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Abstract This paper deals with the problem of deploying a
team of flying robots to perform surveillance-coverage mis-
sions over a terrain of arbitrary morphology. In such mis-
sions, a key factor for the successful completion of the mis-
sion is the knowledge of the terrain’s morphology. The fo-
cus of this paper is on the implementation of a two-step
procedure that allows us to optimally align a team of fly-
ing vehicles for the aforementioned task. Initially, a single
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robot constructs a map of the area using a novel monocular-
vision-based approach. A state-of-the-art visual-SLAM al-
gorithm tracks the pose of the camera while, simultaneously,
autonomously, building an incremental map of the environ-
ment. The map generated is processed and serves as an input
to an optimization procedure using the cognitive, adaptive
methodology initially introduced in Renzaglia et al. (Pro-
ceedings of the IEEE international conference on robotics
and intelligent system (IROS), Taipei, Taiwan, pp. 3314—
3320, 2010). The output of this procedure is the optimal
arrangement of the robots team, which maximizes the mon-
itored area. The efficiency of our approach is demonstrated
using real data collected from aerial robots in different out-
door areas.

Keywords Mesh map - Mapping - Multi robot coverage -
Autonomous micro aerial vehicles

1 Introduction

The use of multi-robot teams has gained a lot of attention in
the past years. This is due to the extended capabilities that
multiple robots offer with respect to a single robot for the
same task. Robot teams can be used in a variety of missions,
such as surveillance in hostile environments (i.e. areas con-
taminated with biological, chemical or even nuclear wastes),
environmental monitoring (i.e. air quality monitoring, for-
est monitoring) and law enforcement missions (i.e. border
patrol), etc. In all aforementioned tasks, there are several
crucial factors that affect the overall behavior of the robot
teams. These include the sensors, the size of the robot team
and the type of robots used. In this paper, we introduce a
methodology for optimal surveillance coverage using a team
of Micro Aerial Vehicles (MAVs), based on maps created by
a monocular-vision approach, which works onboard and in
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real time. A state-of-the-art visual-SLAM algorithm tracks
the pose of the camera while simultaneously building an in-
cremental map of the surrounding environment. The gener-
ated map is processed and serves as an input to an optimiza-
tion procedure that uses the cognitive, adaptive methodol-
ogy initially introduced in Renzaglia et al. (2010, 2011) and
analyzed—in terms of convergence, scalability and applica-
bility to non-convex 3D environments—in Renzaglia et al.
(2012). To define the surveillance-coverage problem we can
identify two main optimization objectives that can be ex-
pressed as follows:

(O1) The part of the terrain that is “visible”—i.e. that is
monitored—by the robots is maximized;

(0O2) The team members are arranged so that for every point
in the terrain the closest robot is as close as possible
to that point.

The majority of existing approaches for multi-robot
surveillance-coverage concentrate mostly on the 2D case of
ground robots and deal only with one of the objectives (O1)
or (02). In most of them, the terrain morphology is assumed
to be convex and/or known. In such cases, the problem of
multi-robot surveillance coverage is equivalent to a standard
optimization problem where the robot trajectories are gen-
erated according to a gradient-descent-like methodology.

However, in the case where it is required that both the
objectives (O1) and (O2) are simultaneously addressed and
the terrain’s morphology is non-convex and/or unknown,
standard optimization tools are no longer applicable since
these tools require full knowledge of an objective func-
tion that depends on the unknown terrain’s morphology. To
overcome the above-mentioned shortcomings of the exist-
ing approaches for multi-robot surveillance coverage, we
propose a new solution based on the recently introduced
Cognitive-based Adaptive Optimization (CAO) algorithm
(Kosmatopoulos 2009; Kosmatopoulos and Kouvelas 2009).
The main advantage of CAO, as compared to standard opti-
mization tools, is that it does not require the explicit knowl-
edge of the objective function to optimize; conversely, CAO
requires that at each time instant a value (measurement) of
this objective function is available. As a result, if it is possi-
ble to define an appropriate objective function—whose ana-
lytical form may be unknown but is available for measure-
ment for every given team configuration—the CAO method-
ology will be directly applicable to the problem of surveil-
lance coverage treated in this paper.

Our intent is to define this objective function such that it
simultaneously takes into account both the criteria (O1) and
(02) by trying to obtain a compromise between maximiz-
ing visible area and minimizing the distance of the robots to
points in the environment. It has to be emphasized that, apart
from rendering the optimization problem solvable, the CAO-
based approach preserves additional attributes that make it
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particularly tractable: it can easily handle a variety of phys-
ical constraints and limitations and it is fast and scalable.
These further attributes of the proposed CAO-based ap-
proach are detailed in the next section. It is finally mentioned
that CAO does not create an approximation or estimation of
the obstacles location and geometry; instead, it produces on-
line a local approximation of the cost function the robots are
called to optimize. For this reason, it requires simple and
thus scalable approximation schemes to be employed.

The rest of the paper is organized as follows. In Sect. 2 we
provide an extended literature review. In Sect. 3 we describe
in detail the hardware and the software of the platform used,
as long as the mono-vision framework. In Sect. 4, we give
an extended description of the on line elevation mesh map
generation. In Sect. 5, we present a detailed description of
the CAO approach, while in Sect. 6 we provide experimental
results using data obtained by real aerial robots. Finally in
Sect. 7 we raise issues for discussion and future work.

2 Related work

The majority of approaches for multi-robot surveillance
coverage concentrate on objective (O2) described in the pre-
vious section. In Cortés et al. (2004), the authors present a
gradient-descent algorithm for the coverage of a convex re-
gion, i.e., without obstacles, with a team of mobile robots.
This solution is based on the concept of centroidal Voronoi
partition and adopts the Lloyd algorithm to lead the robots
to the final positions. A similar approach is proposed in
Schwager et al. (2006), where additionally the robots es-
timate a function indicating the relative importance of dif-
ferent areas in the environment, using information from the
sensors. The same problem in a non-convex environment is
more complex but also more interesting for practical appli-
cations. A possible solution to this problem is proposed in
Pimenta et al. (2008). Also in this case, the solution is based
on Voronoi partition, but it is obtained using the geodesic
distance instead of the Euclidean one. This choice allows
taking into account the particular geometry of the environ-
ment. In Howard et al. (2002), the same problem is ap-
proached by using the artificial potential field method: each
robot feels a repulsive force from the obstacle and from the
other robots. In this way the algorithm assures at the same
time the spreading out of the team and the collision avoid-
ance during the mission. Another possible solution for en-
vironments which include obstacles is proposed in Breiten-
moser et al. (2010): the main idea is to combine the classi-
cal Voronoi coverage with the Lloyd algorithm and the lo-
cal path planning algorithm TangentBug. In all the afore-
mentioned works the regions to cover are in 2D. In Bre-
itenmoser et al. (2010) the authors study also the problem
of deploying a team of ground robots on a non-planar sur-
face in 3D space. As far as it concerns objective (O1) de-
scribed in the previous section, different solutions have been
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proposed in the literature. In Ganguli et al. (2005) the au-
thors propose a gradient-based algorithm for the case of
a single robot case and they prove that the visible area is
almost everywhere a locally Lipschitz function of the ob-
server location. In Ganguli et al. (2007), an approach for
the multi-robot problem is presented based on the assump-
tion that the environment is simply connected. The visibil-
ity problem is also related with the Art Gallery Problem
where the goal is to find the optimum number of guards
in a non-convex environment so that each point of the en-
vironment is visible by at least one guard (O’Rourke 1987,
Urrutia 2000). All the aforementioned solutions are based on
the hypothesis that a given point can be monitored regard-
less of its distance from the robot. An incremental algorithm
which takes into consideration also a maximum monitoring
distance is presented in Howard et al. (2002). In Schwager
et al. (2009), the authors consider the coverage of a 2D re-
gion by using a team of hovering robots. In this case, infor-
mation per pixel is proposed as optimization criterion. To
the best of our knowledge, the problem of considering the
two objectives simultaneously to cover an arbitrary region
by using a team of flying robots has never been investigated
so far.

A key issue for the successful implementation of the
CAO proposed methodology in the case of a team of MAVs,
is the accuracy of the input it will have, which in this case is
an elevation map of the environment. In this work, we con-
sider an elevation map as a tradeoff between complex en-
vironmental mapping versus online availability of the envi-
ronment shape for real-time coverage. A more sophisticated,
yet much more costly approach in terms of computational
complexity is presented in Triebel et al. (2006). There, the
authors reconstruct the 3D environment aid of Multi Level
Surface maps on a ground robot. Since MAVs generally fly
at a reasonable altitude, the area is well approximated by
a computationally much less expensive elevation map not
considering tunnel- or cave-like structures. Since we deal
with MAVs, the choice of sensors to perceive the environ-
ment to be monitored and therefore to construct the eleva-
tion maps is limited. For GPS-denied navigation and map-
ping, vision sensors and laser range finders might be the
only options. In So and Kanade (1990) combine range im-
ages with a digital elevation model for accurate environment
modelling. A computationally less complex approach was
chosen by Thrun et al. (2000) using a multi-resolution ap-
proach adopted from the computer graphics literature. This
approach shows real-time capabilities on a ground robot.
However, on aerial vehicles, we are even more constraint
in the computation power budget. Furthermore, laser scan-
ners are too heavy for MAVs and have a limited field of
view. Therefore, cameras and inertial sensors might be the
only viable solutions for such limited weight and calcula-
tion power budgets. For ground vehicles (cars), 3D occu-
pancy grids built from stereo vision and GPS data have been

shown to be a valid solution (Chen and Xu 2006). However,
occupancy grids are not a good option for MAV's because of
their limited calculation power. Lacroix (2001) presented an
off-line method to map a large outdoor scenario in fine res-
olution using low-altitude aerial stereo-vision images. How-
ever, stereo vision loses its advantage when the baseline is
too small compared to the scene depth. Considering the lim-
ited weight, power and computation budget on MAVs we
rely on a monocular solution in which the appropriate base-
line is provided by a keyframe-based visual SLAM frame-
work (Strasdat et al. 2011).

3 Platform
3.1 Hardware

The MAV we use is a so-called quadrocopter, a helicopter
driven by four rotors, symmetric to the center of mass. The
control of the quadrocopter is performed solely by chang-
ing the rotation speed of the propellers and is described in
more detail in Gurdan et al. (2007). For our experiments, we
use the “AscTec Pelican” quadrocopter (Ascending Tech-
nologies GmbH) presented in Fig. 1, which is a further de-
velopment of the one described in Gurdan et al. (2007).
The quadrocopter is equipped with rotors with 10” diam-
eter which allow to carry a payload of about 500 g. De-
pending on battery size and payload, flight times between
10 and 20 minutes can be achieved. Further key features are
the Flight Control Unit (FCU) “AscTec Autopilot” as well
as the flexible design enabling one to easily mount different
payloads like computer boards or cameras. The FCU fea-
tures a complete Inertial Measurement Unit (IMU) as well
as two 32 Bit, 60 MHz ARM-7 microcontrollers used for
data fusion and flight control. One of these microcontrollers,
the Low Level Processor (LLP) is responsible for the hard-
ware management and IMU sensor data fusion. An attitude
and GPS-based position controller is implemented as well
on this processor. The LLP is delivered as a black box with
defined interfaces to additional components and to the High
Level Processor (HLP). To operate the quadrocopter, only
the LLP is necessary. Therefore, the HLP is dedicated for
custom code. All relevant and fused IMU data is provided
at an update rate of 1 kHz via a highspeed serial interface.
In particular, this comprises body accelerations, body angu-
lar velocities, magnetic compass, height measured by an air
pressure sensor and the estimated attitude of the vehicle.
For the computationally more expensive onboard pro-
cessing tasks, we outfitted the helicopter with a 1.6 GHz
Intel Atom Based embedded computer, available from As-
cending Technologies GmbH. This computer is equipped
with 1 GB RAM, a MicroSD card slot for the operating
system, a 802.11n based miniPCI Express WiFi card and
a Compact Flash slot. The miniPCIE WiFi card is preferred
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Fig. 1 Overview of the Pelican
quadrocopter
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over USB to keep the USB bus free for devices like the cam-
eras we use. We furthermore use a high speed CF-card that
allows us data logging with up to 40 MByte/s.

As camera, we use a MatrixVision BluFox camera with a
resolution of 752 x 480 px and a global shutter. The camera
faces the ground with a 150° field-of-view lens since we are
expecting the most stable features trackable over longer time
in this configuration.

The configuration of our system is schematically de-
picted in Fig. 2.

@ Springer

Quadcopter

3.2 Software

To provide a maximum portability of our code and to avoid
potential (binary) driver issues, we installed Ubuntu Linux
10.04 on our onboard computer which makes tedious cross-
compiling unnecessary. Since we are running a couple of
different subsystems that need to communicate between
each other, we use the ROS (Quigley et al. 2009) frame-
work as a middleware. This is also used to communicate
to the ground station over the WiFi datalink for monitoring
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Fig. 3 The top-left picture
depicts the onboard-mounted
camera on our vehicle (the
Pelican) from Ascending
Technologies. The top-right
picture is a screenshot of our
visual SLAM algorithm. The
tracking of features can be
observed. This is used for the
localization of the camera. In
the bortom picture, the 3D point
cloud map built by the mapping
thread is shown. The 3-axis
coordinate frames represent the
location where new keyframes
were added

and control purposes. The FCU is interfaced via a ROS node
communicating over a serial link to the FCU’s Higlevel Con-
troller with firmware we developed for our purposes.

Software development on the HLP is done based on a
SDK available for the AutoPilot FCU providing all commu-
nication routines to the LLP and a basic framework. The
HLP communicates with the ROS framework on the on-
board computer over a serial datalink and a ROS FCU-node
handling the serial communication. This node subscribes to
generic ROS pose messages with covariance, in our case
from the vision framework, and forwards it to the HLP.
Moreover, it allows to monitor the state of the fusion fil-
ter and the position controller, and to adjust their parameters
online via the “dynamic reconfigure” functionality of ROS.

For the implementation of the position control loop and
data fusion onboard the HLP, a Matlab/Simulink frame-
work is used in combination with the Mathworks Real-Time
Workshop Embedded Coder. The framework provides all
necessary tools to design the control structure in Simulink,
optimize it for fixed point computing, as well as compiling
and flashing the HLP.

3.3 Monocular-vision framework

The approach presented here builds upon the keyframe-
based visual SLAM algorithm of Klein and Murray (2007)
to localize the MAV and build a dense elevation map with a
single camera (see Fig. 3). This monocular SLAM algorithm
and its use for MAV autonomous navigation is described in
details in our previous work (Weiss et al. 2011) and (Bloesch
et al. 2010).

When moving the helicopter through a region, our cam-
era faces downwards. This increases the overlapping image

portion of neighboring keyframes, so that we can even fur-
ther loosen the heuristics for adding keyframes to the map.
It also ensures that we can assume an elevation map later
on in the meshing procedure. When exploring new areas the
global bundle adjustment can be very expensive, limiting the
number of keyframes to a few hundred on our platform. An
intricate hurdle when using a monocular camera is the lack
of any depth information. Closely linked to this problem is
the unknown map scale. We tackle this issue with our ap-
proach presented in Weiss and Siegwart (2011) using an in-
ertial sensor. We are thus able to have all distance in metric
units.

3.3.1 Adaptations to the SLAM algorithm

The most evident and crucial change consists of porting the
SLAM algorithm to ROS (Robot Operating System from
Willow Garage). This facilitates the transfer of information
to different nodes and computers. From the performance
point of view, the most important change is the degeneration
of the SLAM framework to a visual odometry framework:
we no longer keep all keyframes in the bundle adjustment
step, but only keep a constant number of them. This makes
the algorithm scalable to large environments while keeping
the calculation complexity linear with the number of fea-
tures. If the number of keyframes exceeds a threshold, we
only take the closest N keyframes to the current MAV pose.
The augmentation in drift is minimal, since keyframes far
away from the current MAV pose only contribute minimally
in a global bundle adjustment step. Loop closure is handled
passively equally to the original version of the algorithm.
That is, if the loop did not drift significantly, the keyframe
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which closes the loop is considered as neighbor of the cur-
rent MAV pose and is taken into account in the local bundle
adjustment step.

Besides the fundamental changes mentioned above, we
also adapt some parameters of Klein and Murray’s visual
SLAM algorithm to increase its performance within our
framework for optimal coverage in unknown terrain. First,
we use a more conservative keyframe selecting heuristic
in order to decrease the number of keyframes added dur-
ing map expansion. Additionally, we reduce the number of
points tracked by the tracking thread from 1000 to 300. This
again increases the maximal map size and the frame rate,
while keeping the accurate tracking quality. This leads to a
very sparse information for the elevation mesh map, how-
ever, our tests show still very satisfying results underlining
the strength of our approach for dense elevation mesh maps.

These modifications led to a framerate of max 20 Hz
on an Intel ATOM 1.6 GHz processor. We demonstrate the
pure navigation task (i.e. without mesh mapping the envi-
ronment) in our previous work (Weiss et al. 2011).

4 Online elevation-map generation

To perform optimal surveillance coverage over an arbitrary
terrain, we need to reconstruct the area in an elevation map.
Note that most works on optimal coverage assume an ex-
isting map. In this work, we use an approach to build an
elevation map online. Thus, the MAV has to be able to fly
autonomously in the yet-unknown and later-mapped area.
For the vision-based autonomous navigation, we use the ap-
proach described in Sect. 3. We extended our meshing ap-
proach of our previous work in Weiss et al. (2011) to meet
the needs for optimal surveillance coverage in an arbitrary
terrain. In particular, we build the map iteratively while the
MAVs are exploring the environment. Since we degener-
ated the visual framework to a visual odometry setup (c.f.

()

Fig. 4 (a) Sample image of the scene mapped for the following illus-
tration of the algorithm in this section. The sheets in front of the key-
board are flat and represent the main plane H whereas the keyboard
has a soft inclination in depth towards the upper part of the image.
(b) Scene with 3D point features. This represents the data available in
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Sect. 3.3) only the features triangulated with the newest
keyframe are added to the meshing process. Notice that,
thanks to this modification, the meshing process has con-
stant complexity, since the number of added features per
keyframe does not grow with the map size. Furthermore,
the required rate of the mesh update is given by the rate
of newly added keyframes. That is, it is dependent on the
speed/altitude ratio the MAV moves, i.e., the rate of newly
added keyframes is the same if the MAV moves fast at high
altitude or slower on low altitude. It is the pixel change in the
image that triggers a new keyframe. During all our experi-
ments, we use a down-looking camera on the MAV. Thus,
we can assume the point-cloud to be an elevation map.

4.1 Elevation-mesh generation from a point cloud

For the sake of completeness we summarize here the idea
of our previous work in Weiss et al. (2011) for the mesh-
map creation. For the sake of simplicity and for better un-
derstanding we use a sample scene throughout this section.
Figure 4 depicts this scene. Note that it is a small scale scene,
however, due to our monocular approach, all techniques and
algorithms applied to this scene are perfectly scalable. That
is, huge terrain captured from far away looks identical to a
small terrain captured from very close—i.e. the images and
thus the map are scale invariant. At the end of this section
we show our algorithm performing in a large scale outdoor
environment. Figure 4(b) shows the information available in
a keyframe of the SLAM algorithm.

Assume the point cloud {p;} with M 3D points p; rep-
resenting the initial map constructed by the visual SLAM
algorithm in the start phase. Without any restrictions to the
terrain to explore later on we assume the start area to be rel-
atively flat and the aerial vehicle in hover mode. The main
map plane H is found using a least square method on {p;}
or a RANSAC algorithm. In our case the latter one is used
to be more robust against outliers. This is done in the given

(b)

a keyframe of the visual SLAM algorithm. Back projecting a 3D tri-
angle of the meshed map allows getting the texture for the triangle in
question. Note that this is the distorted image while for texturing the
mesh we use the undistorted one
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Fig. 5 The 3D point cloud of
the sample scene. A trained eye
can spot the papers and the
keyboard. However, usually
neither human users nor
standard path planning and
obstacle avoidance algorithms
understand the point cloud
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Fig. 6 Applying Delaunay
Triangulation to the point cloud
reveals the real topology of the
scene. The ‘hill’ represents the
keyboard in the sample scene.
Note that we applied a median
filter to the mesh vertices in
order to eliminate outliers. Thus
the 3D points may not always
lie on the grid. This grid is
already sufficient for path
planning and obstacle avoidance

SLAM framework. All current and future map points are
projected to this main plane to reduce the dimensionality:

ri=Pxp; e))

where p; is a three dimensional point of the current map and
r; is its two dimensional counterpart projected to the main
map plane H using the 2 x 3 projection matrix P. Note that
H usually corresponds to a physical plane in the scene (i.e.
table or floor). Furthermore, as the camera is down look-
ing on a helicopter this plane usually is only slightly in-
clined to the xy-plane in the camera frame. Thus the two
dimensional positions of the features r; are accurate while
the third (eliminated by the projection) is very noisy due to

the depth triangulation of the visual SLAM algorithm. After
the projection a Delaunay Triangulation is run in 2D space
to generate a 2D mesh. We use a Sweep algorithm for the
triangulation to keep calculation power low. For the Sweep
triangulation, calculation is in the order of O (nlogn) com-
pared to the standard algorithm with O(n?). The 3D point
cloud of the scene is depicted in Fig. 5. One can note the
difficulty even a trained eye has to interpret the scene. Stan-
dard path planning and obstacle avoidance algorithms can-
not be used. In Fig. 6 the generated mesh is shown. After the
Delaunay Triangulation in 2D space we add again the third
dimension. As (1) is not invertible (P is not a square matrix
and we therefore have ambiguities in the back projection)
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we only use the edge information of the Delaunay Triangu-
lation. That is if an edge in the 2D Delaunay Triangulation
is defined by

g =TFiT; @
we map it to an edge in 3D space according to
d3q =PiP; 3)

with ry = P % px and k € map. This initial elevation mesh is
then median filtered in the third coordinate to remove out-
liers and noise. The median value is calculated using all ad-
jacent vertices to the center vertex. That is

Pz =median(p,;Vp,; € d3g = pipi ) )

where p;; denotes the third coordinate of the 3D point p;
previously eliminated for the Delaunay Triangulation.

At this point standard path planning and obstacle avoid-
ance algorithms could be applied for enhanced autonomous
navigation. The most simple rule for obstacle avoidance is
to not traverse the mesh. That is, if the airborne vehicle al-
ways stays on the same side of the mesh it will not crash
against an obstacle. Note that thanks to the sparseness of the
point features this rule is highly robust, however, may be
too restrictive in some particular cases. In the task of opti-
mal coverage, we are more interested in the general shape of
the landscape, rather than detailed 3D reconstruction. Thus,
for the use of optimal coverage, the level of details of these
elevation mesh maps is largely sufficient. Note that we can
recover the absolute scale factor of the monocular SLAM by
using an inertial sensor as we described in Weiss and Sieg-
wart (2011). This way, we can reconstruct a metric mesh-
map of an arbitrary terrain. Figure 7 shows the initialization
of the visual SLAM algorithm and the reconstruction of our
outdoor test terrain. For better visibility we added texture to
the mesh map as described in Weiss et al. (2011). With the
above described procedure, we are able to reconstruct met-
rically any environment autonomously given that sufficient
(arbitrary) visual features are available. In unprepared out-
door environments, this requirement is generally fulfilled.
The reconstructed mesh map of the environment can then be
used by any coverage algorithm. In particular, we describe
an approach using our novel CAO algorithm in the next sec-
tion.

5 The cognitive-based optimization approach
The Cognitive-based Adaptive Optimization (CAO) ap-
proach (Kosmatopoulos et al. 2007; Kosmatopoulos 2009;

Kosmatopoulos and Kouvelas 2009) was originally devel-
oped and analyzed for the optimization of functions for
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e
()

Fig. 7 (a) Initialization of the visual SLAM algorithm (on the left the
tracked features used to initialize the map, on the right the reference
frame). (b) The reference frame is displayed as a grid on the image
(left). On the right, a few reconstructed camera poses are displayed as
faint tripods. The bold tripod is the actual camera pose. This pose is
used for the MAV position controller and yields the metric map scale
by fusing it with the IMU measurements. (¢) Generation of the tex-
tured map. (d) Sample of a meshed and also textured (snowy) outdoor
environment. For the CAO approach the generated mesh is sufficient,
however, the texture gives the user intuitive information of where the
MAV is positioned at the given time instance. Even with the texturing,
this approach runs in real-time. Note that the reconstruction precision
is not very high. It is, however, largely sufficient for our optimal-cov-
erage tasks. Aid of the IMU we have a metric map and estimate here
the urban canyon width to be about 10 m (error is <10%). The map
reconstruction runs online while flying

which an explicit form is unknown but their measurements
are available as well as for the adaptive fine-tuning of large-
scale nonlinear control systems. In this section, we will de-
scribe how the CAO approach can be appropriately adapted
and extended so that it is applicable to the problem of multi-
robot coverage. More explicitly, let us consider the problem
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where M robots are involved in a coverage task, attempting
to optimize a given coverage criterion. Apparently, the cov-
erage criterion is a function of the robots’ positions or poses
(positions and orientations), i.e.

Ji = j(xlgl), cees x,EM)) )

where k =0, 1,2, ... denotes the time-index, J; denotes
the value of the coverage criterion at the kth time-step,
x,il),...,x,EM) denote the position/pose vectors of robots
1,..., M, respectively, and J is a nonlinear function which
depends, apart from the robots’ positions/poses, on the par-
ticular environment where the robots live; for instance, in
the 2D case the function J depends on the location of the
various obstacles that are present, while in the 3D case with
flying robots monitoring a terrain, the function J depends
on the particular terrain morphology.

Due to the dependence of the function 7 on the particular
environment characteristics, the explicit form of the function
J is not known in most practical situations; as a result, stan-
dard optimization algorithms (e.g. steepest descent) are not
applicable to the problem in hand. However, in most prac-
tical cases—like the one treated in this paper—the current
value of the coverage criterion can be estimated from the
robots’ sensor measurements. In other words, at each time-
step k, an estimate of Ji is available through robots’ sensor
measurements,

H=T0", ™)+ & (6)

where J, ,f denotes the estimate of J; and & denotes the noise
introduced in the estimation of J; due to the presence of
noise in the robots’ sensors. Note that, although it is natural
to assume that the noise sequence & is a stochastic zero-
mean signal, it is not realistic to assume that it satisfies the
typical Additive White Noise Gaussian (AWNG) property
even if the robots’ sensor noise is AWNG: as J is a nonlin-
ear function of the robots’ positions/poses (and thus of the
robots’ sensor measurements), the AWNG property is typi-
cally lost.

An efficient robot coverage algorithm have additionally
to deal with the problem of restricting the robots’ positions
so that obstacle avoidance as well as minimum and maxi-
mum height of flight constraints are met. In other words, at
each time-instant k, the vectors x,&'), i=1,..., M should
satisfy a set of constraints which, in general, can be repre-
sented as follows:

c(x”,....xM™) <o )

where C is a set of nonlinear functions of the robots’ posi-
tions. As in the case of 7, the function C depends on the par-
ticular environment characteristics (e.g. location of obsta-
cles, terrain morphology) and an explicit form of this func-
tion may be not known in many practical situations; how-
ever, it is natural to assume that the coverage algorithm is

provided with information whether a particular selection of
robots’ positions/poses satisfies or violates the set of con-
straints (7).

Given the mathematical description presented above, the
multi-robot coverage problem can be mathematically de-
scribed as the problem of moving x,gl), ey x,EM) to a set of
positions/poses that solves the following constrained opti-

mization problem:

minimize (5)

subjectto (7). ®

As already noticed, one of the difficulty in solving in real-
time and in real-life situations the constrained optimization
problem (8) lies in the fact that explicit forms for the func-
tions J is not available. To circumvent this difficulty, the
first step of the CAO approach is to makes use of function
approximators for the estimation of the objective function J
at each time-instant k according to

~

T2 x My =wF e () M), ©)
Here JAk(x,EI),...,x,EM)) denotes the approximation of J
generated at the kth time-step, ¢ denotes the nonlinear vec-
tor of L regressor terms, ¥ denotes the vector of param-
eter estimates calculated at the kth time-instant and L is a
positive user-defined integer denoting the size of the func-
tion approximator (9). The parameter estimation vector ¥
is calculated according to

k—1
9 = argmin~ S =0T xM))? (10)
» 2 =ty

where ¢ = max{0, k — L — T;,} with T}, being a user-defined
nonnegative integer. Standard least-squares optimization al-
gorithms can be used for the solution of (10). As soon as the
estimator fk is constructed according to (9), (10), the set of
new robots’ positions is selected as follows: firstly, a set of
N candidate robots’ positions is constructed according to:

il =xP fopll’, ie{l,...,M), je(l,...,N},
(11

ij . . .
where ¢, J is a zero-mean, unity-variance random vector

with dimension equal to the dimension of x,i') and oy is a
positive real sequence which satisfies the conditions:

o0 [o)0]

lim a; =0, a = 00, o? < 00. 12
ma=0 Yw=c  Sal<x 0
k=1 k=1
Among all N candidate new positions x,l’] .. .,x,iw’J , the

ones that correspond to non-feasible positions, i.e. the ones
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that violate the constraints (7), are neglected and then the
new robots’ positions are calculated as follows:

. A1 M,j
= argmin Ji(x, 7, .. x0)
jg{l,..‘,N}

x;(’ / not neglected

[ -lf)]

The idea behind the above logic is simple: at each time-
instant a set of many candidate new robots’ positions is gen-
erated. The candidate, among the ones that provide with a
feasible solution, that provides the “best” estimated value
Ji of the coverage criterion is selected as the new set of
robots’ positions. The random choice for the candidates is
essential and crucial for the efficiency of the algorithm, as
such a choice guarantees that Ji. is a reliable and accurate
estimate for the unknown function 7; see Kosmatopoulos
(2009), Kosmatopoulos and Kouvelas (2009) for more de-
tails. In the specific 3D case studied here the problem can be
formulated as follows.

Consider a team of M flying robots that is deployed to
monitor an unknown terrain 7. Let z = ®(x, y) denote the
unknown height of the terrain at the point (x, y) and as-
sume for simplicity that the terrain 7 is rectangular along
the (x, y)-axes, i.€. Xmin < X < Xmaxs Ymin <Y < Ymax- Let
P = {xD}M denote the configuration of the robot team,
where x ) denotes the position/pose of the ith robot.

Given a particular team configuration P, let VV denote
the visible area of the terrain, i.e. V' consists of all points
(x,y,®(x,y)) €7 that are visible from the robots. Given
the robots’ sensor capabilities, a point (x, y, ®(x, y)) of the
terrain is said to be visible if there exists at least one robot
so that

— the robot and the point (x, y, ®(x, y)) are connected by a
line-of-sight;

— the robot and the point (x, y, ®(x, y)) are at a distance
smaller than a given threshold value (defined as the max-
imum distance the robot’s sensor can “see”).

Apparently, the main objective for the robot team is to max-
imize the visible area V. However, this cannot be the only
objective for the robot team in a coverage task: trying to
maximize the visible area will simply force the robots to
“climb” as high as' possible. In parallel to maximizing the
visible area, the robot team should make sure that it mini-
mizes the average distance between each of the robots and
the terrain subarea the particular robot is responsible for,
where the terrain subarea a particular robot is responsible
for, is defined as follows: given a team configuration P, the
subarea of the terrain the ith robot is responsible for is de-
fined as the part of the terrain that (a) is visible by the ith

INote also that in the case where there are no limits for the robot’s
maximum height and the maximum sensing distance, it suffices to have
a single robot at a very high position to monitor the whole terrain.

@ Springer

robot and (b) each point in this subarea is closer to the ith
robot than any other robot of the team. This second, and par-
allel to maximizing visibility, objective for the robot team
is necessary for two practical reasons: (a) firstly, the closer
is the robot to a point in the terrain the better is, in gen-
eral, its sensing ability to monitor this point and (b) sec-
ondly, in many multi-robot coverage applications there is
the necessity of being able to intervene as fast as possible
in any of the points of the terrain with at least one robot.
Having in mind that the robot team has to successfully meet
the two above-described objectives, we define the follow-
ing combined objective function the robot team has to min-
imize:

dg (13)

T —

. i 2
J(P) =f min |x® — dg + K/
qeyie{l,.‘.,M}| q| 9 q

where K is a large user-defined positive constant. The first
of the terms in the above equation is related to the second
objective (minimize the average distance between the robots
and the subarea they are responsible for) and the second term
is related to the invisible area in the terrain ( fq e dq is
the total part of the terrain that is not visible by any of the
robots). The positive constant K is used to make sure that
both objectives are met. To see this, consider the case where
K =0, in which case we will have that the robots, in their
attempt to minimize their average distance to the subarea
they are responsible for, may also seek to minimize the to-
tal visible area. On the other hand, in case where the first of
the terms in (13) is absent, we will have the situation men-
tioned above where the robots in their attempt to maximize
the visible area will have to “climb” as high as they are al-
lowed to.

It has to be emphasized that the positive constant K
should be chosen sufficiently large so that the second term
in (13) dominates the first term unless no or a negligible
part of the terrain remains invisible. In this way, minimiza-
tion of (13) is equivalent to firstly making sure that all—or
almost all—of the terrain is visible and then to locate the
robots so that their average distance to the subarea they are
responsible for is minimized.

A large choice for the positive term K plays another cru-
cial role for the practical implementation of the CAO al-
gorithm in multi-robot coverage applications: the problem
with the performance index defined in (13) is that its second
term [ .7y dq cannot be, in general, computed in prac-
tice; as this term involves the part of the terrain that is not
currently visible, its computation requires that the geome-
try of this part is known or equivalently, as the invisible part
changes with the evolution of the team’s configuration, that
the whole terrain is known. To overcome this problem, in-
stead of minimizing (13) the following performance index is
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actually minimized by the CAO approach:

(P) /z;eViG{IIIH?MJx q|"dq

+K/ ZL(x,y)dxdy (14)
(x,y,¢x,y)eT =V

where Z(q) denotes the indicator function that is equal to 1
if the point (x, y, ¢(x, y)) belongs to the invisible area of
the terrain and is zero, otherwise. In other words, in the cost
criterion J (P) and for the whole invisible area, the unknown
terrain points (x, y, ¢ (x,y)) are replaced by (x, y, 1), i.e.
J (P) assumes that the whole invisible area is a flat subarea.

It is not difficult for someone to see that the replacement
of the cost criterion (13) by the criterion (14) has a negligible
implication in the team’s performance: as a large choice for
K corresponds to firstly making sure that the whole terrain is
visible and then to minimizing the average distance between
the robots and their responsible subareas, minimizing either
of criteria (13) or (14) is essentially the same.

An efficient trajectory generation algorithm for optimal
coverage—i.e. for minimization of the cost criteria (13)
or (14)—must make sure that the physical constraints are
also met throughout the whole multi-robot coverage appli-
cation. Such physical constraints include, but are not limited
to, the following ones:

— The robots remain within the terrain’s limits, i.e. they re-
main within [X;,in, Xmax] and [Ymin, Ymax] in the x- and
y-axes, respectively.

— The robots satisfy a maximum height requirement while
they do not “hit” the terrain, i.e. they remain within
[®(x,y)+d, Zmax] along the z-axis, where d denotes the
minimum safety distance (along the z-axis) the robots’
should be from the terrain and z,,,, denotes the maximum
allowable height for the robots.

— The robots do not come closer on to each other than a
minimum allowable safety distance d,.

It is not difficult for someone to see that all the above con-
straints can be easily cast in the form (7) and thus can be
handled by the CAO algorithm.

6 Experimental results

To validate our approach in a realistic environment, we have
used two different data sets which were collected with the
use of a miniature quadrocopter specially designed for the
needs of the European project sFLY (www.sfly.org). These
data sets are used as input, in an optimization framework de-
veloped in C#, which runs the CAO algorithm off board and
produces the optimal positions of the robot team, in terms of
terrain surveillance coverage.
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Fig. 9 Outdoor flight path through the ETHZ’s hospital area

The scenarios tested consider a team of four MAVs and
correspond into two different areas. The first area is Bir-
mensdorf in Switzerland and it’s presented in Fig. 8, while
the second area corresponds to the ETHZ’s hospital area and
it’s presented in Fig. 9. More details about the data and the
methodology used to extract them, are presented in Bloesch
et al. (2010) and Weiss et al. (2011).

The main constraints imposed to the robots are that they
remain within the terrain’s limits, i.e. within [X,;,, Xmax]
and [Ymin, Ymax] in the x- and y-axes, respectively. At the
same time they have to satisfy a maximum height require-
ment while they do not “hit” the terrain, i.e. they remain
within [®(x, ¥) + d, Zmax] along the z-axis. Several initial
configurations for each scenario were tested. The values of
the cost function for three different configurations, in the
case of the Birmensdorf area are presented in Fig. 10. Sam-
ple trajectories for a robot team are presented in Fig. 11,
while in Fig. 12 the final positions of 3 robot teams starting
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Fig. 10 Comparative cost functions for different initial robot team
configurations in Birmensdorf area

Fig. 11 3D Path followed by a
robot team in a coverage
scenario in Birmensdorf area

Fig. 12 Final configurations of
three robot teams starting from
different initial positions for the
Birmensdorf area
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from different initial positions are presented in a 3D view.
Different marker type corresponds to different robots, while
different color corresponds to a different team. In Table 1 the
final coverage percentage for different initial configurations
in the Birmensdorf area, is presented. The values of the cost
function for three initial configurations in the case ETHZ’s
hospital area are presented in Fig. 13. Sample trajectories
for a robot team are presented in Fig. 14. In Fig. 15 the fi-
nal positions of 3 robot teams starting from different initial
positions are presented in a 3D view.

To validate the efficiency of the proposed methodology,
an incremental scenario is also presented. A single aerial
robot is flying over an unknown area and incrementally is
producing maps which are used as an input to the proposed
CAO algorithm. Each increment is a subset of the following
map. The result of the optimization procedure for each map
is the position which assures optimal coverage of the area
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with the given team. This optimal positions are used as an
input to the new map which is produced by the aerial robot
which performs the mapping procedure. An aerial robot has
flew over the Birmensdorf area and based on this flight 8

Table 1 Coverage percentage for different initial configurations in the
Birmensdorf area

(% of coverage)

Test case 1 2 3
Initial configuration 44.49 40.49 56.81
Final configuration 98.55 99.52 99.56

55-
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Fig. 13 Comparative cost functions for different initial robot team
configurations in ETHZ’s hospital area

Fig. 14 3D Path followed by a
robot team in a coverage
scenario in the ETHZ’s hospital
area

z(m)
[h]
o

Initial Positionis

successive maps of different sizes were produced and used
as an input to the CAO algorithm. In Table 2 we present the
performance of a team of four robots for the 8 successive
maps, in term of coverage percentage. In all cases the pro-
posed framework provided satisfactory results in terms of
coverage percentage.

7 Discussion and conclusions

A two-step procedure to align a swarm of flying vehicles to
perform surveillance coverage has been presented and for-
mally analyzed. Initially a state-of-the-art visual-SLAM al-
gorithm tracks the pose of the camera while, simultaneously,
building an incremental map of the surrounding environ-
ment, autonomously, given that sufficient (arbitrary) visual
features are available. In unprepared outdoor environments,
the requirement of having sufficient features is generally ful-
filled. The reconstructed mesh map of the environment is
used as the input to the second part of the procedure where
a cognitive based methodology is used to maximize the area
monitored by a team of aerial robots. The proposed approach
has the following key advantages with respect to previous
works:

— it does not require any a priori knowledge on the environ-
ment;

— it works in any given environment, without the necessity
to make any kind of assumption about its topology;

— it can incorporate any kind of constraints;

— its complexity is low allowing real time implementations;

— it requires low weight and cost sensors, which makes it
ideal for aerial robot applications;
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Fig. 15 Final configurations of
three robot teams starting from
different initial positions for the
ETHZ’s hospital area

y(m) 0 o x(m)
Table 2 Incremental scenario
in the Birmensdorf area Test case 1 2 3 4 5 6 7 8
Initial % of coverage 69.83 85.37 63.82 65.57 49.94 75.32 74.2 81.21
Final % of coverage 94.5 98.01 95.44 95.32 72.56 79.56 76.72 90.5
% of the final map 5.46 6.55 9.63 16.86 59.98 70.23 81.8 100

— it builds itself the metric map required for the optimiza-
tion procedure.

The advantages of the proposed methodology make it suit-
able for real implementations and the results obtained
through experimentation give us the motivation to adopt
the CAO also in other frameworks. We are interested into
expanding the proposed approach by using the distributed
version of the CAO algorithm introduced in Renzaglia et al.
(2011) for 2D environments. In the aforementioned work,
the aim of each member of a robotic team, was to mini-
mize the overlapping of its field of view with the obstacles
of the environment and with the fields of view of the other
robots. In other words, for each robot the problem is like
maximizing the surface monitored while it is moving in an
environment with both static obstacles and dynamic obsta-
cles, which are the fields of view of the other robot. This
approach is closer to real world applications since it does
not depended into a centralized scheme with all the known
disadvantages. This approach will allow us to include com-
munications constraints. We are also interested in incorpo-
rating more realistic constraints including sensor limitations.
To properly adapt this approach significant implementation
challenges exist in the case of real aerial vehicles, related
mainly with computational power limitations. The same ap-
proach appropriately modified is currently under investiga-
tion for coordinated exploration and target tracking, where

@ Springer

the CAO algorithm is combined with an extended kalman
filter estimator. We expect that many important tasks in mo-
bile robotics can be approached by CAO-based algorithms,
due to the fact that the CAO approach does not require
an a priori knowledge of the environment and it has low
complexity. Both these issues are fundamental in mobile
robotics.
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