
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 141

8  Specifying with natural language

The oldest...
...and most widely used way
●  taught at school
●  extremely expressive

But not necessarily the best
●  Ambiguous
●  Imprecise
●  Error-prone
●  Verification primarily by careful reading

The system shall ...

Michelangelo’s Moses (San Pietro in Vincoli,
 Rome)
Moses holds the Ten Commandments
in his hand: written in natural language
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Problems with natural language requirements

Read the subsequent requirements. Any findings?
“For every turnstile, the total number of turns shall be read and archived 
once per day.”

“The system shall produce lift usage statistics.”

“Never shall an unauthorized skier pass a turnstile.”

“By using RFID technology, ticket validation shall become faster.”

“In the sales transaction, the system shall record the buyer’s data and 
timestamp the sold access card.”
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Some rules for specifying in natural language

❍  Use active voice and defined subjects
❍  Build phrases with complete verbal structure

❍  Use terms as defined in the glossary
❍  Define precise meanings for auxiliary verbs (shall, should, 

must, may,...) as well as for process verbs (for example, 
“produce”, “generate”, “create”)

❍  Check for nouns with unspecific semantics (“the data”, “the 
customer”, “the display”,...) and replace where appropriate

❍  When using adjectives in comparative form, specify a 
reference point: “better” ➜ “better than”
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[Rupp et al. 2009]
[Goetz&Rupp 2003]
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More rules

❍  Scrutinize all-quantifications: “every”, “always”, “never”, etc. 
seldom hold without any exceptions

❍  Scrutinize nominalizations (“authentication”, “termination”...): 
they may conceal incomplete process specifications

❍  State every requirement in a main clause. Use subordinate 
clauses only for making the requirement more precise 

❍  Attach a unique identifier to every requirement
❍  Structure natural language requirements by ordering them in 

sections and sub-sections
❍  Avoid redundancy where possible: “never ever” ➜ “never”



Phrase templates

Use templates for creating well-formed natural language 
requirements

Typical template:

[<Condition>]  <Subject>  <Action>  <Objects>  [<Restriction>]

Example:
When a valid card is sensed, the system shall send  
the command ‘unlock_for_a_single_turn’ to the turnstile  
within 100 ms.
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[Mavin et al. 2009]
[Rupp et al. 2009]
[ISO/IEC/IEEE 2018]



Agile stories

❍  A single sentence about a requirement
❍  Written from a stakeholder’s perspective

❍  Optionally including the expected benefit
❍  Accompanied by acceptance criteria for requirement
❍  Acceptance criteria make the story more precise

Standard template:

As a <role> I want to <my requirement>  so that <benefit> 
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[Cohn 2004]



A sample story
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As a skier, I want to pass the chairlift gate so that I get 
access without presenting, scanning or inserting a 
ticket at the gate.

Author: Dan Downhill       Date: 2013-09-20     ID: S-18



Sample acceptance criteria

Acceptance criteria: 
●  Recognizes cards worn anywhere in a pocket on the left 

side of the body in the range of 50 cm to 150 cm above 
ground

●  If card is valid: unlocks turnstile and flashes a green light 
for five seconds or until the turnstile is moved

●  If card is invalid: doesn’t unlock gate and flashes a red 
light for five seconds

●  Time from card entering the sensor range until unlock and 
flash red or green is less than 1.5 s (avg) & 3 s (max) 

●  The same card is not accepted twice within an interval of 
200 s

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 148



Mini-Exercise: Writing a user story

Consider the chairlift access control case study.
Write a story from a skier’s perspective about buying a day 
card.
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All-quantification and exclusion

❍  Specifications in natural language frequently use all-
quantifying or excluding statements without much reflection:

“When operating the coffee vending machine, the user shall 
always be able to terminate the running transaction by 
pressing the cancel key.”

➪  Scrutinize all-quantifications (“every”, “all”, “always”...) and 
exclusions (“never”, “nobody”, “either – or”,...) for potential 
exceptions

➪  Specify found exceptions as requirements
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Also when the coffee is already 
being brewed or dispensed?



Dealing with redundancy

❍  Natural language is frequently (and deliberately) redundant
à Secures communication success in case of some 
information loss

❍  In requirements specifications, redundancy is a problem
●  Requirements are specified more than once
●  In case of modifications, all redundant information must be 

changed consistently

❍  Make redundant statements only when needed for 
abstraction purposes

❍  Avoid local redundancy: “never ever”  à “never”
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9  Model-based requirements specification

Why do we model requirements? 
❍  Gain an overview of a set of 

requirements
❍  Understand relationships and inter- 

connections between requirements
❍  Focus on some aspect of a system, 

abstracting from the rest
Primarily for functional  
requirements

Quality requirements 
and constraints are 
mostly specified in 
natural language



9.1  Models in RE

DEFINITION. Model – an abstract representation of an existing 
part of reality or a part of reality to be created.

The notion of reality includes any conceivable set of 
elements, phenomena or concepts, including other models.

With respect to a model, the modeled part of reality is called 
the original.

❍  Requirements models are problem-oriented models of the 
system to be built

❍  Architecture and design information is omitted
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Requirements models can be used for

❍  Specifying requirements (as a means of replacing textually 
represented requirements)

❍  Paraphrasing textually represented requirements to 
improve understanding of complex structures and 
dependencies

❍  Testing textually represented requirements to uncover 
omissions, ambiguities and inconsistencies

❍  Decomposing a complex reality into comprehensible parts
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Which aspects can be modeled?

❍  Structure and Data
●  Structural properties of a system, particularly of the static data
●  Structure of a system’s domain

❍  Function and Flow
Sequence of actions and control / data flow for
●  producing a required result
●  describing a (business) process

❍  Behavior
Behavior of a system or a domain component
●  State-dependent reactions to events
●  Dynamics of component interaction
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Wich aspects can be modeled? – continued

❍  Context
●  Structural embedding of system in its environement
●  Interaction between system and actors in the context

❍  Goals
Understanding the goals for a system
●  Goal decomposition
●  Goal-agent networks
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9.2  Modeling structure and data

❍  Entity-relationship models
❍  Class and object models

❍  Component models

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 157



Data modeling (entity-relationship models)

❍  Models the relevant part of the domain 
using entity types, relationship types and 
attributes

+ Rather easy to model
+ Straightforward mapping to relational 

database systems
– Ignores functionality and behavior
– No means for system decomposition
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Turnstile

Scanner

Lift

has

belongs part of

[Chen 1976]



Object and class modeling

Idea
❍  Identify those entities in the domain that the system has 

to store and process
❍  Map this information to objects/classes, attributes, 

relationships and operations
❍  Represent requirements in a static structural model

❍  Modeling individual objects does not work: too specific or 
unknown at time of specification
à  Classify objects of the same kind to classes: Class models
à  or select an abstract representative: Object models
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Terminology

Object – an individual entity which has an identity and does 
not depend on another entity.

Examples: Turnstile no. 00231, The Plauna chairlift
Class – Represents a set of objects of the same kind by 
describing the structure of the objects, the ways they can be 
manipulated and how they behave. 

Examples: Turnstile, Lift
Abstract Object – an abstract representation of an individual 
object or of a set of objects having the same type
Example:  A Turnstile
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Class models / diagrams

Most popular form of 
structure modeling

Typically using UML class diagrams
Class diagram: a diagrammatic representation of a class model
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Turnstile
+ id: Integer
+ installed: Date
+ count: Integer
– mode: TurnstileMode
Lock ()
Unlock ()
AllowOneTurn ()

Lift
+ id: Integer
+ name: String
+ type: String
+ capacity: Integer
Start ()
Stop ()

owner
1..11..*

transport
device
1..*

accessed by

Chair Lift
+ seats: Integer

Ski Lift



Class models are sometimes inadequate

❍  Class models don’t work when different objects of the 
same class need to be distinguished

❍  Class models can’t be decomposed properly: different 
objects of the same class may belong to different 
subsystems

❍  Subclassing is a workaround, but no proper solution

In such situations, we need object models

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 162



Object models: a motivating example

Example: Treating incidents in an emergency command and 
control system

Emergency command and control systems manage incoming 
emergency calls and support human dispatchers in reacting 
to incidents (e.g., by sending police, fire fighters or 
ambulances) and monitoring action progress.

When specifying such a system, we need to model
●  Incoming incidents awaiting treatment
●  The incident currently managed by the dispatcher
●  Incidents currently under treatment
●  Closed incidents 
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Class models are inadequate here

In a class model, incidents would have to be modeled as 
follows:
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Bad: essential elements 
of the problem are not 
modeled

Unnatural: all subclasses are structurally 
identical

either
Incident

or
Incident

Incoming 
Incident

Dispatched  
incident

Closed
Incident

Current 
incident



Object models work here

Modeling is based on a hierarchy of abstract objects

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 165

Dispatched
Incident:
Incident

Closed  
incident:
Incident

Current
Incident:
Incident

Dispatcher support... Archive...

Incoming  
incident:
Incident

Object name
Object type

Singleton
object

Object set

Command&Control System...

Notation: ADORA



ADORA

❍  ADORA is a language and tool for object-oriented 
specification of software-intensive systems

❍  Basic concepts
●  Modeling with abstract objects
●  Hierarchic decomposition of models
●  Integration of object, behavior and interaction modeling
●  Model visualization in context with generated views
●  Adaptable degree of formality

❍  Developed in the RERG research group at UZH
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Modeling with abstract objects in UML

❍  Not possible in the original UML (version 1.x)
❍  Introduced 2004 as an option in UML 2

❍  Abstract objects are modeled as components in UML
❍  The component diagram is the corresponding diagram
❍  Lifelines in UML 2 sequence diagrams are also frequently 

modeled as abstract objects

❍  In UML 2, class diagrams still dominate
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What can be modeled in class/object models?

❍  Objects as classes or abstract objects
❍  Local properties as attributes
❍  Relationships / non-local properties as associations
❍  Services offered by objects as operations on objects or 

classes (called features in UML)

❍  Object behavior
●  Must be modeled in separate state machines in UML
●  Is modeled as an integral part of an object hierarchy in ADORA

❍  System-context interfaces and functionality from a user’s 
perspective can’t be modeled adequately

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 168



Object-oriented modeling: pros and cons

+ Well-suited for describing the structure of a system
+ Supports locality of data and encapsulation of properties

+ Supports structure-preserving implementation
+ System decomposition can be modeled
– Ignores functionality and behavior from a user’s perspective
– UML class models don’t support decomposition
– UML: Behavior modeling weakly integrated
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Mini-Exercise: Classes vs. abstract objects

Specify a distributed heating control system for an office 
building consisting of a central boiler control unit and a room 
control unit in every office and function room. 
❍  The boiler control unit shall have a control panel consisting 

of a keyboard, a LCD display and on/off buttons.
❍  The room control unit shall have a control panel consisting 

of a LCD display and five buttons: on, off, plus, minus, and 
enter.

Model this problem using
a. A class model
b. An abstract object model.
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9.3  Modeling function and flow

❍  Activity models
❍  Data flow / information flow models

❍  Process and work flow models
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Activity modeling: UML activity diagram
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❍  Models process 
activities and  
control flow

❍  Can model data  
flow

❍  Model can be  
underpinned with 
execution  
semantics

Validate card

Initialize turnstile

Poll

Read card

Unlock turnstile  
for one turn

Flash green light

Count

[card sensed]

[valid]

[no card] [term-
inate]

Flash red light[invalid]

[locked 
after turn]

[locked, 
no turn]



Data and information flow

❍  Models system functionality with data flow diagrams
❍  Once a dominating approach; rarely used today

+ Easy to understand
+ Supports system decomposition
– Treatment of data outdated: no types, no encapsulation
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Convert 
sensor 

data

Check 
for 

alarms

Display 
chairlift 
statusSensor 

raw values
Chairlift status 
measurements

Tagged status 
measurements Chairlift 

status 
display

Alarm boundary 
parameters

Chairlift schema 
images

Problem log

[DeMarco 1978]



Process and workflow modeling

❍  Elements
●  Process steps / work steps
●  Events influencing the flow
●  Control flow
●  Maybe data / information access and responsibilities

❍  Typical languages
●  UML activity diagrams
●  BPMN
●  Event-driven process chains
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Process modeling: BPMN

BPMN (Business Process Model and Notation)
❍  Rich language for describing business processes
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[Object Management 
Group 2013]

Check refund 
request

Submit
refund 
request

proof valid

proof
missing

Request proof Wait for valid 
proof

received

2 weeks

Proof
valid?

yes

no
Notify 
rejection

Process 
refund

+

Ti
ck

et
 O

ffi
ce

Sk
ie

r

proof
invalid

Refund unused days for valid ticket

Skier may request a refund for unused days,
e.g., due to an accident or family emergency



Process modeling: EPC

❍  Event-driven process chains (In German: ereignisgesteuerte 
Prozessketten, EPK)

❍  Adopted by SAP for modeling processes supported by 
SAP’s ERP software
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Event Event

Function

Start event

Org unitInformation  
object

Information  
object

Connector 
(AND, OR, XOR)

Control flow



9.4  Modeling behavior

Goal: describe dynamic system behavior
●  How the system reacts to a sequence of external events
●  How independent system components coordinate their work

Means:
❍  Finite state machines (FSMs) – not discussed here
❍  Statecharts / State machines

●  Easier to use than FSMs (although theoretically equivalent)
●  State machines are the UML variant of statecharts

❍  Sequence diagrams (primarily for behavioral scenarios)
❍  Petri nets – not discussed here
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Statecharts

❍  Models the dynamic behavior:
●  How the system reacts to external 

events in a given state
●  Reaction depends on actual state
●  States may be hierarchically 

nested and/or orthogonal (parallel)

❍  In UML: state machine diagrams
+ Global view of system behavior

+ Precise, but still readable
– Weak for modeling functionality 

and data
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closed

open

validating

card sensed
validate card

card valid
allow one turn;
count’ = count +1;
flash green light

card invalid
flash red light

count = 0

one turn done

normal mode

Inactive mode

switch to
normal mode

[Harel 1988]



Sequence diagrams / MSCs

❍  Models ...
●  ... lifelines of system components or objects
●  ... messages that the components exchange

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 179

:RFID 
card

:Turnstile:Scanner :Access 
controller

:Turnstile
device

Scan()

Validate(CardInfo)

AllowOneTurn()

FlashRedLight()

CardInfo

ValidCard

[Valid]

[else]

alt

OneTurnDoneCount()

InvalidCard

sd  NormalMode

Object Management Group (2011b)



❍  Notation/terminology:
●  UML: Sequence diagram
●  Otherwise: Message sequence chart (MSC)

+ Visualizes component collaboration on a timeline
– In practice confined to the description of required scenarios
– Design-oriented, can detract from modeling requirements
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9.5  Modeling context

Structural embedding
❍  Context diagrams, modeling

●  The system
●  The actors in the system’s context
●  Information interfaces between actors and system
●  Information interfaces among actors

Dynamic interaction between system and context

❍  Scenarios 
❍  Use cases
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 à Chapter 2.4

A  context diagram
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Dynamic interaction: modeling the users’ view

Describing the functionality of a system from a user’s 
perspective: How can a user interact with the system?

Two key terms:

❍  Use case
❍  Scenario
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 Glinz 2000a, 
 Jacobson et al. 1992, 
 Sutcliffe 1998, 
 Weidenhaupt et al. 1998]



Use case

DEFINITION. Use case – A description of the interactions 
possible between actors and a system that, when executed, 
provide added value.
Use cases specify a system from a user’s (or other external 
actor’s) perspective: every use case describes some 
functionality that the system must provide for the actors 
involved in the use case. 

❍  Use case diagrams provide an overview
❍  Use case descriptions provide the details
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Scenario

DEFINITION. Scenario – 1. A description of a potential 
sequence of events that lead to a desired (or unwanted) 
result. 2. An ordered sequence of interactions between 
partners, in particular between a system and external actors. 
May be a concrete sequence (instance scenario) or a set of 
potential sequences (type scenario, use case). 3. In UML: An 
execution trace of a use case.
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  Sutcliffe 1998  
  Glinz 1995]



Use case / scenario descriptions

Various representation options
❍  Free text in natural language

❍  Structured text in natural language
❍  Statecharts / UML state machines
❍  UML activity diagrams
❍  Sequence diagrams / MSCs

Structured text is most frequently used in practice
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A use case description with structured text
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USE CASE SetTurnstiles
Actor: Service Employee
Precondition: none
Normal flow:
1 Service Employee chooses turnstile setup.

System displays controllable turnstiles: locked in red, normal in green, 
open in yellow. 

2  Service Employee selects turnstiles s/he wants to modify.
System highlights selected turnstiles.

3 Service Employee selects Locked, Normal, or Open.
System changes the mode of the selected turnstiles to the selected one,
displays all turnstiles in the color of the current mode.

...
Alternative flows:
3a Mode change fails: System flashes the failed turnstile in the color of its 

current mode.
... 



UML Use case diagram

+ Provides abstract overview from actors’ perspectives
– Ignores functions and data required to provide interaction
– Can’t properly model hierarchies and dependencies
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Skier

Set TurnstileGet Access

Buy Ticket

Load Ticket 
on Device

Program 
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«include»
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Dependencies between scenarios / use cases

❍  UML can only model inclusion, extension and generalization
❍  However, we need to model

●  Control flow dependencies (sequence, alternative, iteration)
●  Hierarchical decomposition

❍  Largely ignored in UML (Glinz 2000b)
❍  Options

●  Pre- and postconditions
●  Statecharts
●  Extended Jackson diagrams (in ADORA, Glinz et al. 2002)
●  Specific dependency charts (Ryser and Glinz 2001)
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Dependencies with pre- and postconditions
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❍  Simple dependencies 
of kind «B follows A» 
can be modeled

❍  Relationships buried in 
use case descriptions, 
no overview

❍  No hierarchical 
decomposition

❍  Modeling of complex 
relationships very 
complicated

Scenario AuthenticateUser
Precondition: none
Steps: ...
Postcondition: User is authenticated

Scenario ReturnBooks
Precondition: User is authenticated
Steps: ...
...

Scenario BorrowBooks
Precondition: User is authenticated
Steps: ...
...



Dependencies with Statecharts

❍  Model scenarios as states*
❍  Classic dependencies (sequence, alternative, iteration, 

parallelism) can be modeled easily
❍  Hierarchical decomposition is easy
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Borrow books Return books Reserve on-loan

books

Authenticate

user

User selects

borrow

User selects

reserve

User selects

return

card is invalid

Perform book transaction

* With one main entry 
and exit point each; 
symbolized by top and  
bottom bars in the  
diagram

Research result, 
not used in 
today’s practice

[Glinz 2000a]



Dependency charts

❍  Specific notation for modeling of scenario dependencies 
(Ryser und Glinz 2001)

❍  Research result; not used in today’s practice
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For the Chairlift access control system, write the use case 
“Get Access”, describing how a skier gets access to a chairlift 
using his or her RFID ticket.
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Mini-Exercise: Writing a use case



9.6  Modeling goals

❍  Knowing the goals of an organization (or for a product) is 
essential when specifying a system to be used in that 
organization (or product)

❍  Goals can be decomposed into sub goals
❍  Goal decomposition can be modeled with AND/OR trees
❍  Considering multiple goals results in a directed goal graph
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[van Lamsweerde 2001, 2004
 Mylopoulos 2006
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AND/OR trees for goal modeling
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Use machine  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Use single  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Goal-agent networks

❍  Explicitly models agents (stakeholders), their goals, tasks 
that achieve goals, resources, and dependencies between 
these items

❍  Many approaches in the RE literature
❍  i* is the most popular approach
❍  Rather infrequently used in practice
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A real world i* example: Youth counseling
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[Horkoff and Yu 2010]
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9.7  UML (Unified Modeling Language)

❍  UML is a collection of primarily graphic languages for 
expressing requirements models, design models, and 
deployment models from various perspectives

❍  A UML specification typically consists of a collection of 
loosely connected diagrams of various types

❍  Additional restrictions can be specified with the formal 
textual language OCL (Object Constraint Language)

[Object Management Group 2017]

[Object Management Group 2014]



UML – Overview of diagram types
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UML Diagram

Structure  
Diagram

Behavior
Diagram

Class 
Diagram

Component
Diagram

Object 
Diagram

Composite  
Structure Diagram

Deployment 
Diagram

Package  
Diagram

Activity 
Diagram

Use Case  
Diagram

State Machine  
Diagram

Interaction  
Diagram

Sequence  
Diagram

Interaction Over- 
view Diagram

Communication  
Diagram

Timing  
Diagram

Normal font: UML 2 Diagram type
Italic font: Abstract concepts

Profile
Diagram

Typically used in
requirements
specifications



9.8  Lightweight, flexible modeling

❍  Modeling languages – Have a predetermined syntax
●  Limited expressibility and flexibility
➔ Too restrictive for sketching ideas or initial requirements

❍  Free-form sketching – Is fully flexible
●  Resulting sketches do not carry any structure or meanings
➔ Too vague when sketches serve as a basis for further RE tasks

❍   Need for a middle-ground approach
●  High flexibility; no fixed set of language constructs
●  Co-evolution of models and model syntax & meanings
➔ FlexiSketch
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FlexiSketch – supporting flexible modeling
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Modeling

Meta-
Modeling

Sketch
Recognition

Freeform sketching 

 

Assign meanings  

through annotations 

Identify similar symbols 

beautification 

Automatic inference 

Mobile
Collaborative

Multi-Platform

●  Allow users to define their own notations & languages on the fly
●  Co-evolve models and their metamodels



FlexiSketch Demo Video
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10  Formal specification languages

Requirements models with formal syntax and semantics
The vision

●  Analyze the problem
●  Specify requirements formally
●  Implement by correctness-preserving transformations
●  Maintain the specification, no longer the code

Typical languages
●  “Pure” Automata / Petri nets
●  Algebraic specification
●  Temporal logic: LTL, CTL
●  Set&predicate-based models: Z, OCL, Alloy, B
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What does “formal” mean?

❍  Formal calculus, i.e., a specification language with 
●  formally defined syntax

and
●  formally defined semantics

❍  Primarily for specifying functional requirements

Potential forms
●  Purely descriptive, e.g.,  algebraic specification
●  Purely constructive, e.g., Petri nets
●  Model-based hybrid forms, e.g. Alloy, B, OCL, VDM, Z
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10.1  Algebraic specification

❍  Developed mid 1970ies for specifying complex data types
❍  Signatures of operations define the syntax
❍  Axioms (expressions being always true) define semantics
❍  Axioms describe properties  

that are invariant

+ Purely descriptive and  
mathematically elegant

– Hard to read
– Over- and underspecification difficult to spot
– Has never made it from research into industrial practice
Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz

TYPE Stack
...
push: (Stack, elem) → Stack;
...
¬  full(s) → empty(push(s,e)) = false
...



205

10.2  Model-based formal specification

❍  Mathematical model of system state and state change
❍  Based on sets, relations and logic expressions

❍  Typical language elements
●  Base sets
●  Relationships (relations, functions)
●  Invariants (predicates)
●  State changes (by relations or functions)
●  Assertions for states
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The formal specification language landscape

❍  VDM – Vienna Development Method (Björner and Jones 
1978)

❍  Z (Spivey 1992)
❍  OCL (from 1997; OMG 2012)

❍  Alloy (Jackson 2002)
❍  B (Abrial 2009)
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10.3  An overview of Z

❍  A typical model-based formal language
❍  Only basic concepts covered here

❍  More detail in the literature, e.g.,  Jacky (1997)

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz
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The basic elements of Z

❍  Z is set-based
❍  Specification consists of sets, types, axioms and schemata
❍  Types are elementary sets:     [Name]      [Date]     IN
❍  Sets have a type:     Person:  Name      Counter: IN 
❍  Axioms define global variables and their (invariant) properties

string: seq  CHAR
#string ≤  64

Declaration

Invariant

IN Set of natural numbers
 M Power set (set of all subsets) of M

seq Sequence of elements
#M Number of elements of set M
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The basic elements of Z – 2

❍  Schemata
●  organize a Z-specification
●  constitute a name space

Value, Limit: IN
Value ≤ Limit ≤  65535

Counter
Name

Declaration part:
Declaration of state variables

Predicate part:
• Restrictions
• Invariants
• Relationships
• State change

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz
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Relations, functions und operations

❍  Relations and functions are ordered set of tuples:
Order:  (Part x Supplier x Date)

Birthday: Person → Date

State change through operations:

Δ Counter
Value < Limit
Value' = Value + 1
Limit' = Limit

Increment counter Δ S The sets defined in schema S 
will be changed

M' State of set M after executing 
the operation

Mathematical equality, no assignment!

A subset of all ordered triples 
(p, s, d) with p ∈ Part, 
s ∈ supplier, and d ∈ Date

A function assigning a date to a person, 
representing the person’s birthday

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz
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Example: specification of a library system

The library has a stock of books and a set of persons who are 
library users.

Books in stock may be borrowed.

Stock:  Book
User:  Person
lent: Book → Person
dom lent ⊆ Stock
ran lent ⊆ User

Library

→  Partial function
dom Domain ...
ran Range...

...of a relation
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Example: specification of a library system – 2

Books in stock which currently are not lent to somebody may 
be borrowed

Δ Library
BookToBeBorrowed?: Book
Borrower?: Person
BookToBeBorrowed? ∈ Stock\ dom lent
Borrower? ∈ User
lent' = lent ∪ {(BookToBeBorrowed?, Borrower?)}
Stock' = Stock
User' = User

Borrow

x? x is an input variable
a ∈ X a is an element of set X
\ Set difference operator
∪ Set union operator
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Example: specification of a library system – 3

It shall be possible to inquire whether a given book is 
available

Ξ Library
InquiredBook?: Book
isAvailable!: {yes, no}
InquiredBook? ∈ Stock
isAvailable! =  if InquiredBook? ∉  dom lent

then yes else no

InquireAvailability

Ξ S The sets defined in schema S can 
be referenced, but not changed

x! x is an output variable

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz



Mini-Exercise: Specifying in Z

Specify a system for granting and managing authorizations 
for a set of individual documents.

The following sets are given:

Specify an operation for granting an employee access to a 
document as long as access to this document is not 
prohibited. Use a Z-schema.
.

Stock  Document
Employee:  Person
authorized:  (Document x Person)
prohibited:  (Document x Date)

Authorization

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 214
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10.4  OCL (Object Constraint Language)

❍  What is OCL?
●  A textual formal language
●  Serves for making UML models more precise
●  Every  OCL expression is attached to an UML model 

element, giving the context for that expression
●  Originally developed by IBM as a formal language for 

expressing integrity constraints (called ICL)
●  In 1997 integrated into UML 1.1
●  Current standardized version is Version 2.4
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Why OCL?

❍  Making UML models more precise
●  Specification of Invariants (i.e., additional restrictions) on 

UML models
●  Specification of the semantics of operations in UML models

❍  Also usable as a language to query UML models 

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz
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HR_management

OCL expressions: invariants

❍  OCL expression may 
be part of a UML 
model element

❍  Context for OCL 
expression is given 
implicitly

❍  OCL expression may 
be written separately 

❍  Context must be 
specified explicitly

Employee

personId: Integer {personID > 0} 
name: String
firstName: String [1..3]
dateOfBirth: Date
/age: Integer
jobFunction: String
...
...

context HR_manangement::Employee inv:
self.jobFunction = “driver” implies self.age ≥ 18

...
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OCL expressions: Semantics of operations

Employee Document
...
clearanceLevel: 

Integer
noOfDocs: 

Integer
...

docID: Integer
securityLevel: 

Integer
...

authorize (doc: 
Document)

context Employee::authorize (doc: Document)
pre: self.clearanceLevel ≥ doc.securityLevel
post: noOfDocs = noOfDocs@pre + 1

and
self.has->exists (a: Authorization | a.concerns = doc)

has
0..*

concerns
1Authorization

grantedOn: Date

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz
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Application of a function to 
a set of objects

Navigation from current object to a 
set of associated objects

Navigation, statements about sets in OCL

❍  Persons having Clearance level 0 can’t be authorized for 
any document:

context Employee inv: self.clearanceLevel = 0 implies  
self.has->isEmpty()
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Navigation, statements about sets in OCL – 2

More examples:
❍  The number of documents listed for an employee must be 

equal to the number of associated authorizations:
context Employee inv: self.has->size() = self.noOfDocs

❍  The documents authorized for an employee are different 
from each other
context Employee inv: self.has->forAll (a1, a2: Authorization |  

a1 <> a2 implies a1.concerns.docID <> a2.concerns.docID)

❍  There are no more than 1000 documents:
context Document inv: Document.allInstances()->size() ≤ 1000
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Summary of important OCL constructs

❍  Kind and context: context, inv, pre, post
❍  Boolean logic expressions: and, or, not, implies
❍  Predicates: exists, forAll
❍  Alternative: if then else
❍  Set operations: size(), isEmpty(), notEmpty(), sum(), ...
❍  Model reflection, e.g., self.oclIsTypeOf (Employee) is true in 

the context of Employee
❍  Statements about all instances of a class: allInstances()
❍  Navigation: dot notation self.has.date = ...
❍  Operations on sets: arrow notation self.has->size()
❍  State change: @pre notation noOfDocs = 

 noOfDocs@pre + 1  
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz
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10.5  Proving properties

With formal specifications, we can prove if a model has some 
required properties (e.g., safety-critical invariants)
❍  Classic proofs (usually supported by theorem proving 

software) establish that a property can be inferred from a 
set of given logical statements

❍   Model checking explores the full state space of a model, 
demonstrating that a property holds in every possible state

– Classic proofs are still hard and labor-intensive
+ Model checking is fully automatic and produces counter-

examples in case of failure
– Exploring the full state state space is frequently infeasible
+ Exploring feasible subsets is a systematic, automated test
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz
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Example: Proving a safety property

A (strongly simplified) elevator control system has been 
modeled with a Petri net as follows:

The property that an elevator never moves with doors open 
shall be proved

Door 
open

Door 
closed

Elevator stopped

Elevator 
moving

Ready to move
Floor button 
pressed
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door

Close 
door

Move

Stop
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Example: Proving a safety property – 2

The property to be proven can be restated as:
 (P) The places Door open and Elevator moving never hold 

tokens at the same time
Due to the definition of elementary Petri Nets we have
●  The transition Move can only fire if Ready to move has a  

token (1)
●  There is at most one token in the cycle Ready to move –  

Elevator moving – Elevator stopped – Door open (2)
●  (2) ⇒ If Ready to move or Elevator moving have a token, 

Door open  hasn’t one (3)
●  If Door open has no token, Door closed must have one (4) 
●  (1) & (3) & (4) ⇒ (P)
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Mini-Exercise: A circular metro line

A circular metro line with 10 track segments has been modeled 
in UML and OCL as follows:

In a circle, every track segment must be reachable from every 
other track segment (including itself). So we must have:
context TrackSegment inv (1)
   TrackSegment.allInstances->forAll (x, y | x.reachable (y) )

a) Falsify this invariant by finding a counter-example
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

Context TrackSegment:: 
   reachable (a: TrackSegment): Boolean  
   post: 
   result = (self.to = a) or (self.to.reachable (a))

context TrackSegment inv: 
   TrackSegment.allInstances->size = 10

TrackSegment

Occupied: Boolean

reachable (a:TrackSegment)

from
1

to   1
connected
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Mini-Exercise: A circular metro line – 2

Only the following trivial invariant can be proved:
context TrackSegment inv: 
   TrackSegment.allInstances->forAll (x | x.reachable (x) )

b) Prove this invariant using the definition of reachable

Obviously, this model of a circular metro line is wrong. The 
property of being circular is not mapped correctly to the model.

c) How can you modify the model such that the original 
invariant (1) holds?
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10.6  Benefits and limitations, practical use

Benefits
●  Unambiguous by definition
●  Fully verifiable
●  Important properties can be

•  proven
•  or tested automatically (model checking)

Limitations / problems
●  Cost vs. value
●  Stakeholders can’t read the specification: how to validate?
●  Primarily for functional requirements
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Role of formal specifications in practice

❍  Marginally used in practice
●  Despite its advantages
●  Despite intensive research (research on algebraic 

specifications dates back to 1977)

❍  Actual situation today
●  Punctual use possible and reasonable
●  In particular for safety-critical components
●  However, broad usage

•  not possible (due to validation problems)
•  not reasonable (cost exceeds benefit)

❍  Another option: semi-formal models where critical parts are 
fully formalized
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