stores	
Relation	Size on Disk (CSV)
Inventory	2 GB
Items	129 KB
Stores	139 KB
Demographics	161 KB
Weather	33 MB
Join	23 GB

Factorization can Lead to 1000x Faster Training

Train a linear regression model to predict inventory given all features

PostgreSQL+TensorFlow Time Size

Database	-	2.1 GB
Join Relations	152.06 secs	23 GB
Export Data	351.76 secs	23 GB
Query batch	-	-
Learn	$12,738.31$ secs	-

Total time 13,242.13 secs

Factorization can Lead to 1000x Faster Training

Train a linear regression model to predict inventory given all features

	PostgreSQL+TensorFlow Time		Size	Our system	
	Time	Size			
Database	-	2.1 GB	-	2.1 GB	
Join Relations	152.06 secs	23 GB	-	-	
Export Data	351.76 secs	23 GB	-	-	
Query batch	-	-	6.08 secs	37 KB	
Learn	$12,738.31$ secs	-	0.05 secs	-	
Total time	$13,242.13$ secs		6.13 secs		

$2,160 \times$ faster while being more accurate (RMSE on 2% test data)

Similar Speedups Observed for other Datasets \& Models

Factorization can lead to 1000x Better Numerical Accuracy

Problem: Decompose large matrices defined by relational data

- QR decomposition
- Singular Value Decomposition
- Principal Component Analysis
- Low-rank matrix decomposition

Factorization \Rightarrow less (redundant) computation

- fewer square roots, divisions, and multiplications

Why are Speedups \& Numerical Accuracy Useful?

- Less energy to achieve the same task as competing systems
- Commodity machines can now perform the task previously done on more powerful machines or many more machines
- We can train more models within the same time budget
- Maintain prediction models fresh on a second/minute/hour basis instead of every day/week
- Numerically unstable algorithms are of no use for critical tasks that require precise computation

Systems and Theory for Factorized Computation

- Publicly available, open-source systems: LMFAO \& F-IVM
- Influenced the design of commercial system RelationalAI
- Impact in database theory: test-of-time award
- We answered questions on the optimality and computational complexity of factorization
- Influenced graph database design, static and dynamic query evaluation, provenance, factorized machine learning
- Summer of 2022: Workshop in Zurich dedicated to factorized computation

Going More Succinct than Factorization

- Subject of on-going work by several research groups
- More succinct \Rightarrow subsequent computation not efficient

Going More Succinct than Factorization

- Subject of on-going work by several research groups
- More succinct \Rightarrow subsequent computation not efficient
"Everything should be made as simple as possible, but not simpler." - Sessions paraphrasing Einstein

Acknowledgments

FDB team, in particular:

LogicBlox \& RelationalAI teams, in particular:

Thank you!

