
D
a

S
T

Data (Systems+Theory)
DaST
DEPARTMENT OF INFORMATICS, UNIVERSITY OF ZURICH

Relational AI Systems: In Pursuit of Simplicity

Dan Olteanu
April 24, 2023

What is this Talk about?

My research agenda:

• Investigate the principles behind computational challenges for

data processing

• Design simple and scalable solutions towards these challenges

in both academia and industry

This talk: Two ideas in relational AI

• But first: Why relational?

What is this Talk about?

My research agenda:

• Investigate the principles behind computational challenges for

data processing

• Design simple and scalable solutions towards these challenges

in both academia and industry

This talk: Two ideas in relational AI

• But first: Why relational?

Relational Model: Jewel in the Data Management Crown

Simple model rooted in logic, invented by Codd at IBM in 1969

• The most widely deployed

software paradigm of any type

Similar reach: zip, libpng, libjpeg

• > trillion SQLite active instances:

• Android/iPhone/iOS devices

• Mac/Windows10 machines

• Firefox/Chrome/Safari browsers

• Skype, iTunes, PhP, Python

• smart TV sets

• automotive multimedia systems

Sales

Weather

Inventory
Stores

Demographic
Items

Customers

Why is the Relational Paradigm Ubiquitous?

It is not for lack of trying something else..

• Transactional databases

were initially navigational

• Relational took over:

Oracle

(née Relational Software)

Current Market Cap: $250.4B

Ingres

(née Relational Technology)

Informix

(née Relational Databases)

Why is the Relational Paradigm Ubiquitous?

It is not for lack of trying something else..

• Analytic databases were

initially multidimensional

arrays (tensors)

• Relational took over:

Tableau Software

Market Cap at sale: $11.6B

Why is the Relational Paradigm Ubiquitous?

It is not for lack of trying something else..

• Big Data systems were

initially MapReduce/Spark

• Relational took over:

Snowflake Software

Current Market Cap: $97.5B

Spark turned relational

Google BigQuery

AWS Cloud Databases

Relational Always Wins!

“Making the simple complicated is commonplace; making

the complicated simple, that’s creativity.” – C. Mingus

(graphic courtesy of Molham Aref, RelationalAI CEO)

Relational Always Wins!

“Making the simple complicated is commonplace; making

the complicated simple, that’s creativity.” – C. Mingus

(graphic courtesy of Molham Aref, RelationalAI CEO)

But Really Why is the Relational Paradigm Ubiquitous?

• Very simple data model rooted in logic

First principles then implementation

• Separation of What from How

Relational systems are declarative

• Automatic Programming

query optimization, memory mgt, parallelization, incrementalization

• Easy to understand by domain experts

Domain experts are cheaper and more plentiful than programmers

• Easy to implement in practice

Tables have rows, all row have the same columns :)

• . . .

But Really Why is the Relational Paradigm Ubiquitous?

• Very simple data model rooted in logic

First principles then implementation

• Separation of What from How

Relational systems are declarative

• Automatic Programming

query optimization, memory mgt, parallelization, incrementalization

• Easy to understand by domain experts

Domain experts are cheaper and more plentiful than programmers

• Easy to implement in practice

Tables have rows, all row have the same columns :)

• . . .

But Really Why is the Relational Paradigm Ubiquitous?

• Very simple data model rooted in logic

First principles then implementation

• Separation of What from How

Relational systems are declarative

• Automatic Programming

query optimization, memory mgt, parallelization, incrementalization

• Easy to understand by domain experts

Domain experts are cheaper and more plentiful than programmers

• Easy to implement in practice

Tables have rows, all row have the same columns :)

• . . .

But Really Why is the Relational Paradigm Ubiquitous?

• Very simple data model rooted in logic

First principles then implementation

• Separation of What from How

Relational systems are declarative

• Automatic Programming

query optimization, memory mgt, parallelization, incrementalization

• Easy to understand by domain experts

Domain experts are cheaper and more plentiful than programmers

• Easy to implement in practice

Tables have rows, all row have the same columns :)

• . . .

But Really Why is the Relational Paradigm Ubiquitous?

• Very simple data model rooted in logic

First principles then implementation

• Separation of What from How

Relational systems are declarative

• Automatic Programming

query optimization, memory mgt, parallelization, incrementalization

• Easy to understand by domain experts

Domain experts are cheaper and more plentiful than programmers

• Easy to implement in practice

Tables have rows, all row have the same columns :)

• . . .

Relational Data Processing Poses Technical Challenges

Achilles heel: Rigid data format that encourages redundancy

Redundancy in data begets redundancy in computation

• Redundancy hides the true computational complexity

• Key reason for lack of efficiency and scalability

This talk looks at redundancy when:

• Reasoning under uncertainty

• Training machine learning models over relational data

Relational Data Processing Poses Technical Challenges

Achilles heel: Rigid data format that encourages redundancy

Redundancy in data begets redundancy in computation

• Redundancy hides the true computational complexity

• Key reason for lack of efficiency and scalability

This talk looks at redundancy when:

• Reasoning under uncertainty

• Training machine learning models over relational data

Probabilistic Databases

Many Worlds Interpretation

Data may admit many interpretations or possible worlds

• Different runs of scientific and social experiments may have

(slightly) different outcomes

Example: Manually Completed Census Forms

Name:�

Marital Status:�

Social Security Number:�

Name:�

Marital Status:�

Social Security Number:�

(1) single� (2) married�
(3) divorced� (4) widowed�

(1) single� (2) married�
(3) divorced� (4) widowed�

Several interpretations of the above simple forms are possible

• What is the marital status of Smith or Brown?

• What are their social security numbers? 185? 186? 785?

• Some interpretations more likely (probable) than others

Example: Manually Completed Census Forms

Name:�

Marital Status:�

Social Security Number:�

Name:�

Marital Status:�

Social Security Number:�

(1) single� (2) married�
(3) divorced� (4) widowed�

(1) single� (2) married�
(3) divorced� (4) widowed�

Several interpretations of the above simple forms are possible

• What is the marital status of Smith or Brown?

• What are their social security numbers? 185? 186? 785?

• Some interpretations more likely (probable) than others

Interpretations of the Manually Completed Census Forms

SSN Name Status Prob

185 Smith Single 0.2

185 Brown Single 0.2

SSN Name Status Prob

785 Smith Single 0.3

185 Brown Single 0.2

SSN Name Status Prob

185 Smith Married 0.2

185 Brown Single 0.2

SSN Name Status Prob

785 Smith Married 0.3

185 Brown Single 0.2

· · · · · · · · · · · ·

for each interpretation for Smith, each possible interpretation for Brown

Total interpretations = 32: 4 (for Smith) × 8 (for Brown)

Interpretations of the Manually Completed Census Forms

SSN Name Status Prob

185 Smith Single 0.2

185 Brown Single 0.2

SSN Name Status Prob

785 Smith Single 0.3

185 Brown Single 0.2

SSN Name Status Prob

185 Smith Married 0.2

185 Brown Single 0.2

SSN Name Status Prob

785 Smith Married 0.3

185 Brown Single 0.2

· · · · · · · · · · · ·

for each interpretation for Smith, each possible interpretation for Brown

Total interpretations = 32: 4 (for Smith) × 8 (for Brown)

Interpretations of the Manually Completed Census Forms

SSN Name Status Prob

185 Smith Single 0.2

185 Brown Single 0.2

SSN Name Status Prob

785 Smith Single 0.3

185 Brown Single 0.2

SSN Name Status Prob

185 Smith Married 0.2

185 Brown Single 0.2

SSN Name Status Prob

785 Smith Married 0.3

185 Brown Single 0.2

· · · · · · · · · · · ·

for each interpretation for Smith, each possible interpretation for Brown

Total interpretations = 32: 4 (for Smith) × 8 (for Brown)

Interpretations of the Manually Completed Census Forms

SSN Name Status Prob

185 Smith Single 0.2

185 Brown Single 0.2

SSN Name Status Prob

785 Smith Single 0.3

185 Brown Single 0.2

SSN Name Status Prob

185 Smith Married 0.2

185 Brown Single 0.2

SSN Name Status Prob

785 Smith Married 0.3

185 Brown Single 0.2

· · · · · · · · · · · ·

for each interpretation for Smith, each possible interpretation for Brown

Total interpretations = 32: 4 (for Smith) × 8 (for Brown)

Computational Challenges in Probabilistic Databases

How to represent compactly the very many worlds?

• Very many ≈ 1010
6

worlds (in our experiments)

• Each world needs ≈ 1 Gigabyte (678,000 book pages)

• Each world has a likelihood (probability) for being true

Answer: Avoid redundancy in the representation

• 10106

worlds need ≈ 6 Gigabytes (in our experiments)

Computational Challenges in Probabilistic Databases

How to represent compactly the very many worlds?

• Very many ≈ 1010
6

worlds (in our experiments)

• Each world needs ≈ 1 Gigabyte (678,000 book pages)

• Each world has a likelihood (probability) for being true

Answer: Avoid redundancy in the representation

• 10106

worlds need ≈ 6 Gigabytes (in our experiments)

Computational Challenges in Probabilistic Databases

How to represent compactly the very many worlds?

• Very many ≈ 1010
6

worlds (in our experiments)

• Each world needs ≈ 1 Gigabyte (678,000 book pages)

• Each world has a likelihood (probability) for being true

Answer: Avoid redundancy in the representation

• 10106

worlds need ≈ 6 Gigabytes (in our experiments)

Computational Challenges in Probabilistic Databases

How to represent compactly the very many worlds?

• Very many ≈ 1010
6

worlds (in our experiments)

• Each world needs ≈ 1 Gigabyte (678,000 book pages)

• Each world has a likelihood (probability) for being true

Answer: Avoid redundancy in the representation

• 10106

worlds need ≈ 6 Gigabytes (in our experiments)

Computational Challenges in Probabilistic Databases

How to efficiently query all the worlds?

• Efficient 6= Query one world at a time

• Ideal: Time to query all worlds ≈ time to query one world

Distinguish fast queries from slow queries

• Syntactic characterization of queries by their computational

complexity ⇒ Dichotomy for query answering

Computational Challenges in Probabilistic Databases

How to efficiently query all the worlds?

• Efficient 6= Query one world at a time

• Ideal: Time to query all worlds ≈ time to query one world

Distinguish fast queries from slow queries

• Syntactic characterization of queries by their computational

complexity ⇒ Dichotomy for query answering

Computational Challenges in Probabilistic Databases

How to efficiently query all the worlds?

• Efficient 6= Query one world at a time

• Ideal: Time to query all worlds ≈ time to query one world

Distinguish fast queries from slow queries

• Syntactic characterization of queries by their computational

complexity ⇒ Dichotomy for query answering

Dichotomy for Query Answering

Queries are

either easy and can be solved efficiently

• Exact computation feasible

or hard and cannot be solved efficiently

• Approximate computation feasible

Dichotomies sound simple yet are very challenging to prove.

”Simple can be harder than complex.” –Steve Jobs

Dichotomy for Query Answering

Queries are

either easy and can be solved efficiently

• Exact computation feasible

or hard and cannot be solved efficiently

• Approximate computation feasible

Dichotomies sound simple yet are very challenging to prove.

”Simple can be harder than complex.” –Steve Jobs

Dichotomy for Query Answering

Queries are

either easy and can be solved efficiently

• Exact computation feasible

or hard and cannot be solved efficiently

• Approximate computation feasible

Dichotomies sound simple yet are very challenging to prove.

”Simple can be harder than complex.” –Steve Jobs

How Do Hard Queries Look Like?

How Do Easy Queries Look Like?

Systems and Theory for Probabilistic Databases

Systems and Theory for Probabilistic Databases

Systems and Theory for Probabilistic Databases

Application: Probabilistic Google Search

Probabilistic databases make explicit the degree of confidence in

their data

Probabilistic Google Search with SPROUT2

Probabilistic Google Search with SPROUT2

Factorized Databases

Factorization in Arithmetic [Primary School Maths]

(2 * 100) + (3 * 100)

= (2+ 3) * 100

Factorization in Arithmetic [Primary School Maths]

(2 * 100) + (3 * 100) = (2+ 3) * 100

Factorization in Boolean Algebra [Secondary School Maths]

(x and y) or (z and y) = (x or z) and y

where x , y , z are Boolean variables

Factorization in Relational Algebra [BSc DB Course]

(R1 × S) ∪ (R2 × S) = (R1 ∪ R2)× S

×
⋃

× = ×

where × is Cartesian product and
⋃

is union; R1,R2, S are relations

Factorization in Relational Algebra [BSc DB Course]

(R1 × S) ∪ (R2 × S) = (R1 ∪ R2)× S

×
⋃

× = ×

where × is Cartesian product and
⋃

is union; R1,R2, S are relations

The Distributivity Law of Rings [MSc/PhD course]

All previous identities are instances of the same distributivity law of

an algebraic structure called the ring with sum-product operations:

Identity Sum Product Domain

(a ∗ b) + (c ∗ b) = (a + c) ∗ b + ∗ Reals

(x and y) or (z and y) = (x or z) and y ∨ ∧ Booleans

(R1 × S) ∪ (R2 × S) = (R1 ∪ R2)× S ∪ × Relations

Why Factorize?

Factorization reduces redundant computation

”The ability to simplify means to eliminate the unnecessary

so that the necessary may speak.” – Hans Hofmann

Why Factorize?

Factorization reduces redundant computation

”The ability to simplify means to eliminate the unnecessary

so that the necessary may speak.” – Hans Hofmann

Key Advantage of Factorization

R

×

S

=

Cartesian product
R × S

Factorized form (left):

• Lossless representation

• More compact

• Supports computation:

• Database queries

• Matrix computation

• Model training

Example:

Compute Count(R × S)

as Count(R) * Count(S)

Key Advantage of Factorization

R

×

S

=

Cartesian product
R × S

Factorized form (left):

• Lossless representation

• More compact

• Supports computation:

• Database queries

• Matrix computation

• Model training

Example:

Compute Count(R × S)

as Count(R) * Count(S)

Key Advantage of Factorization

R

×

S

=

Cartesian product
R × S

Factorized form (left):

• Lossless representation

• More compact

• Supports computation:

• Database queries

• Matrix computation

• Model training

Example:

Compute Count(R × S)

as Count(R) * Count(S)

State of Affairs in Learning over Relational Data

Inventory

Stores

Items

Weather

Demographics

Feature Extraction 10,000s of Features

Relational Data Training Dataset

ML Tool

Model

Factorized Learning over Relational Data

Inventory

Stores

Items

Weather

Demographics

Feature Extraction 10,000s of Features

Training Dataset

ML Tool

Relational Data

Model
Batch of Queries

Optimization

Factorization

Factorized computation

drastically improves

the time and accuracy

of model training

over relational data

Factorization can Achieve 1000x Speedup

Inventory WeatherStores

Demographics Items

Relation Size on Disk (CSV)

Inventory 2 GB

Items 129 KB

Stores 139 KB

Demographics 161 KB

Weather 33 MB

Join 23GB

Factorization can Lead to 1000x Faster Training

Train a linear regression model to predict inventory given all features

PostgreSQL+TensorFlow

Our system

Time Size

Time Size

Database – 2.1 GB

– 2.1 GB

Join Relations 152.06 secs 23 GB

– –

Export Data 351.76 secs 23 GB

– –

Query batch – –

6.08 secs 37 KB

Learn 12,738.31 secs –

0.05 secs –

Total time 13,242.13 secs

6.13 secs

2, 160× faster while being more accurate (RMSE on 2% test data)

Factorization can Lead to 1000x Faster Training

Train a linear regression model to predict inventory given all features

PostgreSQL+TensorFlow Our system

Time Size Time Size

Database – 2.1 GB – 2.1 GB

Join Relations 152.06 secs 23 GB – –

Export Data 351.76 secs 23 GB – –

Query batch – – 6.08 secs 37 KB

Learn 12,738.31 secs – 0.05 secs –

Total time 13,242.13 secs 6.13 secs

2, 160× faster while being more accurate (RMSE on 2% test data)

Similar Speedups Observed for

other Datasets & Models

Factorization can lead to 1000x Better Numerical Accuracy

Problem: Decompose large matrices defined by relational data

• QR decomposition

• Singular Value Decomposition

• Principal Component Analysis

• Low-rank matrix decomposition

Factorization ⇒ less (redundant) computation

• fewer square roots, divisions, and multiplications

Why are Speedups & Numerical Accuracy Useful?

• Less energy to achieve the same task as competing systems

• Commodity machines can now perform the task previously

done on more powerful machines or many more machines

• We can train more models within the same time budget

• Maintain prediction models fresh on a second/minute/hour

basis instead of every day/week

• Numerically unstable algorithms are of no use for critical tasks

that require precise computation

• . . .

Systems and Theory for Factorized Computation

• Publicly available, open-source systems: LMFAO & F-IVM

• Influenced the design of commercial system RelationalAI

• Impact in database theory: test-of-time award

• We answered questions on the optimality and computational

complexity of factorization

• Influenced graph database design, static and dynamic query

evaluation, provenance, factorized machine learning

• Summer of 2022: Workshop in Zurich dedicated to factorized

computation

Going More Succinct than Factorization

• Subject of on-going work by several research groups

• More succinct ⇒ subsequent computation not efficient

”Everything should be made as simple as possible,

but not simpler.” – Sessions paraphrasing Einstein

Going More Succinct than Factorization

• Subject of on-going work by several research groups

• More succinct ⇒ subsequent computation not efficient

”Everything should be made as simple as possible,

but not simpler.” – Sessions paraphrasing Einstein

Acknowledgments

FDB team, in particular:

Ahmet Amir Dorde Haozhe Jakub Max Milos Nils Robert

LogicBlox & RelationalAI teams, in particular:

ElSeidy Henrik Hung Long Mahmoud Molham Niko

Thank you!

	Introduction

