
1

Ultra Low Power Deep-Learning-powered
Autonomous Nano Drones

Daniele Palossi, Antonio Loquercio, Francesco Conti, Eric Flamand, Davide Scaramuzza, Luca Benini

Abstract—Flying in dynamic, urban, highly-populated environ-
ments represents an open problem in robotics. State-of-the-art
(SoA) autonomous Unmanned Aerial Vehicles (UAVs) employ
advanced computer vision techniques based on computationally
expensive algorithms, such as Simultaneous Localization and
Mapping (SLAM) or Convolutional Neural Networks (CNNs)
to navigate in such environments. In the Internet-of-Things
(IoT) era, nano-size UAVs capable of autonomous navigation
would be extremely desirable as self-aware mobile IoT nodes.
However, autonomous flight is considered unaffordable in the
context of nano-scale UAVs, where the ultra-constrained power
envelopes of tiny rotor-crafts limit the on-board computational
capabilities to low-power microcontrollers. In this work, we
present the first vertically integrated system for fully autonomous
deep neural network-based navigation on nano-size UAVs. Our
system is based on GAP8, a novel parallel ultra-low-power
computing platform, and deployed on a 27 g commercial, open-
source CrazyFlie 2.0 nano-quadrotor. We discuss a methodology
and software mapping tools that enable the SoA CNN presented
in [1] to be fully executed on-board within a strict 12 fps real-
time constraint with no compromise in terms of flight results,
while all processing is done with only 94mW on average - 1%
of the power envelope of the deployed nano-aircraft.

Index Terms—Unmanned Autonomous Vehicles, Convolutional
Neural Networks, Ultra-low-power

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAVs) have recently
reached an impressive level of autonomous navigation

capability and accuracy, like high-precision detection and
tracking, bio-inspired navigation, reactive obstacle avoidance,
aggressive maneuvers, primarily thanks to computer-vision
based approaches [1], [2], [3], [4], [5], [6], [7], [8], [9].
Vision-based UAVs are increasingly being used for practical
applications such as the inspection of industrial facilities
or cultivated fields [10], assistance in natural disaster or

Manuscript received April 19, 2005; revised August 26, 2015.
This work has been partially funded by projects EC H2020 HERCULES

(688860), by the Swiss National Science Foundation under grant 162524
(MicroLearn: Micropower Deep Learning), by the Swiss National Center of
Competence Research (NCCR) Robotics and by the SNSF-ERC starting grant.

D. Palossi, F. Conti, E. Flamand and L. Benini are with the Inte-
grated System Laboratory of ETH Zürich, ETZ, Gloriastrasse 35, 8092
Zürich, Switzerland (e-mail: dpalossi@iis.ee.ethz.ch, fconti@iis.ee.ethz.ch,
eflamand@iis.ee.ethz.ch, lbenini@iis.ee.ethz.ch).

A. Loquercio and D. Scaramuzza are with the Robotic and Perception
Group, at both the Dep. Neuroinformatics (ETH and University of Zürich)
and the Dep. of Informatics (University of Zürich), Andreasstrasse 15, 8050
Zurich, Switzerland.

F. Conti and L. Benini are also with the Department of Electrical, Electronic
and Information Engineering of University of Bologna, Viale del Risorgimento
2, 40136 Bologna, Italy (e-mail: f.conti@unibo.it, lbenini@unibo.it).

E. Flamand is also with GreenWaves Technologies, Pépinière
Bergès, avenue des Papeteries, 38190 Villard-Bonnot, France (e-mail:
eric.flamand@greenwaves-technologies.com).

Fig. 1: Our prototype based on the COTS Crazyflie 2.0 nano-
quadrotor extended with our PULP-Shield. The system is able
to run the DroNet [1] CNN for autonomous navigation up to
12 fps using only on-board resources.

hazardous areas [11], various surveillance and monitoring
tasks [12], etc.

TABLE I: Rotorcraft UAVs taxonomy by vehicle class-size.

Vehicle Class � : Weight [cm:kg] Power [W] On-board Device

std-size [12] ∼ 50 : ≥ 1 ≥ 100 Desktop

micro-size [13] ∼ 25 : ∼ 0.5 ∼ 50 Embedded

nano-size [14] ∼ 10 : ∼ 0.01 ∼ 5 MCU

pico-size [15] ∼ 2 : ∼ 0.0001 ∼ 0.1 ULP

To expand the class of activities that can be performed by
UAVs, a recent trend of their evolution is their miniaturization.
Commercial-Off-The-Shelf (COTS) quadrotors have already
started to enter the nano-scale, featuring only few centimeters
in diameter and few tens of grams in weight [16]. Commercial
nano-UAVs still lack the vision-based autonomous navigation
capabilities boasted by their larger counterparts, since their
computational capabilities, heavily constrained by their tiny
power envelopes, are totally inadequate for the execution
of sophisticated workloads, as summarized in Table I. Fur-
thermore, even the most advanced autonomous nano- and
pico-size UAVs still perform vision-based computation on
remote power-unconstrained machines, limiting the system’s
capability due to communication latency, bandwidth, noise,
etc.

On the other hand, full autonomy of nano-scale UAVs
is extremely desirable as it would make them the perfect

ar
X

iv
:1

80
5.

01
83

1v
1 

 [
cs

.R
O

] 
 4

 M
ay

 2
01

8



2

“smart sensors” in the Internet-of-Things (IoT) era [17].
These tiny autonomously flying robots could constitute self-
aware smart IoT nodes: flying safely, they would be able
to collect information both from the on-board sensors and
from a plethora of devices deployed in the environment, and
possibly even perform advanced on-board analytics, to pre-
select essential information before transmitting to centralized
servers [18]. The tiny form-factor of nano-drones is ideal
both for indoor applications where they operate near hu-
mans (for surveillance, monitoring, ambient awareness, in-
teraction with smart environments, etc.). It is also crucial
for highly-populated urban areas, where autonomous robots
can exploit complementary sense-act capabilities to interact
with the surroundings (e.g., smart-building, smart-cities, etc.).
Recent results have shown [1] that the advanced vision-
based autonomous navigation capabilities required in these
dynamic environments depend on computationally expensive
algorithms such as Convolutional Neural Networks (CNNs),
further raising upwards the request for computing performance
within the allotted power budget.

To put this power budget into perspective, in
Wood et al. [15] the authors estimate the power break-
down for small-size UAVs; they show that the maximum
power budget for on-board computation is 5% of the total,
the rest being used by the propellers (86%) and the low-level
control parts (9%). The problem of bringing state-of-the-art
navigation capabilities on the challenging classes of nano-
and pico-size UAVs is therefore strictly dependent on the
development of energy-efficient computing architectures,
highly optimized software and new classes of algorithms.
Whereas standard-size UAVs with a power envelope of
several hundreds Watts have always been able to host
powerful high-end embedded computers like NVIDIA Jetson
TX1 and TX2, Qualcomm Snapdragon1, Odroid, etc., most
nano-sized UAVs have been constrained by the capabilities
of microcontroller devices capable to provide a few hundreds
Mop/s at best. Therefore, CNN-based autonomous vision
navigation was so far considered to be out of reach for this
class of drones.

In this work, we present what, to the best of our knowledge,
is the first deployment of a SoA, fully autonomous vision-
based navigation system based on deep learning on top of
a UAV compute node consuming less than 94mW at peak,
fully integrated within an open source COTS CrazyFlie 2.0
UAV. Our compute node, shown in Figure 1, leverages the
GreenWaves GAP8 SoC, a high-efficiency embedded processor
taking advantage of the emerging parallel ultra-low-power
(PULP) computing paradigm to enable the execution of com-
plex algorithmic flows onto power-constrained devices such as
nano-scale UAVs.

The main contributions of this work can be summarized as
follows:

• we adapted the CNN-based approach for autonomous
navigation proposed in Loquercio et al. [1] for standard-
sized UAVs to the computational requirements of a nano-
sized UAV, such as fixed-point computation;

1https://developer.qualcomm.com/hardware/qualcomm-flight

• we developed a pluggable PCB, the PULP-shield, to host
the GAP8 SoC as well as an ultra-low-power camera
directly on the 27 g CrazyFlie nano-UAV;

• we developed a methodology and tools for deploying SoA
CNNs on PULP. We demonstrate this methodology for
the DroNet CNN, achieving comparable quality-of-results
in terms of UAV control with respect to the standard-
sized baseline of [1] within an overall power budget of
just 94mW

Our work demonstrates that parallel ultra-low-power com-
puting is a viable solution to deploy autonomous navigation
capabilities onboard a nano-UAVs used as smart, mobile IoT
endnodes, while at the same time showcasing a complete
hardware/software methodology to implement such complex
workloads on heavily power- and memory-constrained device.

II. RELATED WORK

The development of the IoT is fueling a trend toward
edge computing, to improve scalability, robustness, security
[17]. While today’s IoT edge nodes are usually stationary,
autonomous nano-UAVs can be seen as perfect examples
of next-generation IoT end-nodes, with high mobility and
requiring an unprecedented level of on-board intelligence.

Related work can be organized into two different cate-
gories: on one side, works focusing on the development of
advanced perception algorithms running on standard-sized,
power-hungry drones [1], and, on the other side, works aiming
at miniaturizing the size of the vehicle while relying on off-
board computation [15].

Advanced Algorithms: On the standard-size class of vehi-
cles a wide variety of advanced techniques for drone navi-
gation and obstacle avoidance is available in the literature.
At high level, these methods differ for the kind of sensory
input and processing employed to control the flying platform.
The classical approaches are based on mapping, localization
and planning [19], [20]. To infer the system state, usually the
platform is provided with GPS, range and/or visual sensors [1],
[2], [3], [4], [5], [6], [7], [8], [9]. However, the impossibility to
use GPS in indoor environments, and the inherent difficulties
of state estimation [21], make those traditional approaches
prone to fail under real world conditions.

Recently, there has been an increasing research effort in
directly learning control policies for UAV from raw sensory
data using imitation learning. Given its relatively low sample
complexity (i.e. not much sample data is required to gener-
alize) and its implementation simplicity, supervised learning
has become the predominant tool used to learn visual-motor
policies [22], [23], [1], [24], [25]. The supervisory signal may
come from a human expert [22], hard-coded trajectories [24],
or model predictive control [25]. However, for most appli-
cation scenarios, it can be both tedious and dangerous to
collect a large set of expert trajectories. A possible approach
is to collect data in simulation and then transfer the learned
policy to the real world. To generate very basic navigation
policies, however, either a lot of photo-realistic data [26],
or some real world examples [27] are required. Therefore,
in order to safely and efficiently acquire data, the authors



3

of [1] proposed to use cameras mounted on cars and bicycles.
Tightly coupling perception and control, the resulting visual
motor policy unlocks good generalization performance on a
set of environments unseen during training. Similar works
in [23] trained a deep neural network from video collected
by a mountain hiker to detect forest trails.

Clearly, those learning-based approaches are limited by
the constraints imposed by the on-board computational re-
sources available on the UAV. Indeed, either off-line computa-
tions [24], [26], [27] or simplification of the motion model [1],
[23] are required to overcome the domain-shift between the
expert providing supervision and the learning agent.

Nano-size Vehicles: Particularly relevant in this work is the
nano-size class of vehicles, where the SoA is represented by
solutions that either offload computation to some remote pow-
erful base-station or perform on-board basic functionalities.
The authors of [28] developed a visual-inertial pose estima-
tion system for a 45 g quadrotor. A modified simultaneous
localization and and mapping (SLAM) algorithm was also
implemented to assist the controller in trajectory tracking. The
SLAM algorithm ran on a remote laptop connected via WiFi to
the robot. In [29] a 25 g nano-UAV with visual-inertial SLAM
for stabilization was presented. Here all the computation was
performed off-board, streaming video and inertial informa-
tion to a power-unconstrained base-station. Main problems
with this kind of solutions are latency, maximum distance
communication, channels noise and high on-board power-
consumption, due to the high-frequency video streaming.

Nano-size flying robots showing some autonomous navi-
gation capability based only on the on-board computational
resources have been presented. In [14] the authors developed
a 4 g stereo-camera and proposed a velocity estimation algo-
rithm able to run on the MCU on-board a 40 g flying robot. If
on one side this solution allows the drone to avoid obstacles
during the flight, it still requires favorable flight condition (e.g.,
low flight speed of 0.3m/s). In [30] an optical-flow-based
guidance system was developed for a 46 g nano-size UAVs.
The proposed ego-motion estimation algorithm did not rely
on feature tracking, making it possible to run on the on-board
MCU. Although, the target application was limited to hovering
and the method did not reach the accuracy of computational-
expensive techniques based on feature tracking.

COTS nano-size quadrotors, like the Bitcraze Crazyflie
2.0 or the Walkera QR LadyBug, typically embed on-board
low-power single core MCUs, like the ST Microelectronics
STM32F4 [14], [29], [31]. Despite the undeniable research
effort, we still need to bring the most advanced capabilities
from powerful big airborne to the resource-constrained “pocket
drones”.

Pushing beyond the aforementioned approaches, in this
work we propose and demonstrate a system capable of so-
phisticated workloads such as real-time learning-based au-
tonomous navigation [1], entirely on-board within the limited
power envelope of nano-scale UAVs (∼0.2W) – whereas
approaches of this complexity have been previously limited to
standard-sized UAVs with external server-based computation
or power hungry processors (≥10W).

III. BACKGROUND

A. DroNet

DroNet is a lightweight residual convolutional neural net-
work (CNN) architecture. By predicting the steering angle and
the collision probability, it enables the safe autonomous flight
of a quadrotor in a various indoor and outdoor environments.

The architecture, as illustrated in Figure 2, was inspired by
residual networks [32] and was reduced in size to minimize
the bare image processing time. The two tasks of steering and
collision probability prediction share all the residual layers
in order to reduce the network complexity and the frame
processing time. Then, two separate fully connected layers
independently infer steering and collision probabilities. Mean-
squared error (MSE) and binary cross-entropy (BCE) have
been used to train the two predictions, respectively. A temporal
dependent weighting of the two losses ensures the training
convergence despite the different gradients’ magnitude pro-
duced by each loss. Eventually, to make the optimization focus
on the samples that are most difficult to learn, hard negative
mining was deployed in the final stages of learning. The two
tasks have separate datasets to learn from. Steering angle
prediction is learned through the Udacity dataset2, while the
collision probability was learned through the Zürich bicycle
dataset [1].

The outputs of DroNet are used to command the UAV
to move on a plane with forward velocity vk and steering
angle θk. More specifically, the low-pass filtered probability of
collision is used to modulate the UAV forward velocity, while
the low-pass filtered steering angle is converted to drone’s yaw
control.

The result is a single shallow network that processes all
visual information concurrently and directly produces con-
trol commands for a flying drone. The coupling between
perception and control, learned end-to-end, provides several
advantages, such as a simple, lightweight system and high
generalization abilities. Indeed, the method was shown to
function not only in urban environments but also on set of new
application spaces without any initial knowledge about them.
Indeed, with neither a map of the environment nor retraining or
fine-tuning, the approach generalizes to scenarios completely
unseen at training time including indoor corridors, parking
lots, and high altitudes.

B. GAP8 Architecture

Our deployment target for the bulk of the DroNet compu-
tation is GAP8, a commercial embedded RISC-V processor
derived from the PULP open source project3. At its heart,
GAP8 is composed by an advanced RISC-V microcontroller
unit coupled with a programmable eight-core accelerator for
digital signal processing and embedded deep inference.

Figure 3 shows the architecture of GAP8 in detail. The
processor is composed by two separate power and clock
domains, the SOC and the CLUSTER. The SOC is an ad-
vanced microcontroller unit centered on a single core (fabric

2https://www.udacity.com/self-driving-car
3http://pulp-platform.org



4

Fig. 2: DroNet original architecture.

Fig. 3: Architecture of the GAP8 embedded processor.

controller) coupled with 512 kB of SRAM (L2 memory).
The fabric controller uses an in-order, DSP-extended four-
stage microarchitecture implementing the RISC-V instruc-
tion set architecture [33]. The core supports the RV32IMC
instruction set consisting of the standard ALU instructions
plus the multiply instruction, with the possibility to execute
compressed code. In addition to this, the core is extended
to include a register-register multiply-accumulate instruction,
vectorized DSP instructions (e.g. fixed-point dot product), bit
manipulation instructions and two hardware loops. Moreover,
the SOC features an autonomous multi-channel I/O DMA
controller (µDMA) [34] capable of transfering data between
a rich set of peripherals (QSPI, I2S, I2C, HyperBus, Camera
Parallel Interface) and the L2 memory with no involvement of
the fabric controller. The HyperBus and QSPI interfaces can
be used to connect GAP8 with an external DRAM or Flash
memory, effectively extending the memory hierarchy with an
external L3 with a bandwidth of 333MB/s and capacity up to
128Mbit.

The CLUSTER is dedicated to the acceleration of com-
putationally intensive tasks. It contains eight RISC-V cores
(identical to the one used in the fabric controller) sharing a
64 kB multi-banked shared L1 scratchpad memory through
a low-latency, high-throughput logarithmic interconnect [35].
The shared L1 memory supports single-cycle concurrent ac-
cess from different cores requesting memory locations on
separate banks and a starvation-free protocol in case of bank

contentions (typically <10% on intensive kernels). The eight
cores are fed with instruction streams from a single shared,
multi-ported cache to maximize the energy efficiency on data-
parallel code. A cluster DMA controller is used to transfer
data between the shared L1 scratchpad and the L2 memory;
it is capable of 1D and 2D bulk memory transfer on the
L2 side (only 1D on the L1 side). A dedicated hardware
synchronizer is used to support fast event management and
parallel thread dispatching/synchronization to enable ultra-
fine grain parallelism on the cluster cores. Finally, the cluster
includes a hardware convolution engine (HWCE) that can be
used to accelerate non-strided convolutions in convolutional
neural networks. CLUSTER and SOC share a single address
space and communicate with one another by means of two
64-bit AXI ports, one per direction.

A software runtime resident in the fabric controller
overviews all tasks offloaded to the cluster and to the µDMA.
On turn, a low-overhead runtime on the cluster cores exploits
the hardware synchronizer to implement shared-memory par-
allelism in the fashion of OpenMP.

IV. CNN MAPPING METHODOLOGY

In this section, we discuss and characterize the main
methodological aspects related to the deployment of DroNet
on top of the GAP8 embedded processor.

A. Deploying DroNet on GAP8

After a first characterization, we estimated the original
convolutional neural network (CNN) to involve ∼41 MMAC
operations per frame (accounting only for convolutional lay-
ers), yielding a baseline for the amount of computation to
be performed. Note that, the given amount of multiply-
accumulate operations does not account for all the additional
operations required to feed the registers required by the
GAP8’s vectorized DSP instructions (for a detailed discussion
see Section VI-B). To successfully deploy the CNN on top
of GAP8, these operations have to be fit within the strict
real-time constraints dictated by the target application, while
respecting the bounds imposed by the on-chip and on-board
resources. The primary application-related constraint is given
by the minimum real-time frame-rate required to select a new



5

TABLE II: DroNet accuracy on PULP.

Float32 Fixed16

Batch Normalization yes no yes no

Max Pooling 3× 3 3× 3 2× 2 3× 3 3× 3 2× 2

Classification

Accuracy 0.954 0.955 0.954 0.945 0.954 0.953
Precision 0.895 0.935 0.983 0.859 0.929 0.970

Recall 0.895 0.858 0.810 0.902 0.857 0.815
F1-score 0.895 0.895 0.888 0.880 0.892 0.886

Regression
EVA 0.737 0.695 0.661 0.716 0.696 0.670

RMSE 0.109 0.120 0.124 0.117 0.120 0.123

trajectory on-the-fly or to detect a suspected obstacle in time
to prevent a potential collision. On the other hand, the main
resource-related constraint is represented by the amount of
available memory on the GAP8 SoC, where as reported in
Section III-B we can rely on 512 kB of L2 SRAM and 64 kB
of shared L1 scratchpad (TCDM).

Therefore, it is clear that there is a strong need for a strategy
aimed at reducing the memory footprint and computational
load to more easily fit within the available resources, while
exploiting the architectural parallelism at best to meet the
real-time constraint. While applied to our specific scenario,
the methodology we present in the following of this section is
general in nature and could be applied also to other resource-
bounded embedded systems where computationally intense
tasks have to be performed under a real-time constraint on
a parallel architecture.

In order to meet the tight real-time constraints of our
application given the limited amount of resources on the
proposed parallel ultra-low-power architecture, the original
DroNet network [1] has been modified to ease its final
deployment; we operated incrementally on the model and
training flow provided by the original DroNet, based on
Keras/TensorFlow 4. We performed one main change, quanti-
zation, and two additional optimizations: the removal of batch
normalization layers and the switch of max-pooling from 3×3
to 2×2 receptive field. Quantization, that is lowering from
the full-precision Float32 representation used in training to
a Fixed16 one, more economical for embedding, has been
performed directly in training by modifying the convolution
model used by the training tool. We statically targeted a
Fixed16 Q3.13 signed representation, which means that 13 bits
are used to represent the fractionary part of both activations
and weights (rounding down to a precision of 2−13), and
values are clipped at ±4. A second change performed is
the removal of batch normalization layers. We deemed the
slight boost they can deal to the training process not justified
by the additional complexity of either merging them with
convolutional layers (which would anyway require network
topology changes) or implementing them in inference (which
is essentially wasted computation). Finally, we modified the
receptive field of max-pooling layers from 3×3 to 2×2, which
yields essentially the same final results while reducing the
execution time of max-pooling layers by 2.2× and simplifying
their final implementation on GAP8. Table II resumes the

4https://github.com/uzh-rpg/rpg public dronet

results in terms of accuracy after all these changes.

B. Tiling Methodology

One of the biggest constraint in ULP embedded SoC’s,
where the memory hierarchy is explicitly managed, is the
buffer memory. To cope with it, many tiling approaches have
been presented [36], commonly tiling the input, output and
filter spaces. As part of this work we propose a tiling method-
ology that i) ensures the optimal use of the GAP8 memory ii)
relieves the user from fine-grained, tedious optimizations. Data
can be efficiently moved from and to L2 and L1 by the DMA
or µDMA engines, but code restructuring and organization
can prove to be error-prone and time-consuming. To ease
development, a tool called AutoTiler has been developed to
automate this process.

Each layer L in a CNN operates on a three-dimensional
tensor representing a feature space and produces a new 3D
tensor as output. Convolutional layers, in particular, are com-
posed of i) a linear transformation that maps nif input feature
maps into nof output feature maps by means of nif × nof
convolutional kernels of size k× k; ii) a pointwise non-linear
activation, often a rectifier (ReLU) or a hyperbolic tangent.
Figure 4 shows how a convolutional layer can be tiled in all
dimensions in grids of Ni×H×W input tiles, No×H×W
output tiles and Ni ×No filter tiles.

Fig. 4: Convolutional layer tiling.

With our methodology we can distinguish i) which acti-
vation dimensions are tiled, ii) in which order they are tiled
(i.e. the order of the loops spanning the tiling grid), iii) which
filter dimensions are tiled. Our methodology follows a divide
et impera approach. First, we split computation in “atomic”
building blocks called basic kernels, where we emphasize
parallelization and fine grain optimizations, without addressing
any specific data placement (i.e., implicitly assuming data is
placed in L1). Second, we combine basic kernels into user



6

(a) Spatial scheme. (b) Feature-wise scheme.

Fig. 5: Parallelization schemes utilized in the DroNet layers for
deployment on GAP8; the different colors represent allocation
to a different core.

kernels, where we describe the multi-dimensional tiled itera-
tion space. A user kernel contains a collection of connected
basic kernels that can be inserted at pre-defined locations of
the iteration space (e.g., prologue, body, epilogue, etc.).

Using this model and a L1 memory budget constraint, the
tool infers the best tiling structure fitting within the given
budget and satisfying the set of constraints put on the basic
kernels. Once the tiling structure has been computed the
AutoTiler generates a wrapper (as C code) orchestrating the
execution of the basic kernels in a pipelined fashion as well
as double-buffered DMA transactions. With this approach it is
possible to build generators for specific algorithms and then
combine these together.

C. Parallelization & Optimization

As introduced in Section III, the GAP8 SoC features 8+1
RISC-V cores with DSP-oriented extensions. To develop an
optimized, high-performance and energy-efficient application
for GAP8 and meet the required real-time constraint, the most
important steps include i) parallelizing the most computation-
ally intense kernels of the algorithm, to take advantage of the
8-core cluster; ii) fully using the available specialized instruc-
tion; and iii) orchestrating the movement of data through the
various levels of the memory hierarchy. The following of this
section deals with steps i) and ii), while Section IV-D reports
our memory management strategy.

We parallelized all of the layers exposed in the DroNet
architecture (Figure 2): convolutional, fully-connected, max-
pooling, activation (ReLU), and sum (for the residual by-
passes). To exploit the available computational/memory re-
sources at best we use two different paralellization schemes
on the basis of the layer’s depth. Feature maps (FMs) have
decreasing size due to the striding factor used in several
convolutional layers, as well as to max pooling layers. In the
first half of the network the FM size ranges from 200 × 200
to 25 × 25. In this part of the network, parallelism can
be efficiently extracted with a spatial parallelization scheme,
dividing each two-dimensional tile in 8 vertical stripes, one
per core, and scheduling part of the overall 2D convolution
to each core as shown in Figure 5a. For deeper layers in the
network, the FM size drops so much that this scheme becomes
suboptimal as the width of each stripe becomes too small.
Therefore, we introduce a new scheme exploiting feature-wise

parallelism as shown in Figure 5b. On these deepest layers,
the whole input set of a layer is divided into 8 slices on
the feature map dimension, and each core is responsible for
processing the multiple FMs consituting a slice. The feature-
wise scheme has a heavier memory footprint to keep track of
all the intermediate results and requires a final reduction stage
to combines all the partial results from the fan-in of all input
FMs into a final output pixel; however, this cost is more than
offset by the possibility to achieve full utilization of all the
cluster cores.

To further optimize the DroNet execution, we made
use of all the optimized signal processing instructions
available in GAP8. These include packed-SIMD in-
structions capable of exploiting sub-word parallelism, as
well as bit-level manipulation and shuffling, which can
be accessed by means of compiler intrinsics such as
__builtin_pulp_dotsp2 (for 16-bit dot product with 32-bit
accumulation), __builtin_shuffle (permutation of elements
within two input vectors), __builtin_pulp_pack2 (packing
two scalars into a vector).

D. L2 Memory Management Strategy
Given i) the residual-network topology of DroNet, which

requires to increase the lifetime of the output tensors of some
of the layers, and ii) the “scarsity” of L2 memory as a resource
to store all weights and temporary feature maps (we would
need more than 1MB in view of 512 kB available), an ad-hoc
memory management strategy for the L2 memory is required,
similar to what is done between L2 and L1 using the GAP8
automatic AutoTiler. Due to the high energy cost of data
transfers between L3 and L2, the strategy needs to be aimed
at the maximization of the L2 reuse.

At boot time, before the actual computation loop starts, i)
we load all the weights, stored in the external flash memory as
binary files, in the L3 DRAM memory and ii) we call from the
fabric controller (FC) the runtime allocator to reserve two L2
allocation stacks where intermediate buffers will be allocated
and deallocated in a linear fashion. Employing only one buffer
and a linear allocation scheme we would need to keep in L2
memory up to 665 kB of data due to data dependencies. Our
allocation strategy simply updates the pointer of the next free
location in the pre-allocated L2 chunk, avoiding the runtime
overhead of library allocation/free functions.

We differentiate our strategy between weights and FM
activations: for the former, we allocate space just before their
related layer and deallocate it just after the layer execution. For
the latter, due to the residual network bypasses, we often have
to prolongate the lifetime of a FM during the execution of the
two following layers. Therefore, for each RES block there will
be an amount of time where 3 FMs activation tensors have to
be stored at the same time (see Figure 2).

Algorithm 1 shows the complete pseudo-code related to
our solution. In the pseudo-code the second parameter of the
Alloc and Free function specifies the allocation buffer (i.e.,
Buffer 0 or Buffer 1 in Table III). Note that, the µDMA
copies the weights from L3 to L2 just after the destination
L2 area is allocated (for the sake of readability not shown in
Algorithm 1).



7

Algorithm 1: DroNet on PULP execution flow
Input: image
Output: steering angle, collision probability
1: I1 = image; Alloc (O1, 0); Alloc (w1, 0);
2: O1 ← Conv1(I1, w1); // Conv2d + MaxPool2d
3: Free (w1, 0); I2 = O1; O2 = O1;

RES BLOCK 1
4: O2 ← ReLU1(I2);
5: I3 = O2; Alloc (O3, 1); Alloc (w2, 1);
6: O3 ← Conv2(I3, w2); // Conv2d + ReLU
7: Free (w2, 1); I4 = O3; Alloc (O4, 0); Alloc (w3, 1);
8: O4 ← Conv3(I4, w3); // Conv2d
9: Free (w3, 1); Free (O3, 1); I5 = O1; Alloc (O5, 1);

10: Alloc (w4, 1);
11: O5 ← Conv4(I5, w4); // Conv2d
12: Free (w4, 1); I6 = O4; O6 = O5;
13: O6 ← Add1(I6, O6);
14: Free (O4, 0); Free (O1, 0); I7 = O6; O7 = O6;

RES BLOCK 2
15: O7 ← ReLU2(I7);
16: I8 = O7; Alloc (O8, 0); Alloc (w5, 0);
17: O8 ← Conv5(I8, w5); // Conv2d + ReLU
18: Free (w5, 0); I9 = O8; Alloc (O9, 1); Alloc (w6, 0);
19: O9 ← Conv6(I9, w6); // Conv2d
20: Free (w6, 0); Free (O8, 0); I10 = O5; Alloc (O10, 0);
21: Alloc (w7, 0);
22: O10 ← Conv7(I10, w7); // Conv2d
23: Free (w7, 0); I11 = O9; O11 = O10;
24: O11 ← Add2(I11, O11);
25: Free (O9, 1); Free (O5, 1); I12 = O11; O12 = O11;

RES BLOCK 3
26: O12 ← ReLU3(I12);
27: I13 = O12; Alloc (O13, 1); Alloc (w8, 0);
28: O13 ← Conv8(I13, w8); // Conv2d + ReLU
29: Free (w8, 0); I14 = O13; Alloc (O14, 1); Alloc (w9, 0);
30: O14 ← Conv9(I14, w9); // Conv2d
31: Free (w9, 0); I15 = O10; Alloc (O15, 0);
32: Alloc (w10, 1);
33: O15 ← Conv10(I15, w10); // Conv2d
34: Free (w10, 1); I16 = O14; O16 = O15;
35: O16 ← Add3(I16, O16); // Add + ReLU
36: Free (O14, 1); Free (O13, 1); I17 = O16;
37: Alloc (O17, 1); Alloc (w11, 1);

FULLY CONNECTED
38: O17 ← Dense1(I17, w11);
39: Free (w11, 1); I18 = O16; Alloc (O18, 1); Alloc (w12, 1);
40: O18 ← Dense2(I18, w12);
41: Free (w12, 1); Free (O15, 0); Free (O10, 0);
42: return O17, O18

The buffers’ memory allocation sequence is reported in Ta-
ble III (from left to right) for the entire DroNet execution. The
columns of the two buffers represent the data needed at each
execution step, where Oi and wj represent the input/output
and weights, respectively. The last row of each buffer reports
the total amount of memory required for each execution step.
Thus, the final dimension of each buffer is given by the column
with the biggest occupancy (highlighted in red in Table III),
resulting in 370 kB of L2 memory.

V. THE PULP-SHIELD

In order to enable the development of a first prototype,
we designed a lightweight, modular and configurable printed
circuit board (PCB) with highly optimized layout and a form
factor compatible to our nano-size quadrotor. It features a

TABLE III: L2 memory allocation sequence.

Buffer 0

O1 O1 O8 O8 O10 O10 O10 O10

w1 O4 w5 w6 w7 w8 w9 O15

162 kB 200 kB 59 kB 96 kB 26 kB 169 kB 308 kB 26 kB

Buffer 1

O3 O3 O5 O5 O13 O13 O17 O17

w2 w3 w4 O9 O14 O14 w11 O18

w10 w12

58 kB 58 kB 42 kB 62 kB 26 kB 42 kB 13 kB 13 kB

Fig. 6: Schematic of the PULP-Shield pluggable PCB. Top
view (A) and bottom view (B).

PULP-based GAP8 SoC, two Cypress HyperBus Memories5

and an ultra-low power HiMax CMOS image sensor6 able to
run up to 60 fps with a gray-scale resolution of 320×320 pixels
with just 4.5mW of power. Our pluggable PCB, named
PULP-Shield, has been designed to be compatible with the
Crazyflie 2.0 (CF) nano-quadrotor7. This vehicle has been
chosen due to its reduced size (i.e., 27 g of weight and 10 cm
of diameter) and its open-source and open-hardware philos-
ophy. The communication between the PULP chip and the
main MCU on-board the nano-drone (i.e., ST Microelectronics
STM32F4058) is realized via a SPI interface and two GPIO
signals.

In Figure 6 the schematic of the proposed PULP-Shield is
shown. The two BGA memory slots allow all the possible
combinations of HyperRAM, HyperFlash and hybrid Hyper-
Flash/RAM memory packages. In this way we can select
the most appropriate memory configuration with respect to
the target application. In our use case we soldered on one
slot a 64Mbit HyperRAM (DRAM) chip and on the other a
128Mbit HyperFlash memory, embodying the system L3 and
the external storage, respectively.

On the PCB (Figure 6-B) there is also a camera connector
that allows the HiMax camera to communicate with the rest of
the system through the parallel camera interface (PCI) proto-
col. Two mounting holes, on the side of the camera connector,
allow to plug a 3D-printed camera holder that can be set either
in front-looking or down-looking configuration. Those two
configurations are representative of the most common visual

5http://www.cypress.com/products/hyperbus-memory
6http://www.himax.com.tw/products/cmos-image-sensor/image-sensors
7https://www.bitcraze.io/crazyflie-2
8http://www.st.com/en/microcontrollers/stm32f405-415.html



8

Fig. 7: Example of interaction between the PULP-Shield and
the drone.

sensors layouts typically embedded in any autonomous flying
vehicles. In fact, the front-looking configuration can be used
for many navigation tasks like path planning [37], obstacle
avoidance [38], trajectory optimization [7], just to name a
few. Instead, the down-looking camera configuration is usually
chosen for stabilization tasks like distance estimation [39],
way-point tracking and positioning [40], etc.

On the shield there are also a JTAG connector for debug
purposes and an external I2C plug for future development.
Two headers, located on both sides of the PCB, grant a steady
physical connection with the drone and at the same time they
bring the shield power supply and allow communication with
the CF through the GPIOs and the SPI interface. The form
factor of our final PULP-Shield prototype is 30×28mm and
it weighs ∼5 g (including all components), well below the
payload limit imposed by the nano-quadcopter.

Similarly to what has been presented in [41], the PULP-
Shield embodies the Host-Accelerator architectural paradigm,
where the CF’s MCU offloads the compute-intense work to
the PULP accelerator. As depicted in Figure 7 the interaction
starts from the host, which wakes up the accelerator with
a GPIO interrupt 1 . Then, the accelerator fetches from its
external HyperFlash storage the kernel (stored as binary file)
to be executed: DroNet in our case 2 . Note that, in this first
part of the protocol the host can also specify which kernel
should be executed, as well as a sequence of several pre-loaded
kernels available on the external Flash storage. A this point, the
GAP8 SoC can configure the HiMax camera via an internal
I2C 3 and start to transfer the frames from the sensor to
the L2 shared memory through the µDMA 4 . All additional
data, like the weights used in our CNN, can be loaded from
the DRAM/Flash memory and parallel execution is started on
the accelerator 5 . Lastly, the results of the computation are
returned to the drone’s MCU via SPI 6 and the same host is
acknowledged about the available results with a final interrupt
over GPIO 7 .

Even if the PULP-shield has been developed specifically to
fit the CF quadcopter, its basic concept and the functionality
it provides are quite general, and portable to any drone based

on an SPI-equipped MCU. The system-level architectural
template it is based on is meant for minimizing data transfers
(i.e., exploiting locality of data) and communication overhead
between the main MCU and the accelerator – without depend-
ing on the internal microarchitecture of either one.

VI. EXPERIMENTAL RESULTS

In this section we present our experimental evaluation,
considering three main metrics: i) the capability of respecting
a given real-time deadline, ii) the capability of performing all
the required computations within the allowed power budget
and iii) the final accuracy of the closed-loop control, given
as reaction time w.r.t. an unexpected obstacle. All the results
are based on the PULP-shield configuration presented in
Section V.

A. Performance & Power Consumption

In Figure 8 we present the DroNet power traces for the
execution of each single layer, measured using a bench os-
cilloscope. In the full DroNet execution, these are interposed
with L3-L2 data transfers, happening with the cluster cores
in clock-gated state, which account for ∼5% of the overall
execution time. The power traces are measured by powering
the GAP8 SoC, with an experimental configuration at a 1.0V
core voltage and operating at 165MHz. The detailed average
power consumption (including both the SOC and CLUSTER
domains) is reported in Table IV. The peak power consumption
of 92mW is associated to the 6th convolutional layer; we used
this value to compute the overall power envelope of our node.
The average power consumption, weighted over the duration of
each layer, is 84mW, which grows to 94mW if we consider
also the cost of L3 memory access and the on-board ULP
camera.

TABLE IV: Power consumption & Execution time of DroNet
on GAP8 @ 1.0V, 165MHz.

Layer AVG Power [mW] Exec Time [ms] L3-L2 Time [ms]

conv 1 + pool 89.01 12.95 0.02

ReLU 52.07 0.46 —

conv 2 + ReLU 87.96 11.12 0.13

conv 3 77.46 11.85 0.13

conv 4 83.56 5.49 0.02

add 37.75 0.12 —

ReLU 36.81 0.12 —

conv 5 + ReLU 78.10 8.34 0.26

conv 6 91.72 9.35 0.51

conv 7 66.53 2.08 0.04

add 34.98 0.12 —

ReLU 34.01 0.11 —

conv 8 + ReLU 87.49 6.37 1.01

conv 9 89.67 11.91 2.02

conv 10 66.00 2.59 0.12

add + ReLU 34.30 0.11 —

fully 1 30.76 0.04 0.09

fully 2 36.74 0.04 0.09

Table V provides a complete view of the power consumption
in all theoretically possible operating modes of GAP8 on the
DroNet application while sweeping the clock frequency, both



9

Fig. 8: Power traces per layer of DroNet, measured @ 1.0V,165MHz.

at 1.0V and 1.2V, and the related achievable frame rate. As
the DC/DC converter utilized on the SoC is currently only
able to deliver up to 100mA, some of these operating modes
are not achievable (shown in italic font). If we bypassed
this limitation, selecting an operating point of 1.2V would
increase both power and performance up to 191mW and
18 fps. However, we note that for frequencies lower than
175MHz the 1.0V mode has a definite advantage in terms
of energy efficiency.

TABLE V: Power consumption and frame-rate of GAP8 @
1.0V and 1.2V for different frequencies.

SoC MHz AVG mW @ 1.0V AVG mW @ 1.2V frame-rate [fps]

50 25.50 38.25 4

75 38.25 57.37 5

100 50.99 76.49 7

125 76.49 95.61 9

150 84.14 114.74 11

175 — 133.86 13

200 — 152.98 15

225 — 172.11 16

250 — 191.23 18

In Figure 9 is reported the power break-down for the com-
plete cyberphysical system and for proposed PULP-Shield.
Our nano-quadcopter is equipped with a 240mAh 3.7V LiPo
battery enabling a flight time of 7 minutes under standard
conditions, which results in an average power consumption
of 7.6W. The power consumption of all the electronics on-
board of the original drone amounts to 277mW leaving 7.3W
for the 4 rotors. The electronics consumption is given by the 2
MCUs included in the quadrotor and all the additional devices
(e.g., sensors, leds, etc.). In addition to that, introducing the
PULP-Shield, we increase the peak power envelope by 94mW
(1% of the total) running the GAP8 SoC at the frequency of
165MHz. Notice that in this case we consider the HyperRAM
operating at full speed only for the time required for L3-
L2 data transfers (as shown in Table IV) with an average
power consumption of 84mW. The power break-down of our
pluggable PCB can be seen on the right of Figure 9, where

Fig. 9: Power envelope break-down of the entire cyberphysical
system (on the left) and PULP-Shield zoom-in @ 165MHz
(on the right).

we include the computational unit, the L3 external DRAM
memory and the ultra-low power camera.

As on-board computation accounts for roughly 5% of the
overall power consumption (propellers, sensors, compute and
control, cfr Section I), our PULP-Shield enables the execution
of the DroNet network (and potentially more) in the given
power envelope.

B. State-of-the-Art Comparison & Discussion

To compare and validate our experimental results with
respect to the current state-of-the-art, we targeted the most
efficient CNN implementation available for microcontrollers,
namely CMSIS-NN [42]. At peak performance in a synthetic
test, this fully optimized library is able to achieve as much
as 0.69 MAC/cycle on convolutions, operating on Fixed8 data
that is internally converted to Fixed16 in the inner loop.

By contrast, we operate directly on Fixed16 and achieve
a peak performance of 0.64 MAC/cycle/core in a similar
synthetic scenario (on the 6th layer, 3×3 convolution). The
bypasses and the final layers are a bit less efficient, yielding
an overall weighted peak throughput of 0.53 MAC/cycle/core
on convolutional layers, which constitute the vast majority of
the execution time.



10

TABLE VI: Cycle break-down for processing one frame on
the GAP8 cluster.

µDMA L3/L2 Marshaling DMA L2/L1 Comput. Total

Cycles 0.7M 0.3M 0.8M 12.6M 14.4M

In Table VI we report the execution breakdown per frame
for all activities performed by our CNN. We can see how
the L3-L2 transfers (not overlapped to computation), the mar-
shaling stage (required by padded convolutions) and the non-
overlappable part of L2-L1 transfers account for ∼2 Mcycles
of the overall execution time. Then, considering ∼41 MMAC
for the original CNN, in the ideal peak-throughput case of
4.28 MAC/cycle we would need ∼10 Mcycles for comput-
ing one frame, instead of our measured 12.6 Mcycles. The
overhead is due to inevitable non-idealities such as sub-
optimal load balancing in layers exposing limited spatial
parallelism as well as tiling control loops. Considering all of
the aforementioned effects (i.e. computation non-idealities as
well as memory transfers), we achieve a real throughput of
2.85 MAC/cycle in the DroNet execution – still 4× better
than the CMSIS-NN peak performance.

To further concretize the comparison, we take as an ex-
ample target a top-notch high-performance microcontroller: a
STM32H79 sporting a Cortex-M7 core and capable of operat-
ing at up to 400MHz. Without considering any data movement
overhead, and taking into account only peak performance, this
would be able to achieve up to 276 MMAC/s @ 346mW. By
comparison, our system can achieve an average performance
of 470 MMAC/s @ 84mW, i.e. 70% better within a 4.1×
smaller power budget. Even if it was possible to linearly up-
scale the performance of this microcontroller to the same level
of our system, it would consume ∼580mW, which together
with the ∼277mW consumed by the standard Crazyflie MCUs
would constitute more than the 5% of power envelope typically
dedicated to on-board computation on nano-UAV systems [15].

C. Control Accuracy

In order to unlock the agility of a lightweight nano-
quadrotor as the Crazyflie 2.0 used in our prototype, fast
on-board perception is required. To evaluate the agility of
our system, we performed an experiment in which our flying
platform is required to react to a suddenly appearing obstacle
occluding its way. The main goal of this experiment is to show
that the PULP-Shield computational resources are enough to
make full use of the nano-platform agility. More specifically,
the test consists of simulating a high speed flight on a straight
track of 20m. At the beginning of the test, the track is
completely free from obstacles. However, at the end of the
track at T=4s after the start of the experiment, an obstacle
appears. The platform needs to stop fast enough in order to
avoid collision. We collected the associated dataset manually
in flight-realistic conditionds, and analyze the performance of
the system across a range of operational frequencies. Figure 10
and 11 illustrate the predicted collision probability of the
original and quantized DroNet architecture as a function of

9http://www.st.com/en/microcontrollers/stm32h7-series.html

time. Exactly as in [1], the predictions of the network are
low pass filtered before being passed to the controller. Indeed,
reducing high-frequency noise is necessary in order to perform
a safe and smooth flight. In detail, the collision probability pk
is a low-pass filtered version of the collision probability ck
predicted by the network (α = 0.7):

pk = (1− α)pk−1 + αck, (1)

A stop signal is given to the controller when pk > 0.5.
In order to quantitatively evaluate the performance of our

system at different operational frequencies, we computed the
maximum time and the minimum distance from the object at
which the stop command should be given to avoid collision.
We deployed the Crazyflie 2.0 parameters from [43] and the
classical quadrotor motion model from [44] to analytically
compute those two quantities. From this analysis, we derived
a minimum stopping time of T = 0.40 s and a braking
distance of Db = 0.7m, assuming the platform initially
moves with a speed of V = 4m/s. Figure 10 illustrate the
results of this evaluation. As expected, the higher the inference
frequency, the quicker the platform can react to the obstacle. It
is possible to notice very little change in performance between
the two architectures, in particular for frequencies close to our
operational one of 10Hz. More importantly, from Figure 10
we can observe that inference at 10Hz allows the platform to
brake in time and avoid collision. Conversely, lower inference
rates (e.g., 5Hz) would not be enough to ensure reactivity of
the platform, compromising its safety. This confirms that our
system, processing 12 fps, can: i) make use of the agility of
the Crazyflie 2.0 and ii) be deployed in the same way as the
original method in [1] to perform a safe and reliable flight in
a large set of application environments.

VII. CONCLUSION

Nano- and pico-sized UAVs are ideal IoT nodes; due to
their size and physical footprint, they can act as mobile IoT
hubs, smart sensors and data collectors for tasks such as
surveillance, inspection etc. However, to be able to perform
these tasks, they must be capable of autonomous navigation
of environments such as urban streets, industrial facilities and
other hazardous or otherwise challenging areas. In this work,
we provide the first (to the best of our knowledge) completely
integrated hardware/software solution for autonomous naviga-
tion of nano-UAVs with completely on-board computation –
and thus potentially able to operate in conditions in which the
latency or the additional power cost of a wirelessly-connected
centralized solution.

Our system, based on a GreenWaves GAP8 SoC used as an
accelerator coupled with the STM32 MCU on the CrazyFlie
2.0 UAV, supports real-time (12 fps) computation of DroNet,
an advanced CNN-based autonomous navigation algorithm,
within an average power budget for computation of 94mW.
This is achieved without quality-of-results loss with respect
to the baseline system on which DroNet was deployed: a
COTS standard-size UAV connected with a remote PC, on
which DroNet was running at 20 fps. Our results show that
both systems are able to detect obstacles fast enough to be



11

DroNet
original
network

(float32)

DroNet on
PULP

(fixed16)

Stop Command Time Minimum Distance from Obstacle Collision Probability

Fig. 10: Performance comparison between the original and quantized DroNet architectures. While the results are extremely
similar for frequencies smaller than 15Hz, small variations are observed at higher frequencies.

Fig. 11: Comparison of predicted probability of collision
in the last 1.5 s of the experiment. The reported frequency
corresponds to our system operational frequency of 10Hz.

able to safely fly at high speed, 4m/s in the case of the
CrazyFlie. Overall, our contribution paves the way for a huge
number of advanced use-cases of autonomous nano-UAVs as
IoT-connected mobile smart sensors.

Our future work will be focused on advanced field tests
of our prototype and on further optimization of the overall
system for better performance and lower overall power con-
sumption, by i) making use of the advanced functionalities
available on the GAP8 SoC, as the Fabric Controller (which
could in principle fully replace the CrazyFlie MCU) and the
HWCE accelerator for convolutions; ii) further streamlining
the DroNet algorithm for similar or better accuracy at a lower
time/energy cost.

ACKNOWLEDGMENTS

The authors thank Hanna Müller for her support in design-
ing the PULP-Shield and Noé Brun for his support in making
the camera-holder.

REFERENCES

[1] A. Loquercio, A. I. Maqueda, C. R. del Blanco, and D. Scaramuzza,
“Dronet: Learning to fly by driving,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, April 2018.

[2] I. Sa, M. Kamel, M. Burri, M. Bloesch, R. Khanna, M. Popovic,
J. Nieto, and R. Siegwart, “Build your own visual-inertial drone: A
cost-effective and open-source autonomous drone,” IEEE Robotics &
Automation Magazine, vol. 25, no. 1, pp. 89–103, mar 2018.

[3] D. Scaramuzza, M. C. Achtelik, L. Doitsidis, F. Friedrich, E. Kos-
matopoulos, A. Martinelli, M. W. Achtelik, M. Chli, S. Chatzichristofis,
L. Kneip, D. Gurdan, L. Heng, G. H. Lee, S. Lynen, M. Pollefeys,
A. Renzaglia, R. Siegwart, J. C. Stumpf, P. Tanskanen, C. Troiani,
S. Weiss, and L. Meier, “Vision-controlled micro flying robots: From
system design to autonomous navigation and mapping in GPS-denied
environments,” IEEE Robotics & Automation Magazine, vol. 21, no. 3,
pp. 26–40, sep 2014.

[4] D. Floreano and R. J. Wood, “Science, technology and the future of
small autonomous drones,” Nature, vol. 521, no. 7553, pp. 460–466,
may 2015.

[5] Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, Z. Yang, and S. Shen,
“Autonomous aerial navigation using monocular visual-inertial fusion,”
Journal of Field Robotics, vol. 35, no. 1, pp. 23–51, jul 2017.

[6] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation,
control, and planning for aggressive flight with a small quadrotor with a
single camera and imu,” IEEE Robotics and Automation Letters, vol. 2,
no. 2, pp. 404–411, 2017.

[7] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, “Aggressive
quadrotor flight through narrow gaps with onboard sensing and com-
puting using active vision,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), May 2017.

[8] P. R. Florence, J. Carter, J. Ware, and R. Tedrake, “Nanomap:
Fast, uncertainty-aware proximity queries with lazy search over local
3d data,” CoRR, vol. abs/1802.09076, 2018. [Online]. Available:
http://arxiv.org/abs/1802.09076

http://arxiv.org/abs/1802.09076


12

[9] G. Loianno, D. Scaramuzza, and V. Kumar, “Special issue on high-speed
vision-based autonomous navigation of uavs,” Journal of Field Robotics,
vol. 35, no. 1, pp. 3–4, 2018.

[10] J. Nikolic, M. Burri, J. Rehder, S. Leutenegger, C. Huerzeler, and
R. Siegwart, “A uav system for inspection of industrial facilities,” in
2013 IEEE Aerospace Conference, March 2013.

[11] N. Michael, S. Shen, K. Mohta, V. Kumar, K. Nagatani, Y. Okada,
S. Kiribayashi, K. Otake, K. Yoshida, K. Ohno, E. Takeuchi, and
S. Tadokoro, “Collaborative mapping of an earthquake damaged building
via ground and aerial robots,” in Springer Tracts in Advanced Robotics.
Springer Berlin Heidelberg, dec 2013, pp. 33–47.

[12] Y. Yang, Z. Zheng, K. Bian, L. Song, and Z. Han, “Real-time profiling
of fine-grained air quality index distribution using uav sensing,” IEEE
Internet of Things Journal, vol. 5, no. 1, Feb 2018.

[13] J. Conroy, G. Gremillion, B. Ranganathan, and J. S. Humbert, “Im-
plementation of wide-field integration of optic flow for autonomous
quadrotor navigation,” Autonomous robots, vol. 27, no. 3, 2009.

[14] K. McGuire, G. de Croon, C. D. Wagter, K. Tuyls, and H. Kappen,
“Efficient optical flow and stereo vision for velocity estimation and
obstacle avoidance on an autonomous pocket drone,” IEEE Robotics
and Automation Letters, vol. 2, no. 2, April 2017.

[15] R. J. Wood, B. Finio, M. Karpelson, K. Ma, N. O. Pérez-Arancibia,
P. S. Sreetharan, H. Tanaka, and J. P. Whitney, Progress on “Pico” Air
Vehicles. Cham: Springer International Publishing, 2017.

[16] M. Piccoli and M. Yim, “Piccolissimo: The smallest micro aerial
vehicle,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, may 2017.

[17] N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based internet of things services: Comprehensive survey and
future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, Dec
2016.

[18] F. Conti, R. Schilling, P. D. Schiavone, A. Pullini, D. Rossi, F. K.
Gürkaynak, M. Muehlberghuber, M. Gautschi, I. Loi, G. Haugou,
S. Mangard, and L. Benini, “An IoT Endpoint System-on-Chip for
Secure and Energy-Efficient Near-Sensor Analytics,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp. 2481–
2494, Sep. 2017.

[19] S. Scherer, J. Rehder, S. Achar, H. Cover, A. Chambers, S. Nuske, and
S. Singh, “River mapping from a flying robot: state estimation, river
detection, and obstacle mapping,” Autonomous Robots, vol. 33, no. 1-2,
2012.

[20] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Multi-sensor fusion
for robust autonomous flight in indoor and outdoor environments with
a rotorcraft MAV,” in Robotics and Automation (ICRA), 2014 IEEE
International Conference on. IEEE, 2014.

[21] S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, and R. Siegwart,
“Get out of my lab: Large-scale, real-time visual-inertial localization,”
in Robotics: Science and Systems XI, jul 2015.

[22] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A.
Bagnell, and M. Hebert, “Learning monocular reactive uav control in
cluttered natural environments,” in 2013 IEEE International Conference
on Robotics and Automation, May 2013.

[23] N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfield, “Toward low-
flying autonomous mav trail navigation using deep neural networks for
environmental awareness,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Sept 2017.

[24] D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by crashing,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), sep 2017.

[25] G. Kahn, T. Zhang, S. Levine, and P. Abbeel, “PLATO: Policy learning
using adaptive trajectory optimization,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, may 2017.

[26] F. Sadeghi and S. Levine, “CAD2rl: Real single-image flight without a
single real image,” in Robotics: Science and Systems XIII, jul 2017.

[27] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), may 2017.

[28] X. Zhang, B. Xian, B. Zhao, and Y. Zhang, “Autonomous flight control
of a nano quadrotor helicopter in a gps-denied environment using on-
board vision,” IEEE Transactions on Industrial Electronics, vol. 62,
no. 10, Oct 2015.

[29] O. Dunkley, J. Engel, J. Sturm, and D. Cremers, “Visual-inertial navi-
gation for a camera-equipped 25g nano-quadrotor,” in IROS2014 Aerial
Open Source Robotics Workshop, 2014.

[30] A. Briod, J.-C. Zufferey, and D. Floreano, “Optic-flow based control
of a 46g quadrotor,” in Workshop on Vision-based Closed-Loop Control

and Navigation of Micro Helicopters in GPS-denied Environments, IROS
2013, no. EPFL-CONF-189879, 2013.

[31] K. McGuire, G. de Croon, C. de Wagter, B. Remes, K. Tuyls, and
H. Kappen, “Local histogram matching for efficient optical flow com-
putation applied to velocity estimation on pocket drones,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), May
2016.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016.

[33] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold risc-
v core with dsp extensions for scalable iot endpoint devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, Oct 2017.

[34] A. Pullini, D. Rossi, G. Haugou, and L. Benini, “uDMA: An autonomous
I/O subsystem for IoT end-nodes,” in 2017 27th International Sym-
posium on Power and Timing Modeling, Optimization and Simulation
(PATMOS), Sep. 2017, pp. 1–8.

[35] A. Rahimi, I. Loi, M. R. Kakoee, and L. Benini, “A Fully-Synthesizable
Single-Cycle Interconnection Network for Shared-L1 Processor Clus-
ters,” in 2011 Design, Automation & Test in Europe. IEEE, Mar. 2011,
pp. 1–6.

[36] L. Cecconi, S. Smets, L. Benini, and M. Verhelst, “Optimal tiling strat-
egy for memory bandwidth reduction for cnns,” in Advanced Concepts
for Intelligent Vision Systems, J. Blanc-Talon, R. Penne, W. Philips,
D. Popescu, and P. Scheunders, Eds. Cham: Springer International
Publishing, 2017.

[37] P. Kumar, S. Garg, A. Singh, S. Batra, N. Kumar, and I. You, “Mvo-
based two-dimensional path planning scheme for providing quality of
service in uav environment,” IEEE Internet of Things Journal, 2018.

[38] C. Yin, Z. Xiao, X. Cao, X. Xi, P. Yang, and D. Wu, “Offline and
online search: Uav multiobjective path planning under dynamic urban
environment,” IEEE Internet of Things Journal, vol. 5, no. 2, April 2018.

[39] D. Palossi, A. Marongiu, and L. Benini, “Ultra low-power visual odom-
etry for nano-scale unmanned aerial vehicles,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2017, March 2017.

[40] D. Falanga, A. Zanchettin, A. Simovic, J. Delmerico, and D. Scara-
muzza, “Vision-based autonomous quadrotor landing on a moving
platform,” in 2017 IEEE International Symposium on Safety, Security
and Rescue Robotics (SSRR), Oct 2017.

[41] F. Conti, D. Palossi, A. Marongiu, D. Rossi, and L. Benini, “Enabling
the heterogeneous accelerator model on ultra-low power microcontroller
platforms,” in 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2016.

[42] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient Neural Network
Kernels for Arm Cortex-M CPUs,” arXiv:1801.06601 [cs], Jan. 2018.

[43] J. Förster, M. Hamer, and R. D’Andrea, “System identification of the
crazyflie 2.0 nano quadrocopter,” B.S. thesis, 2015.

[44] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Model-
ing, estimation, and control of quadrotor,” IEEE Robotics & Automation
Magazine, vol. 19, no. 3, sep 2012.


	I Introduction
	II Related Work
	III Background
	III-A DroNet
	III-B GAP8 Architecture

	IV CNN Mapping Methodology
	IV-A Deploying DroNet on GAP8
	IV-B Tiling Methodology
	IV-C Parallelization & Optimization
	IV-D L2 Memory Management Strategy

	V The PULP-Shield
	VI Experimental Results
	VI-A Performance & Power Consumption
	VI-B State-of-the-Art Comparison & Discussion
	VI-C Control Accuracy

	VII Conclusion
	References

