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Abstract— One of the main open challenges in visual odome-
try (VO) is the robustness to difficult illumination conditions or
high dynamic range (HDR) environments. The main difficulties
in these situations come from both the limitations of the
sensors and the inability to perform a successful tracking
of interest points because of the bold assumptions in VO,
such as brightness constancy. We address this problem from
a deep learning perspective, for which we first fine-tune a
deep neural network with the purpose of obtaining enhanced
representations of the sequences for VO. Then, we demonstrate
how the insertion of long short term memory allows us to obtain
temporally consistent sequences, as the estimation depends on
previous states. However, the use of very deep networks enlarges
the computational burden of the VO framework; therefore, we
also propose a convolutional neural network of reduced size
capable of performing faster. Finally, we validate the enhanced
representations by evaluating the sequences produced by the
two architectures in several state-of-art VO algorithms, such as
ORB-SLAM and DSO.

SUPPLEMENTARY MATERIALS

A video demonstrating the proposed method is available

at https://youtu.be/NKx_zi975Fs.

I. INTRODUCTION

In recent years, Visual Odometry (VO) has reached a

high maturity and there are many potential applications, such

as unmanned aerial vehicles (UAVs) and augmented/virtual

reality (AR/VR). Despite the impressive results achieved in

controlled lab environments, the robustness of VO in real-

world scenarios is still an unsolved problem. While there are

different challenges for robust VO (e.g., weak texture [1][2]),

in this work we are particularly interested in improving the

robustness in HDR environments. The difficulties in HDR

environments come not only from the limitations of the

sensors (conventional cameras often take over/under-exposed

images in such scenes), but also from the bold assumptions

of VO algorithms, such as brightness constancy. To overcome

these difficulties, two recent research lines have emerged

respectively: Active VO and Photometric VO. The former

tries to provide the robustness by controlling the camera

parameters (gain or exposure time) [3][4], while the latter
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explicitly models the brightness change using the photo-

metric model of the camera [5] [6]. These approaches are

demonstrated to improve robustness in HDR environments.

However, they require a detailed knowledge of the specific

sensor and a heuristic setting of several parameters, which

cannot be easily generalized to different setups.

In contrast to previous methods, we address this problem

from a Deep Learning perspective, taking advantage of the

generalization properties to achieve robust performance in

varied conditions. Specifically, in this work, we propose

two different Deep Neural Networks (DNNs) that enhance

monocular images to more informative representations for

VO. Given a sequence of images, our networks are able to

produce an enhanced sequence that is invariant to illumi-

nation conditions or robust to HDR environments and, at

the same time, contains more gradient information for better

tracking in VO. For that, we add the following contributions

to the state of the art:

◦ We propose two different deep networks: a very deep

model consisting of both CNNs and LSTM, and another

one of small size designed for less demanding applica-

tions. Both networks transform a sequence of RGB images

into more informative ones, while also being robust to

changes in illumination, exposure time, gamma correction,

etc.

◦ We propose a multi-step training strategy that employs

the down-sampled images from synthetic datasets, which

are augmented with a set of transformations to simulate

different illumination conditions and camera parameters.

As a consequence, our DNNs are capable of generalizing

the trained behavior to full resolution real sequences in

HDR scenes or under difficult illumination conditions.

◦ Finally, we show how the addition of Long Short Term

Memory (LSTM) layers helps to produce more stable

and less noisy results in HDR sequences by incorporating

the temporal information from previous frames. However,

these layers increase the computational burden, hence

complicating their insertion into a real-time VO pipeline.

We validate the claimed features by comparing the per-

formance of two state-of-art algorithms in monocular VO,

namely ORB-SLAM [7] and DSO [6], with the original input

and the enhanced sequences, showing the benefits of our

proposals in challenging environments.

II. RELATED WORK

To overcome the difficulties in HDR environments, works

have been done to improve the image acquisition process as

well as to design robust algorithms for VO.



A. Camera Parameter Configuration

The main goal of this line of research is to obtain the

best camera settings (i.e., exposure, or gain) for image

acquisition. Traditional approaches are based on heuristic

image statistics, typically the mean intensity (brightness)

and the intensity histogram of the image. For example, a

method for autonomously configuring the camera param-

eters was presented in [8], where the authors proposed

to setup the exposure, gain, brightness, and white-balance

by processing the histogram of the image intensity. Other

approaches exploited more theoretically grounded metrics.

[9], employed the Shannon entropy to optimize the camera

parameters in order to obtain more informative images. They

experimentally proved a relation between the image entropy

and the camera parameters, then selected the setup that

produced the maximum entropy.

Closely related to our work, some researchers tried to

optimize the camera settings for visual odometry. [3] defined

an information metric, based on the gradient magnitude

of the image, to measure the amount of information in

it, and then selected the exposure time that maximized

the metric. Recently, [4] proposed a robust gradient metric

and adjusted the camera setting according to the metric.

They designed their exposure control scheme based on the

photometric model of the camera and demonstrated improved

performance with a state-of-art VO algorithm [10].

B. Robust Vision Algorithms

To make VO algorithms robust to difficult light conditions,

some researchers proposed to use invariant representations,

while others tried to explicitly model the brightness change.

For feature-based methods, binary descriptors are efficient

and robust to brightness changes. [7] used ORB features

[11] in a SLAM pipeline and achieved robust and efficient

performance. Other binary descriptors [12][13] are also often

used in VO algorithms. For direct methods, [14] incorporated

binary descriptors into the image alignment process for direct

VO, and the resulting system performed robustly in low light.

To model the brightness change, the most common tech-

nique is to use an affine transformation and estimate the

affine parameters in the pipeline. [15] proposed an adaptive

algorithm for feature tracking, where they employed an affine

transformation that modeled the illumination changes. More

recently, a photometric model, such as the one proposed

by [16], is used to account for the brightness change due

to the exposure time variation. A method to deal with

brightness changes caused by auto-exposure was published

in [5], reporting a tracking and dense mapping system based

on a normalized measurement of the radiance of the image

(which is invariant to exposure changes). Their method not

only reduced the drift of the camera trajectory estimation,

but also produced less noisy maps. [6] proposed a direct

approach to VO with a joint optimization of both the model

parameters, the camera motion, and the scene structure.

They used the photometric model of the camera as well

as the affine brightness transfer function to account for the

brightness change. In [4], the authors also adapted a direct

VO algorithm [10] with both methods and presented an

experimental comparison of using the affine compensation

and the photometric model of the camera.

To the best of our knowledge, there is few work on using

learning-based methods to tackle the difficulties in HDR

environments. In the rest of the paper, we will describe how

to design networks for this task, the training strategy and the

experimental results.

III. NETWORK OVERVIEW

In this work, we need to perform a pixel-wise trans-

formation from monocular RGB images in a way that the

outputs are still realistic images, on which we will further

run VO algorithms. For pixel-wise transformation, the most

used approach is DNNs structured in the so-called encoder-

decoder form. These type of architectures have been success-

fully employed in many different tasks, such as optical flow

estimation [19], image segmentation [20], depth estimation

[17], or even to solve the image-to-image translation problem

[21]. The proposed architectures (see Figure 1), implemented

in the Caffe library [22], consist of an encoder, LSTM layers

and a decoder, as described in the following.

A. Encoder

The encoder network consists of a set of purely con-

volutional layers that transform the input image, into a

more reduced representation of feature vectors, suitable for a

specific classification task. Due to the complexity of training

from scratch [23], a standard approach is to initialize the

model with the weights of a pre-trained model, known as

fine-tuning. This has several advantages, as models trained

with massive amount of natural images such as VGGNet

[24], a seminal network for image classification, usually

provide a good performance and stability during the training.

Moreover, as initial layers closer to the input image provide

low-level information and final layers are more task-specific,

it is also typical to employ the first layers of a well-trained

CNN for different purposes, i.e. place recognition [25]. This

was also the approach in [18], where authors employed the

first 8 layers of VGGNet to initialize their network, keeping

their weights fixed during training, while the remaining

layers were trained from scratch with random initialization.

Therefore, in this work, we first fine-tuned the very deep

model in [18], depicted in Figure 1a.

However, since our goal is to estimate the VO with the

processed sequences, a very deep network, such as the fine-

tuned model, is less suitable for usual robotic applications,

where the computational power must be saved for the rest of

modules. Moreover, depth estimation requires a high level

of semantic abstraction as it needs some spatial reasoning

about the position of the objects in the scene. In contrast,

VO algorithms are usually based on tracking regions of

interest in the images, which largely relies on the gradient,

i.e., the first derivatives of the images, information that it is

usually present in the shallow layers of CNNs. Therefore,

we also propose a smaller and less deep CNN to obtain

faster performance, whose encoder is formed by three layers



(a) DNN model used in fine-tuning.

(b) Small-CNN trained from scratch.

Fig. 1: Scheme of the architectures employed in this work. Both DNNs are formed by an encoder convolutional network,

and a decoder that forms the enhanced output images. In the case of the fine-tuned network, we introduce a LSTM network

to produce temporally consistent sequences. These figures have been adapted from [17, 18].

(dimensions are in Figure 1b), each one of them formed

by a convolution with a 5 × 5 kernel, followed by a batch-

normalization layer [26] and a pooling layer.

B. Long Short Term Memory (LSTM)

While it is feasible to use a feedforward neural network

to increase the information in images for VO, the input se-

quence may contain non-ignorable brightness variation. More

importantly, the brightness constancy is not enforced in a

feedforward network, hence the output sequence is expected

to break the brightness constancy assumption for many VO

algorithms. To overcome this, we can exploit the sequential

information to produce more stable and temporally consistent

images, i.e. reducing the impact of possible illumination

change to ease the tracking of interest points. Therefore,

we exploit the Recurrent Neural Networks (RNNs), more

specifically, the LSTM networks first introduced in [27]. In

these networks, unlike in standard CNNs where the output is

only a non-linear function f of the current state yt = f(xt),
the output is also dependent on the previous output:

yt = f(xt, yt−1
) (1)

as the layers are capable of memorizing the previous states.

We introduce two LSTM layers in the fine-tuned network

between the encoder and the decoder part, in order to produce

more stable results for a better odometry estimation.

C. Decoder

Finally, the decoder network is formed by three deconvo-

lutional layers, each of them formed by an upsampling, a

convolution and a batch-normalization layer, as depicted in

Figure 1. The deconvolutional layers increase the size of the

intermediate states and reduce the length of the descriptors.

Typically, decoder networks produce an output image of

a proportional size of the input one containing the predicted

values, which is in general blurry and noisy thus not very

convenient to be used in a VO pipeline. To overcome this

issue, we introduce an extra step which merges the raw

output of the decoder with the input image producing a more

realistic image. For that, we concatenate both the input image

in grayscale and the decoder output into a 2-channel image

then applying a final convolutional filter with a 1× 1 kernel

and one channel.

IV. TRAINING THE DNN

Our goal is to produce an enhanced image stream to

increase the robustness/accuracy of visual odometry algo-

rithms under challenging situations. Unfortunately, there is

no ground-truth available for generating the optimal se-

quences, nor direct measurement that indicates the goodness

of an image for VO. To overcome this difficulties, we observe

that the majority of the state-of-art VO algorithms, both

direct and feature-based approaches, actually exploit the

gradient information in the image. Therefore, we aim to train

our network to produce images containing more gradient

information. In this section, we first introduce the dataset

used for training then our training strategy.

A. Datasets

To train the network, we need images taken at the same

pose but with different illuminations, which are unfortunately

rarely available in real-world VO datasets. Therefore we

employed synthetic datasets that contain changes in the

illumination of the scenes. In particular, we used the well-

known New University of Tsukuba dataset [28] and the

Urban Virtual dataset generated by [18], consisting of several

sequences from an artificial urban scenario with non-trivial

6-DoF motion and different illumination conditions. In order

to increase the amount of data, we simulated 12 different

camera and illumination conditions (see Figure 2) by us-

ing several combinations of Gamma and Contrast values.

Notice that this data augmentation must contain an equally

distributed amount of conditions, otherwise the output of the

network might be biased to the predominant case. To select



(a) Reference (b) Dark conditions

(c) Daylight (d) Over-exposition

Fig. 2: Some training samples from the Urban dataset

proposed in [18], for which we have simulated artificial

illumination and exposure conditions by post-processing the

dataset with different contrast and gamma levels.

the best image y∗ (with the most gradient information), we

use the following gradient information metric:

g(y) =
∑

ui

‖∇y(ui)‖
2

(2)

which is the sum of the gradient magnitude over all the

pixels ui in the image y. For training the CNN, we used

RGB images of 256 × 160 pixels in the case of fine-tuning

the model in [18] and grayscale images of 160× 120 pixels

for the reduced network. We trained the LSTM network with

full-resolution images (752 × 480) as, unlike convolutional

layers, once trained they cannot be applied to inputs of

different size.

B. Training the CNN

We first train without LSTM, with the aim of obtaining

a good CNN (encoder-decoder) capable of estimating the

enhanced images from individual (not sequential) inputs.

This part of training consists of two stages:

1) Pre-training the Network: In order to obtain a good

and stable initialization, we first train the CNN with pairs

of images at the same pose, consisting of the reference

image y∗ and an image with different appearance. On our

first attempts, we tried to optimize directly the bounded

increments of the gradient information (2). The results are

very noisy, due to the high complexity of the pixel-wise

prediction problem. Instead, we opted to train the CNN by

imposing the output to be similar to the reference image,

in a pixel-per-pixel manner. For that, we employed the

logarithmic RMSE, which is defined for a given reference

y∗ and an output y image as:

L(y, y∗) =

√

1

N

∑

i

‖log yi − log y∗
i
‖
2
, (3)

where i is the pixel index in the images. Although we tried

different strategies for this purpose, such as the denoising

autoencoder [29], we found this loss function much more

suitable for VO applications, as it produced a smoother result

than the Euclidean RMSE, specially for bigger errors, hence

easing the convergence process. This first part of the training

was performed with the Adam solver [30], with a learning

rate l = 0.0001 for 20 epochs of the training data, and a

dataset formed by 80k pairs and requiring about 12 hours on

a NVIDIA GeForce GTX Titan.

2) Imposing Invariance: Once a good performance with

the previous training was achieved, we trained the CNN to

obtain invariance to different appearances. The motivation is

that, for images with different appearances (i.e. brightness)

taken at the same pose, the CNN should be able produce the

same enhanced image. For that, we selected triplets of images

from the Urban dataset, by taking the reference image y∗,

and another two images y
1

and y
2

from the same place with

two different illuminations. Then, we trained the network in

a siamese configuration, for which we again imposed both

outputs to be similar to the reference one. In addition, we

introduced the following loss function:

LSSIM (y
1
, y

2
, y∗) = SSIM(y

1
, y

2
) (4)

which is the structural similarity (SSIM) [31], usually em-

ployed to measure how similar two images are. This second

part of the training was performed, during 10 epochs of

the training data (40k triplets), requiring about 6 hours of

training with the same parameters as in previous Section.

C. Training the LSTM network

After we obtain a good CNN, the second part of the train-

ing is designed to increase the stability of the outputs, given

that we are processing sequences of consecutive images.

The goal is to provide not only more meaningful images,

but also fulfill the brightness constancy assumption. For that

purpose, we trained the whole DNN, including the LSTM

network, with sequences of two consecutive images (i.e.,

taken at consecutive poses on a trajectory) under slightly

different illumination conditions, while the reference ones

presented the same brightness. The loss function consists of

the LogRMSE loss function (3) to ensure that both outputs

are similar to their respective reference ones, and the SSIM

loss (4) without the structural term (as images do not belong

to the exact same place) between the two consecutive outputs

to ensure that they have a similar appearance. The LSTM

training was performed during 10 epochs of the data (40k

triplets), in about 12 hours with the same parameters as in

previous Section.

V. EXPERIMENTAL VALIDATION

In this section, we evaluate the performance of our ap-

proach by measuring two different metrics: the increments

of gradient magnitude in the processed images and the

improvements in accuracy and performance of ORB-SLAM

[7] and DSO [6], two state-of-art VO algorithms for both

feature-based and direct approaches, respectively. For that,

we first run the VO experiments with the original image

sequence, several standard image processing approaches, i.e.

Normalization (N), Global Histogram Equalization (G-HE)

[32], and Adaptative Histogram Equalization (A-HE) [33].



Original Input FT-CNN Output
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Fig. 3: Outputs from the trained models and difference between the gradient images in some challenging samples extracted

from the evaluation sequences (the scale for the jet colormap remains fixed for each row).

Then, we also evaluate the VO algorithms with the image

sequences produced with the trained networks: the fine-tuned

approaches FT-CNN and FT-LSTM, and the reduced model

trained from scratch Small-CNN. Notice that, even though

the CNN networks proposed in this paper (not the FT-LSTM)

have been trained only with synthetic images with reduced

size (256×180 and 160×120 pixels for the fine-tuned and our

proposal respectively), the experiments have been performed

with full-resolution (752× 480 pixels) and real images.

A. Gradient Inspection

As stated before, one way of measuring the quality of

an image is its amount of gradient. Unfortunately, there is

no standard metric for measuring the gradient information;

actually, it is highly dependent on the application. In the

case of visual odometry, it is even more important, as

most approaches are based on edge information (which is

directly related to the gradient magnitude image). Figure 3

presents the estimated images and the difference between

the gradients of the output and the input images for several

images from the trained models in different datasets. For the

representation we have used the colormap jet, i.e. from blue

to red, with ±30 units of range (negative values indicate a

decrease of the gradient amount). In general, we observe a

general tendency in all models to reduce the gradient amount

in the most exposed parts of the camera as they are less

informative due to the sensor saturation, while increasing

the gradient in the rest of the image.

B. Evaluation with state-of-art VO algorithms

In order to evaluate the trained models in challenging con-

ditions, we recorded 9 sequences with a hand-held camera

in a room equipped with an OptiTrack system that allows

us to also record the ground-truth trajectory of the camera

and evaluate quantitatively the results. Each sequence was

recorded for several illumination conditions: first with 1− 3
lights available in the room, then without any light, and

finally by switching the lights on and off during the sequence.

It is worth noticing that, despite the numerous public bench-

marks available for VO, they are usually recorded in good

and static illumination conditions, therefore our approach

barely improves the trajectory estimation.

Table I shows the results of ORB-SLAM in all the se-

quences mentioned above. Firstly, we observe the benefits of

our approach as our methods clearly outperform the original

input and the standard image processing approaches in the

difficult sequences (1-light and switch), while also maintain-

ing a similar performance in the easy ones (2-lights and 3-

lights). As for the different networks, we clearly observe the

better performance of FT-LSTM in the difficult sequences,

although the reduced approach Small-CNN reports a good

performance in the scene with the switching lights.

The results obtained with DSO are represented in Table II.

Since all the methods were successfully tracked, we omit the

tracking percentage. In terms of accuracy, we again observe

the good performance of the reduced approach, Small-CNN,



TABLE I: ORB-SLAM [7] average RMSE errors (% first row) normalized by the length of the trajectory and percentage of

the sequence without loosing the tracking (second row). A dash means that the VO experiment failed without initializing.

Dataset ORB-SLAM [7] N G-HE A-HE FT-CNN FT-LSTM Small-CNN

1-light
3.91 4.07 - - 3.52 3.49 4.62
24.80 26.98 - - 23.84 25.32 80.52

2-lights
2.19 2.17 - 2.27 2.07 2.09 2.72
68.92 68.76 - 65.88 70.94 72.98 68.76

3-lights
3.78 3.81 - 3.63 3.52 3.81 3.65

100.00 100.00 - 100.00 100.00 100.00 100.00

switch
3.60 4.85 - 4.56 5.64 2.66 2.97
13.76 24.98 - 8.84 7.32 31.02 21.62

hdr1
5.67 5.67 3.71 - 5.22 5.21 4.77
74.30 76.6 49.36 - 81.54 81.14 78.76

hdr2
3.49 4.08 4.42 3.52 3.42 3.88 3.51
74.86 70.50 34.12 25.3 74.52 71.02 75.22

overexposed
2.64 2.57 2.59 2.53 2.72 2.65 2.83

100.00 100.00 100.00 100.00 100.00 100.00 100.00

bright-switch
3.13 3.08 2.03 3.10 1.97 2.02 1.95
34.60 34.94 100.00 35.42 100.00 100.00 100.00

low-texture
- - - - 5.28 - -
- - - - 39.08 - -

TABLE II: DSO [6] average RMSE errors normalized by the length of the trajectory for each method and trained network

when evaluating. A dash means that the VO experiment failed.

Dataset DSO [6] N G-HE A-HE FT-CNN FT-LSTM Small-CNN

1-light 2.39 - 2.37 2.42 2.36 2.36 2.40
2-lights 2.12 - 2.05 2.12 2.12 2.15 2.14
3-lights 2.65 - 2.66 2.66 2.66 2.69 2.69
switch - - - - 4.38 4.39 2.90

hdr1 2.46 4.80 2.34 2.52 2.42 2.17 2.44
hdr2 1.28 - 1.59 3.17 1.23 1.22 2.57
overexposed 1.61 1.60 1.64 1.62 1.58 1.58 1.60
bright-switch 4.51 - 1.49 1.47 1.93 1.73 4.43
low-texture 3.22 2.67 2.76 3.22 3.22 3.14 3.21

TABLE III: Average runtime and memory usage for each

network

DNN Res. (pixels) Memory GPU

FT-CNN 256× 180 371 MiB 23.80 ms
FT-CNN 756× 480 1175 MiB 149.72 ms
FT-LSTM 756× 480 3897 MiB 275.24 ms
Small-CNN 160× 120 135 MiB 4.77 ms

Small-CNN 756× 480 373 MiB 48.4 ms

with the direct approach. However, its accuracy is worse in

the bright-switch sequence but it still performs similar to the

original sequence.

C. Computational Cost

Finally, we evaluate the computational performance of the

two trained networks. For that, we compare the performance

of the CNN and the LSTM, for both the training and the

runtime image resolutions. All the experiments were run

on a Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz and

8GB RAM, and an NVIDIA GeForce GTX Titan (12GB).

Table III shows the results of each model and all possible

resolutions. We first observe that while obtaining comparable

results to the fine-tuned model, the small CNN can perform

faster (a single frame processing takes 3 times less than

with FT-CNN and up to 5 times less than FT-LSTM for

the resolution 756 × 480 ), and therefore is the closest

configuration to a direct application in a VO pipeline. It

is also worth noticing the important impact of the LSTM

layers in the performance, because they not only require a

high computational burden but also double the size of the

encoder network (a consecutive image pair is needed).

VI. CONCLUSIONS

In this work, we tackled the problem of improving the

robustness of VO systems under challenging conditions,

such as difficult illuminations, HDR environments, or low-

textured scenarios. For that, we solved the problem from

a deep learning perspective, for which we proposed two

different architectures, a very deep model that is capable

of producing temporally consistent sequences due to the

inclusion of LSTM layers, and a small and fast architecture

more suitable for VO applications. We propose a multi-

step training employing only reduced images from synthetic

datasets, which are also augmented with a set basic trans-

formations to simulate different illumination conditions and

camera parameters, as there is no ground-truth available for

our purposes. We then compare the performance of two state-

of-art algorithms in monocular VO, ORB-SLAM [7] and

DSO [6], when using the normal sequences and the ones

produced by the DNNs, showing the benefits of our proposals

in challenging environments.
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