
Department of Informatics, University of Zürich

MSc Basic Module

Implementing Self Addition Inside
MonetDB

Timo Surbeck
Matrikelnummer: 15-701-733

Email: timo.surbeck@uzh.ch

June 23, 2019
supervised by Prof. Dr. Michael Böhlen and Oksana Dolmatova

1 Introduction

1.1 MonetDB
MonetDB is a widely known open source database management system (DBMS) developed
and maintained since 1993 by a team at the Centrum Wiskunde & Informatica (CWI) in the
Netherlands. When it comes to DBMS featuring columnar storage (column stores), MonetDB
played a pioneering role: In column stores, relations are stored and processed in terms of sets
of attribute lists (relations’ columns), which is clearly distinct from the tuple-wise approach
implemented in traditional DBMS. For a variety of applications (i.e., queries), e.g., joins, col-
umn stores are exceptionally efficient, as internally it is possible to directly iterate through
columns. Being written in the C programming language, on the low level, MonetDB uses the
Binary Association Table (BAT) data structure to store relations’ columns. Next to the actual
data held in traditional C-arrays, BATs store a unique identifier (OID) for each value, such that
for recovering multi-attribute relations’ tuples, values residing in several BATs can be joined
according to their OID [2].

Working with MonetDB involves running two separate programs: At the frontend applica-
tion (mclient), a user can enter queries in the SQL language, or, load SQL-scripts. Entered
instructions are transferred to the backend (mserver5), where a series of passing several
layers from high to low is started off: Initially, an SQL query is parsed into a symbol tree,
which – itself – is not yet related to the internals of a DBMS. However, this symbol tree is
used to construct MonetDB’s equivalent of a query tree, namely the relation tree. At this
point, an optimizer rearranges the relation tree using heuristics and optimization rules. The
efficiency-optimized relation tree is then converted into the attribute-oriented statement tree.
This tree allows for defining operations applied directly on columns. Finally, the statement
tree is translated to a MAL-plan; MAL stands for MonetDB Assembly Language and handles
BAT-level operations [1], [2].

1.2 Problem Definition
The main purpose of this module is the preparation for a MSc project, for which I will collab-
orate with my fellow students Alphonse Mariyagnanaseelan and Jonathan Stahl on the imple-
mentation of Matrix Operations with Gathering in MonetDB. Therefor, the task of this MSc
basic module was created, namely the implementation of a self addition feature for numeric
single-attribute relations. This task presented itself as an ideal preparation for the upcoming
project, as – except for optimization of the relation tree and modifying the MAL – every part
of MonetDB’s internals had to be explored and extended.

2

The following illustration shows self addition on the exemplary single-attribute relation r
producing result relation r’:

r r’
A A
3 6
9 18
2 4

2 Design & Implementation

To address the implementation’s general approach, it can be said that the sequence of a query
execution was directly followed, i.e., proceeding from higher to lower architecture levels.
Therefore, as a first step, the SQL parser was extended, such that the following self addition
query became understandable for the backend (r is a numeric single-attribute relation):

SELECT * FROM ADD r;

It should be mentioned, that during development, MonetDB’s cross join functionality was
used to gradually check advancements in all of MonetDB’s layers, e.g., it was invoked from
within the extended query parser as a means to verify, if the current layer extension was im-
plemented correctly – even if self addition was not yet realized on lower levels. Furthermore,
during the development, gdb (GNU debugger) revealed itself very useful to interim examine
fields pointing at complex data structures (e.g. the symbol tree).

The source code containing the finished self addition feature implemented in MonetDB
11.23.13 can be obtained at: https://github.com/timolex/monetdbBasicModule

2.1 Extension Of The SQL Parser
MonetDB uses Yacc (Yet Another Compiler Compiler) as a tool to parse SQL queries [1]. Its
configuration resides in file sql_parser.y and was extended as follows:

| ADD t a b l e _ r e f
{ d l i s t * l = L () ;
append_symbol (l , $2) ;
$$ = _ s y m b o l _ c r e a t e _ l i s t (SQL_ADD, l) ; }

3

https://github.com/timolex/monetdbBasicModule

As apparent in the self addition SQL query, the ADD-keyword appears in the FROM-clause.
Therefore, the new expression was configured in the same area as different FROM-clause ex-
pressions, e.g., cross join. $2 refers to the table name of the single-attribute relation. In an
early stage version, $2 was appended twice to the dlist and the SQL_CROSS token was
invoked, such that by running the query, self cross join was executed.

2.2 Adding A Self Addition Relation Tree Node
The symbol tree created by the parser only contains symbols (e.g. relation names) and there-
fore might also represent a query aiming to access inexistent relations, resp., attributes. It is
– however – the implementation of the relation tree which considers the actual DB to verify
the existence of relation names present in the query. The below illustration depicts the rela-
tion tree for self addition which is generated by the added code. ⊕ denotes the self addition
operation:

π∗

⊕

r

The following code snippet developed in file rel_select.c exhibits the translation from
a symbol tree node (dnode) to a relation tree’s child (i.e., a relation, sql_rel):

dnode *n = q->data.lval->h;
symbol *tab1 = n->data.sym;
sql_rel *t1 = table_ref(sql, rel, tab1);

Additionally, in file rel_rel.c a function called rel_addition was implemented
which returns a relation tree node holding static information about self addition, e.g., its single
child (relation), the no. of returned columns etc.

2.3 Translation: Relation Tree Node To Statement Tree
After defining a new relation tree node, the statement tree was extended to cover the self
addition operation. While the relation tree holds relations as well as operators (representing the
operation to be applied on child nodes), the statement tree entirely consists of statement nodes
(data type stmt). Statement tree nodes are either child nodes, i.e., columns of a relation, or
representing tree nodes applying an operation on one or several child nodes. The translation
from relation tree node to statement tree takes place in file rel_bin.c, where function
rel2bin_addition takes a relation tree node as input parameter and translates it to a
statement tree accordingly, as depicted in the following code snippet (left and addition
are stmt-pointers):

4

left = subrel_bin(sql, rel->l, refs);
node *n = left->op4.lval->h;
stmt *c = n->data;
stmt *l = column(sql->sa, c);
addition = stmt_addition(sql->sa, l);

Field addition points at a statement tree node which is returned by stmt_addition
defined in sql_statement.c; This function calls stmt_create, which in MonetDB is
used to create new statement tree nodes.

2.4 Translation: Self Addition Statement To MAL plan
In file sql_gencode.c, function _dumpstmt serves the purpose of translating the state-
ment tree into a MAL plan invoking BAT operations. This is accomplished by adding a switch-
case for the statement type st_addition which is associated to the self addition statement
tree node defined in sql_statement.c. In essence, the following code was necessary to
let the MAL code be generated allowing to apply element-wise addition of two BATs:

q = newStmt(mb, batcalcRef, "+");
q = pushArgument(mb, q, l);
q = pushArgument(mb, q, l);

While with the first line of the above code snippet, the BAT addition function is set up, at the
latter two lines, the same argument (t, i.e., the relation’s single attribute) is pushed twice to the
addition function to attain self addition. Internally, this BAT function is called batcalc.+
and is also invoked for attribute additions using the usual SQL syntax. This became clear
when prepending EXPLAIN to the following query:

SELECT A + A FROM r;

3 Conclusion & Discussion
Overall, self addition for single-attribute relations can be described as a very simple func-
tionality, not only in terms of the executed operation but also the underlying implementation;
However, following cross join as a guideline revealed the flexibility and high extendability of
all of MonetDB’s backend layers. In terms of scalability, it can be stated, that with – contextu-
ally – moderately high effort, it would be possible to extend this implementation to attain the
functionality of addition of two single-attribute relations: One of the necessary steps therefor
would be to add a second child node to the relation tree representing the second relation.

Furthermore, with very little effort it is possible to change this implementation to realize
different simple operations, such as self multiplication, division, modulo, etc., as the corre-
sponding BAT operations are present and ready to use.

5

Bibliography

[1] Alphonse Mariyagnanaseelan, Optimization of Mixed Queries in MonetDB System, https:
//www.merlin.uzh.ch/contributionDocument/download/11242, ac-
cessed 2019-06-19, Sep. 2018.

[2] Database Architectures Research Group (CWI), MonetDB, https://www.monetdb.
org, accessed 2019-06-18.

6

https://www.merlin.uzh.ch/contributionDocument/download/11242
https://www.merlin.uzh.ch/contributionDocument/download/11242
https://www.monetdb.org
https://www.monetdb.org

	Introduction
	MonetDB
	Problem Definition

	Design & Implementation
	Extension Of The SQL Parser
	Adding A Self Addition Relation Tree Node
	Translation: Relation Tree Node To Statement Tree
	Translation: Self Addition Statement To MAL plan

	Conclusion & Discussion

