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Testing"

❍  The fact:  
Testing is the process of executing a program with the 
intent of finding errors. [Myers 1979]"

❍  Our hope: 
The more thoroughly a program has been tested, the 
higher the probability that the program will behave as 
expected also in the non-tested cases"

❍  Good to know: 
The correctness of a program can’t be proven by testing 
(except in trivial cases); this is due to combinatorial 
explosion of input values to be tested"

""
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Testing vs. reviewing"

Testing is not always the means of choice:"
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Number of vulnerabilities detected with automated penetration testing vs. inspection 
by a team of security experts (VS1-VS4 are commercial vulnerability scanners)."
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Figure 1. Number of false-positive vulnerabilities reported by Web security scanning 
tools compared with vulnerabilities reported by a team of security experts.

[Source: 
Antunes and Vieira 2014]"
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Expected results must be known"

❍  A crucial prerequisite for testing is knowing the expected 
results"
●  Either from a specification "
●  or by comparing the outcome with the results of a successful 

previous test run (so-called regression testing)"
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Testing systematics"

❍  “Let’s run it”: A developer “tests” with some ad-hoc created 
data – the test is passed when the results “look good”"

❍  Throwaway-Test: Somebody creates test cases and 
executes them, but the tests"
●  are not documented"
●  can’t be repeated"
●  don’t have defined criteria when to stop"
"
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Testing systematics – 2"

❍  Systematic test: Trained testers create, run and document 
the tests"
●  Test is planned"
●  Test procedure has been written beforehand"
●  Test is executed according to test procedure"
●  Expected and observed results are compared; any deviation 

is recorded"
●  Searching and fixing defects are performed separately"
●  A failed test is repeated after fixing the defects"
●  Test results are documented"
●  Test ends, when a pre-defined testing goal has been 

achieved"
"
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Forms of testing"

❍  Artifacts to be tested may be modules, partial systems or 
systems"

❍  Unit Test (or component test)"

❍  Integration test"

❍  System test"
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Forms of testing – 2"

❍  Acceptance test"
●  A special form of testing"
●  Not about finding errors"
●  But: demonstrate that the system 

satisfies its requirements; i.e., that 
the acceptance test cases don’t 
reveal any faults"
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The process of testing"

❍  Planning"
●  Testing strategy: what – when – how – for how long"
●  Embed testing into the development plan:"

•  Which documents to create"
•  Deadlines and cost for test preparation, execution and 

evaluation"
●  Who will be testing"

❍  Preparation"
●  Selection of test cases"
●  Setting up the test environment / test harness"
●  Writing the test procedure"
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The process of testing – 2"

❍  Execution"
●  Install test environment / test harness"
●  Run tests according to test procedure; record results"
●  Don’t modify the tested artifact while executing a test"
●  Repeat failed tests after fault fixing"

❍  Evaluation"
●  Assemble findings"

❍   Fault fixing   (no part of the testing process!)"
●  Analyze errors/symptoms found"
●  Find defects (debugging)"
●  Fix defects"
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Discussed in this chapter "

Dataflow analysis

Symbolic testing
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Error guessing
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Determining test cases"
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Branch coverage"

Branch coverage: create test cases such that all branches of 
the program are covered"

For this fragment, two test cases achieve 100 % coverage:"
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a>1 and b=0 

x := x DIV a

a=2 or x>1

x := x+1

False True

False True
IF (a>1) AND (b=0)!
  THEN x := x DIV a;!
IF (a=2) OR (x>1)!
  THEN x := x+1;!
...

...!
VAR!
  a,b,x: INTEGER;!
...!
BEGIN!
...

a=3  b=0  x=3"a=2  b=1  x=1"

[Myers"
1979]"

[This section extends the discussion on"
Glass-Box-Testing in Chapter 8 of my"
2nd year course on Software Engineering]"



Branch coverage has a problem"

Classic branch coverage has a problem:"
Imagine, the specification states"

" " " "  x DIV a " "if  a ≥ 1 & b = 0"
"x’ ="
" " " " x" " " " " "else"

❍  Our test does not find the defect in the code"
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The remedy: term coverage"

❍  Cover not just all branches of a condition, but"
❍  Create test cases such that every individual term makes 

the condition once true and once false"
❍  In our example: Achieving term coverage for the first if-

statement requires three test cases:"
●  a=1  b=0  x=1 "(first term makes condition false)"
●  a=2  b=1  x=1 "(second term makes condition false)"
●  a=3  b=0  x=3  (both terms make condition true)"
●  Achieves term coverage also for second if-statement"
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In practice: MC/DC"

❍  MC/DC (Modified condition/decision coverage) is a term 
coverage criterion used for safety-critical systems"

❍  Requires that for every conditional statement, every term in 
the condition expression has been shown to determine the 
value of the condition expression independently:"

"Let c = t1 op1 t2 op2 ... opi-1 ti opi ... tn be a condition"
"c "needs to become once true and once false by varying ti  
"while keeping all other terms tj j≠i constant"

❍  For example, MC/DC is required by the FAA for avionics 
software "
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What is data flow testing?"

❍  A glass-box (structure-oriented) test"
❍  Based on analysis of data flow in a program:"

●  Determine the control flow graph "
●  Annotate the control flow graph:"

•  Where are variables set or modified?"
•  Where are variables used in computations?"
•  Where are variables used as parts of a condition?"

❍  Various coverage criteria"
❍  Can also be used to assess the quality of a black-box test 

(in terms of achieved data flow coverage)"
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n4"

n3"

nend"

Annotated control flow graph:"

n1"

n2"
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Example"

A small program in C:"

void SortAbs1 (int& z1, int& z2)"
/* Sorts the set {|z1|, z2} */"
{"
"int aux;"
"if (z1 < 0) {"
" "z1 = -z1;"
"}"
"if (z1 > z2) {"
" "aux = z2;"
" "z2 = z1;"
" "z1 = aux;"
"}"

}"

def() "variable set/modified"
c-use() "computational use"
p-use() "predicative use"

def(z1)"
def(z2)"

p-use(z1)"
p-use(z2)"

p-use(z1)"
p-use(z2)"

c-use(z2), def(aux)"
c-use(z1), def(z2)"
c-use(aux), def(z1)"

c-use(z1), c-use(z2)"

c-use(z1), def(z1)"p-use(z1)"
p-use(z1)"
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Variable definitions and uses"

❍  After constructing the control flow graph of a program, we 
characterize its data flow by annotating the graph:"
●  n.def(x), iff variable x is set or modified in node n"
●  n.c-use(x), iff variable x is used in a computation in node n"
●  (n,m).p-use(x) iff variable x is used predicatively in a branching 

condition on edge (n,m)"

❍  A path (nn, ..., nm) in a control flow graph is called definition-
clear with respect to variable x iff"
●  def(x) in node nn"
●  c-use(x) in node nm or p-use(x) on edge (nm-1,nm)"
●  Between the definition of x in nn and its use in nm or (nm-1,nm) 

there is no other definition of x"
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Test case derivation"

Test cases are created such that the program executes 
definition-clear paths of some coverage class for all 
variables of the program: "

❍  all defs-criterion: For all definitions of x, execute a 
definition-clear path to at least one use of x"

❍  all p-uses-criterion: For all definitions of x, execute a 
definition-clear path to all predicative uses of x"

❍  all c-uses-criterion: For all definitions of x, execute a 
definition-clear path to all computational uses of x"
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Test case derivation – Example 1: all-defs"

void SortAbs1 (int& z1, int& z2)"
/* Sorts the set {|z1|, z2} */"
{"
"int aux;"
"if (z1 < 0) {"
" "z1 = -z1;"
"}"
"if (z1 > z2) {"
" "aux= z2;"
" "z2 = z1;"
" "z1 = aux;"
"}"

}"

def(z1)"
def(z2)"

p-use(z1)"
p-use(z2)"

p-use(z1)"
p-use(z2)"

c-use(z2), def(aux)"
c-use(z1), def(z2)"
c-use(aux), def(z1)"

c-use(z1), c-use(z2)"

c-use(z1), def(z1)"p-use(z1)"
p-use(z1)"

all-defs:"
(nstart, n1, n3, nend)"
(nstart, n1, n2, n3, n4, nend)"
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Test case derivation – Example 2: all-p-uses"

void SortAbs1 (int& z1, int& z2)"
/* Sorts the set {|z1|, z2} */"
{"
"int aux;"
"if (z1 < 0) {"
" "z1 = -z1;"
"}"
"if (z1 > z2) {"
" "aux= z2;"
" "z2 = z1;"
" "z1 = aux;"
"}"

}"

p-use(z1)"
p-use(z2)"

p-use(z1)"
p-use(z2)"

c-use(z2), def(aux)"
c-use(z1), def(z2)"
c-use(aux), def(z1)"

c-use(z1), c-use(z2)"

c-use(z1), def(z1)"p-use(z1)"
p-use(z1)"

all-p-uses:"
(nstart, n1, n3, nend)"
(nstart, n1, n3, n4, nend)"
(nstart, n1, n2, n3, n4, nend)"
(nstart, n1, n2, n3, nend)"

def(z1),"
def(z2)"

Hint: all-p-uses"
implies branch 
coverage – why?"
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Test case derivation – Example 3: all-c-uses"

void SortAbs1 (int& z1, int& z2)"
/* Sorts the set {|z1|, z2} */"
{"
"int aux;"
"if (z1 < 0) {"
" "z1 = -z1;"
"}"
"if (z1 > z2) {"
" "aux= z2;"
" "z2 = z1;"
" "z1 = aux;"
"}"

}"

p-use(z1)"
p-use(z2)"

p-use(z1)"
p-use(z2)"

c-use(z2), def(aux)"
c-use(z1), def(z2)"
c-use(aux), def(z1)"

c-use(z1), c-use(z2)"

c-use(z1), def(z1)"p-use(z1)"
p-use(z1)"

all-c-uses:"
(nstart, n1, n3, nend)"
(nstart, n1, n2, n3, nend) 
(nstart, n1, n3, n4, nend)"
(nstart, n1, n2, n3, n4, nend)"

def(z1),"
def(z2)"
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Significance of data flow testing"

❍  In theory very attractive"
❍  Derivation of test cases requires considerable effort"

❍  Supported by few tools only "
❍  Low significance in today’s practice of testing"
❍  Data flow analysis is significant as an automated static 

analysis technique"
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The notion of use-case-based testing"

❍  Defining test cases based on a use case model"
❍  Belongs to the family of black-box (function-oriented) tests"

❍  Goal: Cover all use cases"
❍  Per use case ""

●  At least one test case for the normal course"
●  At least one test case per alternate or exceptional course "

❍  Dependencies between use cases should also be 
considered"

❍  Suitable particularly for acceptance testing"
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Exercise: determining test cases"

Borrow Book!
Actor(s): "Library user"
Trigger: "A library user brings one or more books s/he wants to borrow 

"to the check-out station"
Normal course:"
1."Read and validate user’s library card"
2."Scan book id and identify corresponding book record in database"
3."Record the book to be borrowed and deactivate anti-theft label"
4."If library user wants to borrow more than book, repeat steps 2 & 3"
5."Print borrow slip for all books just borrowed"
6."Hand over books to library user and terminate"

Create test cases for this use case:"
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Exercise: determining test cases – 2"

Alternative courses:"
1.1 "No library card or scanned card is invalid: cancel transaction"
2.1 "Book has been reserved for another user: set book aside and 

proceed with step 4"
2.2 "Library user has overdue books to be returned: cancel transaction"
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The problem of combinatorial explosion"

❍  Problem: "
●  Programs having numerous options of combining input data 

values"
●  Systems may have over hundred configuration options"

❍  Principally, all possible combinations should be tested"
➬ Number of test cases required grows exponentially: not 

feasible"

Example: Apache Web Server"
●  172 user-configurable options"
●  1.8 · 1055 possible configurations"
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Systematically testing combinations of options"

❍  Combinatorial Interaction Testing (CIT)"
●  Systematically tests a subset of all possible combinations"
●  Test cases with given coverage requirements can be 

generated automatically"

❍  t-way coverage: each valid combination of t out of n input 
options is covered by a test case"
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The pragmatic solution: pairwise testing"

❍  Empirical observation: most errors due to input data 
combination errors can be detected when testing all 
possible pairs, i.e. achieving 2-way coverage"

❍  The number of test cases required for exhaustive pairwise 
testing grows logarithmically only"

❍  Testable also for rather large input data sets"

k "Number of input fields"
m "Number of possible values per input field"
n "Required number of test cases for pairwise  
"testing"

"
    n = O(m2 log2k)"
"
"
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Example"

❍  13 input fields (k=13) with three values each (m=3)"
❍  Testing all combinations requires 313 = 1 594 323 test cases"

❍  For a full pairwise test,15 test cases suffice"
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Algorithmically computed "
combination table for full "
pairwise test (k=13, m=3)"
[Cohen et al. 1997]"
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Derivation of test cases"

❍  There is no simple way of computing the minimum number 
of test cases manually"

❍  Cohen et al. (1997) provide an algorithm"
❍  Pairwise testing requires a tool for determining the required 

combinations of test cases"
❍  Commercial testing tools typically include a generator for 

producing test cases for a full pairwise test automatically"
❍  There is also a free Perl script for determining all pairs 

[Bach 2006]"
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Example: Testing a credit card payment app"

Determine values to be tested for every input field based 
on finding equivalence classes on the sets of all potential 
values"
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Credit card payment
Card type:* MasterCard

Card number:*

valid thru:* 12  2020  MM/JJJJ

Name on card: *

CVC Code:*   What is this?
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Number of test cases"

❍  Assume three equivalence classes per input field"
❍  We have six fields with three test values each"

❍  Testing all combinations requires 36 = 729 test cases"
❍  Pairwise test requires only 15 test cases"
❍  How sensitive is pairwise testing in this example?  

Here’s the code for checking the CVC number:"
 <TD><P><INPUT TYPE="text" NAME="cardCVC" VALUE="""
         SIZE=6 MAXLENGTH=3>&nbsp; <FONT SIZE="-1""
         FACE="Helvetica"><A HREF="http:///help/view/pk/en//CVC.shtml""
         TARGET="_blank" " title="">What is this?</A></FONT>"
      </TD>	
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Analysis of test sensitivity"

❍  Testing all possible combinations finds an error: 
For example, this test case fails: 
{American Express, 1234432156788765, “John Doe”, 12, 
2020, 1234}"
●  Mastercard and Visa use a three digit CVC code, American 

Express uses four digits"
●  However, entering a four digit CVC number is impossible as 

the programmer did not know about four-digit codes"

❍  Every test case        {American Express, •, •, •,•, 1234}  
finds this error (“•” stands for any input value)"

➪ Pairwise testing suffices to find this error"
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Manual vs. automatic testing"

❍  Creative vs. routine tasks in testing"

"

❍  Routine tasks are easier to automate than creative ones"
❍  Automation of repeated tasks is efficient"

Testing strategy"

Determining test cases"

Creating testing procedures"

Setting up testing environment"

Running tests"

Test summary and evaluation"

Routine"
Repeated"

Creative"
Once"
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Advantages and limitations of test automation"

❍  Advantages"
●  Large number of test cases testable"
●  Unloading routine tasks from human testers"
●  Frequent or even continuous regression testing feasible"
●  Improves testing productivity"

❍  Limits"
●  No full replacement for manual testing"
●  Strongly dependent on quality of test oracle"
●  Automation makes testing more efficient, not more effective"
●  Efficiency gain must be balanced with creation effort"
●  No means against insufficient time or inexperienced testers"
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Automating the selection of test cases"

❍  Generating glass-box (structure-oriented) tests"
●  Generating test cases that satisfy some given coverage 

criteria is possible"
●   Problem: from where do we get the expected results?"

❍  Generating user interface tests"
●  Test cases for testing formal properties such as dead links or 

non-editable input fields can be generated"
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Automating the selection of test cases – 2"

❍  Generating black-box (function-oriented) tests including a 
test oracle"
●  Requires a formal specification"
●  Practical application rather limited"

❍  Support for test case selection, for example, computing the 
tuples required for pairwise testing"
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Automating the test procedure"

Dependent on type of test:"
❍   Unit test"

❍  System test"
❍  Acceptance test"

❍  We need to automate not only test case execution, but also 
the comparison of observed and expected results"
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Automation – Unit and integration testing"

❍  Test procedure written as a program:"
●  One test method per test case"
●  Comparison of observed and expected results is also part of 

the program"
●  A testing framework"

•  simplifies programming test cases"
•  serves as test environment"
•  visualizes results"

❍  Most widely known unit testing framework: "
●  JUnit [Gamma und Beck 2000]"
●  Meanwhile also for other languages: CppUnit, PyUnit,..."

Software Quality "3. Advanced Testing Techniques "© 2014 Martin Glinz "



47"

Automation – System test"

Problem: Actors in the system context must be simulated"
❍  Technical devices: Technical test bed simulating sensors 

and actuators"
❍  Neighboring systems: test harness with drivers and stubs"

❍  Human interaction: scripting"
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Scripting human interaction"

❍  Test automation with scripting works by"
●  writing or recording scripts,"
●  in scripting languages such as Apple script, Perl, Python, 

VBScript, ... ,"
●  which then are executed automatically"

❍  Where to script"
●  On the presentation layer"

•  physical"
•  logical"

●  On the function layer"
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Automation on presentation layer"

❍  Physical: keys typed, mouse movement, mouse clicks,..."
●  Realistic"
●  Scripts rather low level: e.g., absolute screen coordinates"
●  typically neither readable nor changeable"
●  highly sensitive to minimal, even irrelevant changes"
●  Comparison of expected and actual results difficult"

❍  Logical: Select menu item, set radio button,..."
●  Simulation of interaction dialog on a more abstract layer"
●  Scripts are more stable, easier to read and easier to modify"
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Automation on functional layer"

❍  Accessing system functions over"
●  Application programmer interfaces (APIs)"
●  Web interfaces or browser interfaces"

❍  Does not test the user interface"
❍  Stable, UI-independent test programs and scripts"
❍  Comparison of observed and expected results easy"
❍  APIs, Web interfaces or browser interfaces must exist"
❍  Caution: potential opportunities for attacking a system"
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Influence of software architecture"

The software architecture has a strong influence on the 
testability of a system on the function layer"

❍  Layered, acyclic system structure (metaphor of layered 
virtual machines)"

❍  Models and logic, presentation, and control clearly 
separated (Model-View-Controller pattern)"
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Automation: acceptance test"

❍  Creating acceptance test cases from requirements"
●  Formal specifications allow generation of test cases"
●  Semi-formal models allow generating test case frameworks"

❍  Generating acceptance test cases from examples 
For example: Fit [Cunnigham 2002]"
●  User describes expected behavior in spreadsheet-like tables"
●  Tester writes a “Fixture”, which maps the table to program 

code"
●  Fit executes the test automatically and visualizes the results"
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Automation example: Fit"

Payroll Fixtures, Weekly Compensation    
StandardHours HolidayHours Wage Pay() 
40 0 20 $800 
45 0 20 $950 
48 8 20 $1360 
 

User specifies sample cases:"

Programmer writes “Fixture”:"
!
public class WeeklyCompensation : ColumnFixture!
{!

!public int StandardHours;!
!public int HolidayHours;!
!public Currency Wage;!
!!
!public Curreny Pay()!
!{!
! !WeeklyTimesheet timesheet = new WeeklyTimesheet(StandardHours, HolidayHours;!
! !return timesheet.CalculatePay(Wage);!
!}!

}"

Fit executes tests and visualizes the results for the user:"
Payroll Fixtures, Weekly Compensation    
StandardHours HolidayHours Wage Pay() 
40 0 20 $800 
45 0 20 $950 
48 8 20 $1360 

expected 
 
$ 1040 actual 

 

[Cunnigham 2002]"
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Automation of result evaluation: test oracles"

❍  For every automatically executed test case, expected and 
observed results must be compared. Options:"
●  Comparison during program execution"
●  Comparison after program execution"

❍  An automated mechanism which compares expected and 
observed results is called a test oracle"

❍  Challenges"
●  Writing a test oracle can be very demanding and difficult, in 

particular when human behavior is involved"
●  Faults in the oracle yield false positive test results"
●  Oracles can’t distinguish between significant and accidental 

discrepancies: leads to false-negative test results"
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Automation of result evaluation – 2"

❍  Executable test procedures required, including test oracle"
●  Programmed test procedures"
●  Testing scripts"

❍  Set-up, execution and evaluation of a test are automatable 
to a large extent"
●  Example: Cruisecontrol is a tool for automated unit and 

integration testing"
"
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