
University of
Zu richu'"

Department of lnformatics

Universíty of Zürich
Department of lnformatics
Binzmühlestr. 14
CH-8050 Zürich
Phone. +4.1 44 635 43 1 1

Fax+41 44 635 68 09
www.if i.uzh.ch/dbtg

UZH, Dept. of lnformatics, B¡nzmühlestr. 14, CH-8050 Zürich Prof. Dr. Michael Böhlen
Professor
Phone +41 44 635 43 33
Fax +41 44 635 68 09
boehlen@if i.uzh.ch

Zürich, 24. August 2017

BSc Vertiefungsarbeit
Topic: Detecting Volatile lndex Nodes in a Hierarchical Database System

Apache Jackrabbit Oakl is a hierarchical database system. lt organizes all data in a single

tree and since the hierarchical model naturally captures the structure of webpages, Oak is
the basis for several CMSs (e.9., Adobe Experience Manager, Magnolia, etc.). A typical CMS

workload consists of modifying and publishing webpages. This workload is write-heavy and

skewed, since modifications are common and some webpages are updated more frequently

than others. Publishable webpages are indexed and the described workload causes the same

index nodes to be repeatedly inserted/deleted. We call these index nodes volatile.

Volatile index nodes raise two main issues. First, since index modifications propagate up and

down the tree, inserting/deleting a volatile index node causes a sequence of index nodes to be

inserted/deleted. The index update performance consequently deteriorates, because volatile

index nodes and their ancestors are repeatedly inserted/deleted. Second, transactions are

likely to conflict with one another when they concurrently insert/delete volatile index nodes that

share a common ancestor on the path to the root node. To resolve the conflict, one of the two

involved transactions needs to abort. Aborting and restarting transactions is expensive and

limits the transactional throughput.

ln this project the student should understand the problems caused by volatile index nodes and

study the approach presented in [1] to deal with them. The main goal of this project is twofold.

First, the student should familiarize with the architecture and code of the database system

Apache Jackrabbit Oak. Second the student should implement the techniques presented in [1]
in Oak's kernel.

t https : //j ackrabbit . apach e . org/ oak/



ffivJru_v/w
Universityof
Zufichu'"

2

Tasks

1. Study and understand [1].

2. lmplement the following components in Apache Jackrabbit Oak as described in [1]. The

implementation should be based on the document-based storage back-end (MongoDB).

(a) Computing the volatility count of a node and deciding if it is volatile

(b) Workload-aware pruning of index nodes

(c) Document splitting

3. Summarizeyour work in a short report (approximately 10 pages).

OptionalTask

1. Evaluate your implementation based on a synthetic dataset. Choose the dataset to eva-

luate the technique in worst-case and best-case scenarios.

References

[1] K. Wellenzohn, M. Böhlen, S. Helmer, M. Reutegger, and S. Sakr. A Workload-Aware

lndex for Tree-Structured Data. To be published.

Supervisor: Kevin Wellenzohn (wellenzohn@ifi.uzh.ch)

Start date: 5 September 2017

University of Zurich

Department of lnformatics

Prof. Dr. Michael Böhlen

Professor


