
Department of Informatics!

Martin Glinz 
  

Software Quality 
  
Chapter 3  
  

Advanced Testing Techniques"

© 2014-2016 Martin Glinz. All rights reserved. Making digital or hard copies of all or part of this work for educational, non-commercial use is permitted. Using this material
for any commercial purposes and/or teaching is not permitted without prior, written consent of the author. Note that some images may be copyrighted by third parties."

Software Quality "3. Advanced Testing Techniques "© 2016 Martin Glinz " 2"

3.1 "The Basics of Testing"

3.2 "Branch Coverage in Glass-Box Testing"

3.3 "Data flow Testing"

3.4 "Use-Case-Based Testing"

3.5 "Combinatorial Interaction Testing"

3.6 "Test Automation"

3"

Testing"

❍  The fact:  
Testing is the process of executing a program with the
intent of finding errors. [Myers 1979]"

❍  Our hope: 
The more thoroughly a program has been tested, the
higher the probability that the program will behave as
expected also in the non-tested cases"

❍  Good to know: 
The correctness of a program can’t be proven by testing
(except in trivial cases); this is due to combinatorial
explosion of input values to be tested"

""
Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

Testing vs. reviewing"

Testing is not always the means of choice:"

Software Quality "3. Advanced Testing Techniques "© 2016 Martin Glinz " 4"

Number of vulnerabilities detected with automated penetration testing vs. inspection
by a team of security experts (VS1-VS4 are commercial vulnerability scanners)."

Experts

250

200

150

100

50

0
VS1

64

VS2 VS3 VS4

61
(59.22%)

42

66
(50.77%)

205

29
(37.66%)

6
48

False positives
True positives

Figure 1. Number of false-positive vulnerabilities reported by Web security scanning
tools compared with vulnerabilities reported by a team of security experts.

[Source: 
Antunes and Vieira 2014]"

5"

Expected results must be known"

❍  A crucial prerequisite for testing is knowing the expected
results"
●  Either from a specification "
●  or by comparing the outcome with the results of a successful

previous test run (so-called regression testing)"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

Reference!

...right!!

...

...rihgt!

...
Error!

Test!
result

6"

Testing systematics"

❍  “Let’s run it”: A developer “tests” with some ad-hoc created
data – the test is passed when the results “look good”"

❍  Throwaway-Test: Somebody creates test cases and
executes them, but the tests"
●  are not documented"
●  can’t be repeated"
●  don’t have defined criteria when to stop"
"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

7"

Testing systematics – 2"

❍  Systematic test: Trained testers create, run and document
the tests"
●  Test is planned"
●  Test procedure has been written beforehand"
●  Test is executed according to test procedure"
●  Expected and observed results are compared; any deviation

is recorded"
●  Searching and fixing defects are performed separately"
●  A failed test is repeated after fixing the defects"
●  Test results are documented"
●  Test ends, when a pre-defined testing goal has been

achieved"
"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

8"

Forms of testing"

❍  Artifacts to be tested may be modules, partial systems or
systems"

❍  Unit Test (or component test)"

❍  Integration test"

❍  System test"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

9"

Forms of testing – 2"

❍  Acceptance test"
●  A special form of testing"
●  Not about finding errors"
●  But: demonstrate that the system

satisfies its requirements; i.e., that
the acceptance test cases don’t
reveal any faults"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

completed Systemem
Customer

10"

The process of testing"

❍  Planning"
●  Testing strategy: what – when – how – for how long"
●  Embed testing into the development plan:"

•  Which documents to create"
•  Deadlines and cost for test preparation, execution and

evaluation"
●  Who will be testing"

❍  Preparation"
●  Selection of test cases"
●  Setting up the test environment / test harness"
●  Writing the test procedure"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

11"

The process of testing – 2"

❍  Execution"
●  Install test environment / test harness"
●  Run tests according to test procedure; record results"
●  Don’t modify the tested artifact while executing a test"
●  Repeat failed tests after fault fixing"

❍  Evaluation"
●  Assemble findings"

❍  Fault fixing (no part of the testing process!)"
●  Analyze errors/symptoms found"
●  Find defects (debugging)"
●  Fix defects"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

Discussed in this chapter "

Dataflow analysis

Symbolic testing

Equivalence classes
Boundary values

Error guessing
Statistical testing

Deter-
mining
test
cases

Black-box!
(function-
oriented)!
!

Glass-box!
(structure-
oriented)

Function coverage
Output coverage
Exception coverage
Attribute coverage

Control flow
coverage

Cause-effect
graphing

Statement coverage
Branch coverage
Path coverage

Combinatorial
coverage

Use case coverage

Automatic test case
generation!

12"

Determining test cases"

Software Quality "3. Advanced Testing Techniques "© 2016 Martin Glinz "

Software Quality "3. Advanced Testing Techniques "© 2016 Martin Glinz " 13"

3.1 "The Basics of Testing"

3.2 "Branch Coverage in Glass-Box Testing"

3.3 "Data flow Testing"

3.4 "Use-Case-Based Testing"

3.5 "Combinatorial Interaction Testing"

3.6 "Test Automation"

Branch coverage"

Branch coverage: create test cases such that all branches of
the program are covered"

For this fragment, two test cases achieve 100 % coverage:"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz " 14"

a>1 and b=0

x := x DIV a

a=2 or x>1

x := x+1

False True

False True
IF (a>1) AND (b=0)!
 THEN x := x DIV a;!
IF (a=2) OR (x>1)!
 THEN x := x+1;!
...

...!
VAR!
 a,b,x: INTEGER;!
...!
BEGIN!
...

a=3 b=0 x=3"a=2 b=1 x=1"

[Myers"
1979]"

[This section extends the discussion on"
Glass-Box-Testing in Chapter 8 of my"
2nd year course on Software Engineering]"

Branch coverage has a problem"

Classic branch coverage has a problem:"
Imagine, the specification states"

" " " " x DIV a " "if a ≥ 1 & b = 0"
"x’ ="
" " " " x" " " " " "else"

❍  Our test does not find the defect in the code"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz " 15"

Why?"

The remedy: term coverage"

❍  Cover not just all branches of a condition, but"
❍  Create test cases such that every individual term makes

the condition once true and once false"
❍  In our example: Achieving term coverage for the first if-

statement requires three test cases:"
●  a=1 b=0 x=1 "(first term makes condition false)"
●  a=2 b=1 x=1 "(second term makes condition false)"
●  a=3 b=0 x=3 (both terms make condition true)"
●  Achieves term coverage also for second if-statement"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz " 16"

In practice: MC/DC"

❍  MC/DC (Modified condition/decision coverage) is a term
coverage criterion used for safety-critical systems"

❍  Requires that for every conditional statement, every term in
the condition expression has been shown to determine the
value of the condition expression independently:"

"Let c = t1 op1 t2 op2 ... opi-1 ti opi ... tn be a condition"
"c "needs to become once true and once false by varying ti  
"while keeping all other terms tj j≠i constant"

❍  For example, MC/DC is required by the FAA for avionics
software "

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz " 17"

[Chilenski and Miller 1994]"

Software Quality "3. Advanced Testing Techniques "© 2016 Martin Glinz " 18"

3.1 "The Basics of Testing"

3.2 "Branch Coverage in Glass-Box Testing"

3.3 "Data flow Testing"

3.4 "Use-Case-Based Testing"

3.5 "Combinatorial Interaction Testing"

3.6 "Test Automation"

19"

What is data flow testing?"

❍  A glass-box (structure-oriented) test"
❍  Based on analysis of data flow in a program:"

●  Determine the control flow graph "
●  Annotate the control flow graph:"

•  Where are variables set or modified?"
•  Where are variables used in computations?"
•  Where are variables used as parts of a condition?"

❍  Various coverage criteria"
❍  Can also be used to assess the quality of a black-box test

(in terms of achieved data flow coverage)"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

nstart"

n4"

n3"

nend"

Annotated control flow graph:"

n1"

n2"

20"

Example"

A small program in C:"

void SortAbs1 (int& z1, int& z2)"
/* Sorts the set {|z1|, z2} */"
{"
"int aux;"
"if (z1 < 0) {"
" "z1 = -z1;"
"}"
"if (z1 > z2) {"
" "aux = z2;"
" "z2 = z1;"
" "z1 = aux;"
"}"

}"

def() "variable set/modified"
c-use() "computational use"
p-use() "predicative use"

def(z1)"
def(z2)"

p-use(z1)"
p-use(z2)"

p-use(z1)"
p-use(z2)"

c-use(z2), def(aux)"
c-use(z1), def(z2)"
c-use(aux), def(z1)"

c-use(z1), c-use(z2)"

c-use(z1), def(z1)"p-use(z1)"
p-use(z1)"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

21"

Variable definitions and uses"

❍  After constructing the control flow graph of a program, we
characterize its data flow by annotating the graph:"
●  n.def(x), iff variable x is set or modified in node n"
●  n.c-use(x), iff variable x is used in a computation in node n"
●  (n,m).p-use(x) iff variable x is used predicatively in a branching

condition on edge (n,m)"

❍  A path (nn, ..., nm) in a control flow graph is called definition-
clear with respect to variable x iff"
●  def(x) in node nn"
●  c-use(x) in node nm or p-use(x) on edge (nm-1,nm)"
●  Between the definition of x in nn and its use in nm or (nm-1,nm)

there is no other definition of x"
Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

22"

Test case derivation"

Test cases are created such that the program executes
definition-clear paths of some coverage class for all
variables of the program: "

❍  all defs-criterion: For all definitions of x, execute a
definition-clear path to at least one use of x"

❍  all p-uses-criterion: For all definitions of x, execute a
definition-clear path to all predicative uses of x"

❍  all c-uses-criterion: For all definitions of x, execute a
definition-clear path to all computational uses of x"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

nstart"

n4"

n3"

nend"

n1"

n2"

23"

Test case derivation – Example 1: all-defs"

void SortAbs1 (int& z1, int& z2)"
/* Sorts the set {|z1|, z2} */"
{"
"int aux;"
"if (z1 < 0) {"
" "z1 = -z1;"
"}"
"if (z1 > z2) {"
" "aux= z2;"
" "z2 = z1;"
" "z1 = aux;"
"}"

}"

def(z1)"
def(z2)"

p-use(z1)"
p-use(z2)"

p-use(z1)"
p-use(z2)"

c-use(z2), def(aux)"
c-use(z1), def(z2)"
c-use(aux), def(z1)"

c-use(z1), c-use(z2)"

c-use(z1), def(z1)"p-use(z1)"
p-use(z1)"

all-defs:"
(nstart, n1, n3, nend)"
(nstart, n1, n2, n3, n4, nend)"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

nstart"

n4"

n3"

nend"

n1"

n2"

24"

Test case derivation – Example 2: all-p-uses"

void SortAbs1 (int& z1, int& z2)"
/* Sorts the set {|z1|, z2} */"
{"
"int aux;"
"if (z1 < 0) {"
" "z1 = -z1;"
"}"
"if (z1 > z2) {"
" "aux= z2;"
" "z2 = z1;"
" "z1 = aux;"
"}"

}"

p-use(z1)"
p-use(z2)"

p-use(z1)"
p-use(z2)"

c-use(z2), def(aux)"
c-use(z1), def(z2)"
c-use(aux), def(z1)"

c-use(z1), c-use(z2)"

c-use(z1), def(z1)"p-use(z1)"
p-use(z1)"

all-p-uses:"
(nstart, n1, n3, nend)"
(nstart, n1, n3, n4, nend)"
(nstart, n1, n2, n3, n4, nend)"
(nstart, n1, n2, n3, nend)"

def(z1),"
def(z2)"

Hint: all-p-uses"
implies branch
coverage – why?"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

nstart"

n4"

n3"

nend"

n1"

n2"

25"

Test case derivation – Example 3: all-c-uses"

void SortAbs1 (int& z1, int& z2)"
/* Sorts the set {|z1|, z2} */"
{"
"int aux;"
"if (z1 < 0) {"
" "z1 = -z1;"
"}"
"if (z1 > z2) {"
" "aux= z2;"
" "z2 = z1;"
" "z1 = aux;"
"}"

}"

p-use(z1)"
p-use(z2)"

p-use(z1)"
p-use(z2)"

c-use(z2), def(aux)"
c-use(z1), def(z2)"
c-use(aux), def(z1)"

c-use(z1), c-use(z2)"

c-use(z1), def(z1)"p-use(z1)"
p-use(z1)"

all-c-uses:"
(nstart, n1, n3, nend)"
(nstart, n1, n2, n3, nend)
(nstart, n1, n3, n4, nend)"
(nstart, n1, n2, n3, n4, nend)"

def(z1),"
def(z2)"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

26"

Significance of data flow testing"

❍  In theory very attractive"
❍  Derivation of test cases requires considerable effort"

❍  Supported by few tools only "
❍  Low significance in today’s practice of testing"
❍  Data flow analysis is significant as an automated static

analysis technique"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

Software Quality "3. Advanced Testing Techniques "© 2016 Martin Glinz " 27"

3.1 "The Basics of Testing"

3.2 "Branch Coverage in Glass-Box Testing"

3.3 "Data flow Testing"

3.4 "Use-Case-Based Testing"

3.5 "Combinatorial Interaction Testing"

3.6 "Test Automation"

28"

The notion of use-case-based testing"

❍  Defining test cases based on a use case model"
❍  Belongs to the family of black-box (function-oriented) tests"

❍  Goal: Cover all use cases"
❍  Per use case ""

●  At least one test case for the normal course"
●  At least one test case per alternate or exceptional course "

❍  Dependencies between use cases should also be
considered"

❍  Suitable particularly for acceptance testing"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

29"

Exercise: determining test cases"

Borrow Book!
Actor(s): "Library user"
Trigger: "A library user brings one or more books s/he wants to borrow

"to the check-out station"
Normal course:"
1."Read and validate user’s library card"
2."Scan book id and identify corresponding book record in database"
3."Record the book to be borrowed and deactivate anti-theft label"
4."If library user wants to borrow more than book, repeat steps 2 & 3"
5."Print borrow slip for all books just borrowed"
6."Hand over books to library user and terminate"

Create test cases for this use case:"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

30"

Exercise: determining test cases – 2"

Alternative courses:"
1.1 "No library card or scanned card is invalid: cancel transaction"
2.1 "Book has been reserved for another user: set book aside and

proceed with step 4"
2.2 "Library user has overdue books to be returned: cancel transaction"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

Software Quality "3. Advanced Testing Techniques "© 2016 Martin Glinz " 31"

3.1 "The Basics of Testing"

3.2 "Branch Coverage in Glass-Box Testing"

3.3 "Data flow Testing"

3.4 "Use-Case-Based Testing"

3.5 "Combinatorial Interaction Testing"

3.6 "Test Automation"

32"

The problem of combinatorial explosion"

❍  Problem: "
●  Programs having numerous options of combining input data

values"
●  Systems may have over hundred configuration options"

❍  Principally, all possible combinations should be tested"
➬ Number of test cases required grows exponentially: not

feasible"

Example: Apache Web Server"
●  172 user-configurable options"
●  1.8 · 1055 possible configurations"

Software Quality "3. Advanced Testing Techniques "© 2016 Martin Glinz "

[Yilmaz et al. 2014]"

Systematically testing combinations of options"

❍  Combinatorial Interaction Testing (CIT)"
●  Systematically tests a subset of all possible combinations"
●  Test cases with given coverage requirements can be

generated automatically"

❍  t-way coverage: each valid combination of t out of n input
options is covered by a test case"

Software Quality "3. Advanced Testing Techniques "© 2016 Martin Glinz " 33"

[Yilmaz et al. 2014, Nie and Leung 2011]"

34"

The pragmatic solution: pairwise testing"

❍  Empirical observation: most errors due to input data
combination errors can be detected when testing all
possible pairs, i.e. achieving 2-way coverage"

❍  The number of test cases required for exhaustive pairwise
testing grows logarithmically only"

❍  Testable also for rather large input data sets"

k "Number of input fields"
m "Number of possible values per input field"
n "Required number of test cases for pairwise  
"testing"

"
 n = O(m2 log2k)"
"
"

Software Quality "3. Advanced Testing Techniques "© 2016 Martin Glinz "

35"

Example"

❍  13 input fields (k=13) with three values each (m=3)"
❍  Testing all combinations requires 313 = 1 594 323 test cases"

❍  For a full pairwise test,15 test cases suffice"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

Algorithmically computed "
combination table for full "
pairwise test (k=13, m=3)"
[Cohen et al. 1997]"

36"

Derivation of test cases"

❍  There is no simple way of computing the minimum number
of test cases manually"

❍  Cohen et al. (1997) provide an algorithm"
❍  Pairwise testing requires a tool for determining the required

combinations of test cases"
❍  Commercial testing tools typically include a generator for

producing test cases for a full pairwise test automatically"
❍  There is also a free Perl script for determining all pairs

[Bach 2006]"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

37"

Example: Testing a credit card payment app"

Determine values to be tested for every input field based
on finding equivalence classes on the sets of all potential
values"

Software Quality "3. Advanced Testing Techniques "© 2016 Martin Glinz "

Credit card payment
Card type:* MasterCard

Card number:*

valid thru:* 12 2020 MM/JJJJ

Name on card: *

CVC Code:* What is this?

38"

Number of test cases"

❍  Assume three equivalence classes per input field"
❍  We have six fields with three test values each"

❍  Testing all combinations requires 36 = 729 test cases"
❍  Pairwise test requires only 15 test cases"
❍  How sensitive is pairwise testing in this example?  

Here’s the code for checking the CVC number:"
 <TD><P><INPUT TYPE="text" NAME="cardCVC" VALUE="""
 SIZE=6 MAXLENGTH=3> <FONT SIZE="-1""
 FACE="Helvetica"><A HREF="http:///help/view/pk/en//CVC.shtml""
 TARGET="_blank" " title="">What is this?"
 </TD>	

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

39"

Analysis of test sensitivity"

❍  Testing all possible combinations finds an error: 
For example, this test case fails: 
{American Express, 1234432156788765, “John Doe”, 12,
2020, 1234}"
●  Mastercard and Visa use a three digit CVC code, American

Express uses four digits"
●  However, entering a four digit CVC number is impossible as

the programmer did not know about four-digit codes"

❍  Every test case {American Express, •, •, •,•, 1234}  
finds this error (“•” stands for any input value)"

➪ Pairwise testing suffices to find this error"

Software Quality "3. Advanced Testing Techniques "© 2016 Martin Glinz "

Software Quality "3. Advanced Testing Techniques "© 2016 Martin Glinz " 40"

3.1 "The Basics of Testing"

3.2 "Branch Coverage in Glass-Box Testing"

3.3 "Data flow Testing"

3.4 "Use-Case-Based Testing"

3.5 "Combinatorial Interaction Testing"

3.6 "Test Automation"

41"

Manual vs. automatic testing"

❍  Creative vs. routine tasks in testing"

"

❍  Routine tasks are easier to automate than creative ones"
❍  Automation of repeated tasks is efficient"

Testing strategy"

Determining test cases"

Creating testing procedures"

Setting up testing environment"

Running tests"

Test summary and evaluation"

Routine"
Repeated"

Creative"
Once"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

42"

Advantages and limitations of test automation"

❍  Advantages"
●  Large number of test cases testable"
●  Unloading routine tasks from human testers"
●  Frequent or even continuous regression testing feasible"
●  Improves testing productivity"

❍  Limits"
●  No full replacement for manual testing"
●  Strongly dependent on quality of test oracle"
●  Automation makes testing more efficient, not more effective"
●  Efficiency gain must be balanced with creation effort"
●  No means against insufficient time or inexperienced testers"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

43"

Automating the selection of test cases"

❍  Generating glass-box (structure-oriented) tests"
●  Generating test cases that satisfy some given coverage

criteria is possible"
●  Problem: from where do we get the expected results?"

❍  Generating user interface tests"
●  Test cases for testing formal properties such as dead links or

non-editable input fields can be generated"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

44"

Automating the selection of test cases – 2"

❍  Generating black-box (function-oriented) tests including a
test oracle"
●  Requires a formal specification"
●  Practical application rather limited"

❍  Support for test case selection, for example, computing the
tuples required for pairwise testing"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

45"

Automating the test procedure"

Dependent on type of test:"
❍  Unit test"

❍  System test"
❍  Acceptance test"

❍  We need to automate not only test case execution, but also
the comparison of observed and expected results"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

46"

Automation – Unit and integration testing"

❍  Test procedure written as a program:"
●  One test method per test case"
●  Comparison of observed and expected results is also part of

the program"
●  A testing framework"

•  simplifies programming test cases"
•  serves as test environment"
•  visualizes results"

❍  Most widely known unit testing framework: "
●  JUnit [Gamma und Beck 2000]"
●  Meanwhile also for other languages: CppUnit, PyUnit,..."

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

47"

Automation – System test"

Problem: Actors in the system context must be simulated"
❍  Technical devices: Technical test bed simulating sensors

and actuators"
❍  Neighboring systems: test harness with drivers and stubs"

❍  Human interaction: scripting"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

Scripting human interaction"

❍  Test automation with scripting works by"
●  writing or recording scripts,"
●  in scripting languages such as Apple script, Perl, Python,

VBScript, ... ,"
●  which then are executed automatically"

❍  Where to script"
●  On the presentation layer"

•  physical"
•  logical"

●  On the function layer"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz " 48"

49"

Automation on presentation layer"

❍  Physical: keys typed, mouse movement, mouse clicks,..."
●  Realistic"
●  Scripts rather low level: e.g., absolute screen coordinates"
●  typically neither readable nor changeable"
●  highly sensitive to minimal, even irrelevant changes"
●  Comparison of expected and actual results difficult"

❍  Logical: Select menu item, set radio button,..."
●  Simulation of interaction dialog on a more abstract layer"
●  Scripts are more stable, easier to read and easier to modify"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

50"

Automation on functional layer"

❍  Accessing system functions over"
●  Application programmer interfaces (APIs)"
●  Web interfaces or browser interfaces"

❍  Does not test the user interface"
❍  Stable, UI-independent test programs and scripts"
❍  Comparison of observed and expected results easy"
❍  APIs, Web interfaces or browser interfaces must exist"
❍  Caution: potential opportunities for attacking a system"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

51"

Influence of software architecture"

The software architecture has a strong influence on the
testability of a system on the function layer"

❍  Layered, acyclic system structure (metaphor of layered
virtual machines)"

❍  Models and logic, presentation, and control clearly
separated (Model-View-Controller pattern)"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

52"

Automation: acceptance test"

❍  Creating acceptance test cases from requirements"
●  Formal specifications allow generation of test cases"
●  Semi-formal models allow generating test case frameworks"

❍  Generating acceptance test cases from examples 
For example: Fit [Cunnigham 2002]"
●  User describes expected behavior in spreadsheet-like tables"
●  Tester writes a “Fixture”, which maps the table to program

code"
●  Fit executes the test automatically and visualizes the results"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

53"

Automation example: Fit"

Payroll Fixtures, Weekly Compensation
StandardHours HolidayHours Wage Pay()
40 0 20 $800
45 0 20 $950
48 8 20 $1360

User specifies sample cases:"

Programmer writes “Fixture”:"
!
public class WeeklyCompensation : ColumnFixture!
{!

!public int StandardHours;!
!public int HolidayHours;!
!public Currency Wage;!
!!
!public Curreny Pay()!
!{!
! !WeeklyTimesheet timesheet = new WeeklyTimesheet(StandardHours, HolidayHours;!
! !return timesheet.CalculatePay(Wage);!
!}!

}"

Fit executes tests and visualizes the results for the user:"
Payroll Fixtures, Weekly Compensation
StandardHours HolidayHours Wage Pay()
40 0 20 $800
45 0 20 $950
48 8 20 $1360

expected

$ 1040 actual

[Cunnigham 2002]"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

54"

Automation of result evaluation: test oracles"

❍  For every automatically executed test case, expected and
observed results must be compared. Options:"
●  Comparison during program execution"
●  Comparison after program execution"

❍  An automated mechanism which compares expected and
observed results is called a test oracle"

❍  Challenges"
●  Writing a test oracle can be very demanding and difficult, in

particular when human behavior is involved"
●  Faults in the oracle yield false positive test results"
●  Oracles can’t distinguish between significant and accidental

discrepancies: leads to false-negative test results"
Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

55"

Automation of result evaluation – 2"

❍  Executable test procedures required, including test oracle"
●  Programmed test procedures"
●  Testing scripts"

❍  Set-up, execution and evaluation of a test are automatable
to a large extent"
●  Example: Cruisecontrol is a tool for automated unit and

integration testing"
"

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "

References"

A. Almagro, P. Julius (2001). CruiseControl Continuous Integration Toolkit. http://
cruisecontrol.sourceforge.net"

N. Autunes, M. Vieira (2014). Penetration Testing for Web Services. IEEE Computer 47(2):30–36."
J. Bach (2006). ALLPAIRS Test Case Generation Tool (Version 1.2.1) 
http://www.satisfice.com/tools.shtml"

K. Beck (2002). Test Driven Development by Example. Addison-Wesley."

J.J. Chilenski, S.P. Miller (1994). Applicability of Modified Condition/Decision Coverage to Software
Testing. Software Engineering Journal 9(5):193–200."

D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton (1997). The AETG System: An Approach to
Testing Based on Combinatorial Design. IEEE Transactions on Software Engineering 23(7):437–444."

W. Cunningham (2002). Fit: Framework for Integrated Test. http://fit.c2.com"
M. Fewster, D. Graham (1999). Software Test Automation. New York: ACM Press."

E. Gamma, K. Beck (2000). JUnit Test Framework. http://www.junit.org"

G.J. Myers (1979). The Art of Software Testing. New York: John Wiley & Sons."
C. Nie, H. Leung (2011). A Survey of Combinatorial Testing. ACM Computing Surveys 43(11):1–29."
M. Pezzè, M. Young (2008). Software Testing and Analysis: Process, Principles and Techniques. Wiley."
"

"
56"Software Quality "3. Advanced Testing Techniques "© 2016 Martin Glinz "

References – 2"

S. Rapps, E.J. Weyuker (1985). Selecting Software Test Data Using Data Flow Information. IEEE
Transactions on Software Engineering SE-11(4):367–375."

C. Yilmaz, S. Fouché, M.B. Cohen, A. Porter, G. Demiroz, and U. Koc (2014). Moving Forward with
Combinatorial Interaction Testing. IEEE Computer 47(2):37–45."

"

"

57"Software Quality "3. Advanced Testing Techniques "© 2016 Martin Glinz "

