MSC Basismodul : Study Stream Processing
Platforms and develop a real time Data Analytics
application

Bhargav J. Bhatt
January 21, 2019

Abstract

Stream processing is an ideal platform where data streams are pro-
duced continuously and requires real time processing. Over the past
years such platforms have been developed which ensures distributed, high-
performance, scalable, stateful and real time processing. Example of such
platform are Apache Flink, Apache Spark

1 Introduction

Majority of today’s data processing is done on data that is continuously pro-
duced.The reason is that often processing big volumes of data is not enough.Data
has to be processed fast, so that a firm can react to changing business conditions
in real time.This is required for trading, fraud detection, system monitoring, and
many other examples. Before,data streaming technology was lacking in several
areas, such as performance, latency, and operability, users were forced to run
their own applications to ingest and analyze these continuous data streams, or
use batch processing tools to process these continuous data.

This report will cover the brief overview of Apache Flink [1] and Apache
Spark [2]. Followed by their respective architecture and comparison. This
report describes on the code implementation of Stream processing using Apache
Flink and Apache Kafka [3]. The data that is used is the New York City parking
tickets generation from year 2014 to 2017, sourced from Kaggle.com [4]

2 Stream processing

Stream processing is the processing of continuous data. Stream Processing turns
Typical Database Storage System around: The application logic, analytics, and
queries exist continuously, and data flows through them continuously. Upon
receiving an event from the stream, a stream processing application reacts to
that event: it may trigger an action, update an aggregate or other statistic, or
store that event for future reference. Streaming computations can also process
multiple data streams jointly, and each computation over the event data stream
may produce other event data streams. The systems that receive and send the
data streams and execute the application or analytics logic are called stream

processors. The basic responsibilities of a stream processor are to ensure that
data flows efficiently and the computation scales and is fault tolerant [5]. Stream
processing deals with unbounded datasets which are infinite datasets which are
added continuously and run continuously as long as data is received. Apache
Flink is best example for Stream processing.

3 Apache Flink

3.1 Introduction

Apache Flink is an open source distributed platform for stream and batch pro-
cessing.Flink is built on the philosophy that many classes of data processing ap-
plications, including real-time analytics, continuous data pipelines, historic data
processing (batch), and iterative algorithms (machine learning, graph analysis)
can be expressed and executed as pipelined fault-tolerant dataflows [6].

3.2 Features

The Following are the features of Apache Flink which make Flink stand out as
a stream processing system in the open source.

e Support for event time and out of order streams.

e Fxpressive and easy-to-use APIs in Scala and Java.

Support for sessions and unaligned windows.

Consistency, fault tolerance, and high availability.

Low latency and high throughput.
e Integration.

e Support for batch.

3.3 Architecture

A Flink runtime program compiles of core libraries that allows to process stream-
ing data. It can run locally and also on cluster either on Flink standalone or
hadoop. Flink can also be run on cloud either on Google compute engine or
Amazon web service. On top of runtime lies two set of core APIs. One is datas-
tream API which deals with the stream processing and dataset API deals with
the batch processing . CEP (complex event processing) which is on top of data
stream API allows you to match input streaming data against patterns. The
table API allows you to build table and can run SQL like operations on stream-
ing data. On top of data set API, Flink have FlinkML, a machine learning
library which allows you to run machine learning algorithms. The Gelly Graph
processing allows you to inter connecting entities in form of social graphs [6].

=]

S S

= — —

- o0 =

o — W

Y §- _ & 20 = o

sl 2% FHES
sSl|l =S || 25 S8l o3
s |3 |38 |l 38 e 5cflag
= | ES (LG ca oCcall ,&
8
=
o DataSet API DataStream API
g Batch Processing Stream Processing
Runtime
é—’ Distributed Streaming Dataflow
L 1

Fy . ocal Cluster Cloud .
= Single JVM, Standalone. YARN Google Comp. Engine,
a Embedded ’ EC2

Figure 1: The Flink software stack.

3.4 Flink Programming Model

Flink programming model consist of 3 main components. Initially the Data
source where the data is inputed. Transformation where the operation are
performed on data. And Lastly the Data Sink where processed data is either
stored, showed using representation or even act as input stream for another
further transformation [7].

Transformations

Data |

:,/

Figure 2: The Flink Programming Model.

—

Source

4 Batch Processing

Batch Processing is the processing of Bounded dataset, which is finite unchanged
dataset to be analyzed. Batch processing runs for a specific time, completes the

process and releases the resources once finished.

5 Apache Spark

5.1 Introduction

Scalable data processing is essential for computer applications dealing with large
bounded dataset and typically involves a complex sequence of processing steps
with different computing systems. Spark simplify this task by introducing a
unified programming model and engine for big data applications. Spark is a
generalized framework for distributed data processing providing functional API
for manipulating data at scale, in-memory data caching and reuse across com-
putations. It applies set of coarse-grained transformations over partitioned data
and relies on dataset’s lineage to recompute tasks in case of failures [8].

5.2 Spark Architecture

Apache Spark Core

Figure 3: The Spark software stack.

Spark Core is the underlying general execution engine for spark platform that
all other functionality is built upon. It provides In-Memory computing and ref-
erencing datasets in external storage systems. Spark SQL is a component on
top of Spark Core that introduces a new data abstraction called SchemaRDD,
which provides support for structured and semi-structured data. Spark Stream-
ing leverages Spark Core’s fast scheduling capability to perform streaming ana-
lytics. It ingests data in mini-batches and performs RDD (Resilient Distributed
Datasets) transformations on those mini-batches of data. MLIib is a distributed
machine learning framework above Spark because of the distributed memory-
based Spark architecture. GraphX is a distributed graph-processing framework
on top of Spark. It provides an API for expressing graph computation that can
model the user-defined graphs by using Pregel abstraction API [2].

5.3 Spark Programming model

Spark uses a master/worker architecture. There is a spark context that com-
municate to a single coordinator called master that manages workers in which
executors run.Each application gets its own executor processes, which stay up for
the duration of the whole application and run tasks in multiple threads.The sys-
tem currently supports three cluster managers, namely Apache Mesos, Hadoop
YARN and standalone [2].

Spark Application Workers

User Program Spark Context

RDDs DAGScheduler

Cluster

Executor
Manager

wal sc = new SparkContext(conf) ¢|

> Cache
—

wval rdd = sc.cass:

Task Task

Lcache ()

Task Task

Figure 4: The Spark program model.

6 Comparison Batch and Stream Processing

Table 1: Batch and Stream Processing Comparison

Batch Processing Stream Processing

Bounded finite datasets Unbounded infinite datasets

Slow pipeline from data ingestion to analyses Process immediately as data is received
periodic updates as job completes Continuous updates as job runs constantly
Order of data received is not important Order of data received is important

Single global state of world at any point of time | No global state, only history of events

7 Implementation

7.1 Data

The source of data is of NYC Parking Tickets from Kaggle [4]. The NYC
Department of Finance collects data on every parking ticket issued in NYC
(10M per year!). There are 55 fields, however for implementation purpose only
8 fields are selected and filter out. These fields are describe as below:

e Summons Number - unique number generated for each ticket
e Plate ID - number plate of vehicle
e Issue Date - date of issue of ticket

e Violation Code - type of violation

e Vehicle Body Type - type of vehicle

e Vehicle Make - manufacture of vehicle

e Violation Time - time when ticket was generated

e Violation County - state where the violation took place

Moreover Violation code can also be mapped with external source [9] which pro-
vides fine charges on each tickets. Thus it can also give economical perspective
of Data.

7.2 Inspiration

Various results can be obtained from the dataset that is provided. Main Inspi-
ration to get from data are:

e Tickets count per day, per month, per year.
o Where are tickets most commonly issued?
e What are the most common types of cars to be ticketed.

e Fine charged per month, year.

7.3 Architecture

The data is inputed through Apache Kafka medium and processed by Apache
Flink and again output to Apache Kakfa (Multiple topics). The versions of
Apache Flink and Apache Kafka used is Flink 1.3.2 and Kafka 1.0.0

Visualization

Stream Processor
Application

Flink/Spark
Dataset Apache Kafka el S e Apa;::::'ka
Queue

— R 4 —

»

Figure 5: Streaming Pipeline

7.4 Process

The CSV files containing NYC parking tickets data is inputed as string from
localhost as ”dataStream”. This string is processes through .flatmap(new RowS-
plitter) and break into Tuple. The fields which are relevant to these inspiration
mentioned above, are only selected.

//Data inputed from Kafka

DataStream<String> dataStream = env.addSource(new
FlinkKafkaConsumer082<>(parameterTool.getRequired("topic"),
new SimpleStringSchema(), parameterTool.getProperties()));

//filtered datastream (only selected fields stored from string to tuple)
DataStream<Tuplel1<String, String, String, String, Integer,
String, String, String, Integer, Integer, Integer>>
dataStream2 = dataStream.flatMap(new RowSplitter());

The tuple is stored in table using Flink Table API and SQL. Various SQL queries
which are supported by Flink Streaming process are executed.

//storing data streaming into table

tableEnv.registerDataStream("nycdata", dataStream?2,
"sNum,plateld,registrationState,issueDate,violationCode,

vehicleBodyType,vehicleMake,violationTime,Vday,Vmonth,Vyear");

//executing SQL query
Table query3 = tableEnv.sql("SELECT Vmonth, COUNT(Vmonth) as cnt Charge
FROM nycdata GROUP BY Vmonth");

//storing back as dataStream from SQL result
DataStream<Tuple2<Boolean, Row>> retractStream =
tableEnv.toRetractStream(queryl, Row.class);

The Window functions are also applied to using Table SQL API. However it
can also be applied to data stream to get results.

// compute Count using tumble window
Table query4 = tableEnv.sql(
"SELECT Vmonth, " +
" TUMBLE_START (rowtime, INTERVAL ’1’ DAY) as wStart, " +
" Count(Vmonth) FROM Orders " +
"GROUP BY TUMBLE(rowtime, INTERVAL ’1’ DAY), Vmonth");

8 Conclusion

Apache Flink can be used for both Stream as well as Batch Processing. The main
advantage of Apache Flink is high throuhput, low latency and fault tolrance
with low over head. Large data set can be processed even on local machine to
generate respective output results.

9 Acknowledgement

I would like to express my deepest appreciation to all those who provided me
the possibility to complete this report. A special gratitude I give to our Pro-
fessor Dr. Michael Bohlen for giving me splendid opportunity to expose such
developing platform. Furthermore I am highly indebted to Muhammad Saad
for his guidance and constant supervision as well as for providing necessary in-
formation regarding Apache Flink and also for their support in developing the
code.

References

[1] Apache Flink, www.flink.apache.org.
[2] Apache Spark, www.spark.apache.org.
[3] Apache Kafka, www.kafka.apache.org.

[4] NYC Parking Tickets, Kaggle hitps://www.kaggle.com/new-york-city/nyc-
parking-tickets.

[5] What is stream processing? hitps://data-artisans.com/what-is-stream-
processing.

[6] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S. et al. (2015)
Apache flink: Stream and batch processing in a single engine.

[7] Introduction to Apache Flink https://flink.apache.org/introduction.htmi.

[8] Apache Spark: core concepts, architecture and internals
http://datastrophic.io/core-concepts-architecture-and-internals-of-apache-
spark/.

[9] Violation Codes, Fines, Rules and Regulationshttp://wwwl.nyc.gov/site/finance/vehicles/services-
violation-codes.page.

