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From System Design to Autonomous Navigation  
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utonomous microhelicopters will soon play a major 
role in tasks like search and rescue, environment 
monitoring, security surveillance, and inspection. If 
they are further realized in small scale, they can 
also be used in narrow outdoor and indoor 

environments and represent only a limited risk for people. 
However, for such operations, navigating based only on global 
positioning system (GPS) information is not sufficient. Fully 

autonomous operation in cities or other dense environments 
requires microhelicopters to fly at low altitudes, where GPS 
signals are often shadowed, or indoors and to actively explore 
unknown environments while avoiding collisions and creating 
maps. This involves a number of challenges on all levels of 
helicopter design, perception, actuation, control, and 
navigation, which still have to be solved. The Swarm of Micro 
Flying Robots (SFLY) project was a European Union–funded 
project with the goal of creating a swarm of vision-controlled 
microaerial vehicles (MAVs) capable of autonomous 
navigation, three-dimensional (3-D) mapping, and optimal 
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surveillance coverage in GPS-denied environments. The SFLY 
MAVs do not rely on remote control, radio beacons, or 
motion-capture systems but can fly all by themselves using 
only a single onboard camera and an inertial measurement 
unit (IMU). This article describes the technical challenges that 
have been faced and the results achieved from hardware 
design and embedded programming to vision-based 
navigation and mapping, with an overview of how all the 
modules work and how they have been integrated into the 
final system. Code, data sets, and videos are publicly available 
to the robotics community. Experimental results 
demonstrating three MAVs navigating autonomously in an 
unknown GPS-denied environment and performing 3-D 
mapping and optimal surveillance coverage are presented.

Motivation
Autonomous navigation of microhelicopters (where micro 
means up to the size of a few decimeters and fewer than 2 kg) 
has progressed significantly in the last decade thanks to the 
miniaturization of exteroceptive sensors (e.g., laser rangefind-
ers and digital cameras) and to the recent advances in micro-
electromechanical systems, power supply, and vehicle design.

Microhelicopters—and, notably, multirotor helicopters—
have several advantages compared with fixed-wing microaer-
ial vehicles: they are able to take off and land vertically, hover 
on a spot, and even dock to a surface. This capability allows 
them to easily work in small indoor environments, pass 
through windows [1], traverse narrow corridors, and even 
grasp small objects [2].

A key problem in aerial-vehicle navigation is the stabiliza-
tion and control in six degrees of freedom (DoF), i.e., attitude 
and position control. Today’s systems handle the attitude con-
trol well. However, without a position control, they are prone to 
drift over time. In GPS-denied environments, this can be 
solved using offboard sensors (such as motion-capture systems 
or total stations) or onboard sensors (such as cameras and laser 
rangefinders). The use of offboard sensors allows research to 
focus on control issues without dealing with the challenges of 
onboard perception. Today’s popular MAV testbeds are made 
by Vicon or OptiTrack motion-capture systems, which consist 
of multiple infrared static cameras tracking the position of a few 
highly reflective markers attached to the vehicle with millimeter 
accuracy and at a very high frame rate (several hundred hertz). 
These systems are very appropriate for testing and evaluation 
purposes [3], such as multirobot control strategies or fast 
maneuvers, and serve as a ground-truth reference for other 
localization approaches. Using this infrastructure, several 
groups have demonstrated aggressive maneuvers and impres-
sive acrobatics [4], [5]. In the works mentioned previously, the 
MAVs are actually blind. To navigate, they rely on the highly 
precise position measurement provided by the external 
motion-tracking system. As a matter of fact, what is really 
autonomous is not the single MAV itself but the system com-
prising the MAVs plus the external cameras. Furthermore, 
these systems are limited to small, confined spaces, and require 
manual installation and calibration of the cameras, making it 

impossible to navigate autonomously in unknown, yet-unex-
plored environments. Therefore, for a MAV to be fully autono-
mous, sensors should be installed on board.

Contributions of SFLY
This article describes the technical challenges and results of 
the three-year European project SFLY (www.sfly.org) devoted 
to the implementation of a system of multiple microflying 
robots capable of autonomous navigation, 3-D mapping, and 
optimal coverage in GPS-denied environments. The SFLY 
MAVs can fly using only an onboard camera and an IMU. 
This article describes the major contributions of the SFLY, 
from hardware design and embedded programming to vision-
based navigation and mapping. The first contribution is the 
development of a new hexacopter equipped with enough pro-
cessing power for on board computer vision (Figure 1). The 
second contribution is the development of a local-navigation 
module based on monocular simultaneous localization and 
mapping (SLAM) that runs in real time on board the MAV. 
The output of the monocular SLAM is fused with inertial 
measurements and is used to stabilize and control the MAV 
locally without any link to a ground station. The third contri-
bution is an offline dense-mapping process that merges the 
individual maps of each MAV into a single, global map that 
serves as input to the global navigation module. Finally, the 
fourth contribution is a cognitive, adaptive optimization algo-
rithm to compute the positions of the MAVs, which allows the 
optimal surveillance coverage of the explored area.

Related Work

System Design
Extensive work has been carried out on quadrotor systems. 
The function principle of quadrotors can be found in [6] and 
[7]. A review of the state of the art on modeling, perception, 
and control of quadrotors can be found in [8]. The pitch angle 
of the propellers is typically fixed; an evaluation of variable-
pitch propellers is presented in [9]. The platform described in 
this article, the AscTec FireFly, is an improvement of the  
previous and popular model known as AscTec Pelican. While 

Figure 1. The three SFLY hexacopters are designed for inertial–
visual navigation in GPS-denied environments. 



28 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  SEpTEMBER 2014

other groups often run the computation off board, by trans-
mitting image data to a powerful ground-station computer, 
the SFLY platform runs most computer-vision algorithms 
fully on board. This demands high onboard-computation 
capabilities. In the first SFLY vehicle [10], a 1.6-GHz Intel 
Atom computer was used; however, in the latest platform, this 
was replaced with a Core 2 Duo onboard computer able to 
process all flight-critical data on board.

Autonomus Navigation
Autonomous navigation based on onboard two-dimensional 
(2-D) laser rangefinders has been largely explored for ground 
mobile robots [11]. Similar strategies have been extended to 

MAVs to cope with their 
inability to “see” outside 
the scan plane. This is 
usually done by varying 
the height and/or the 
pitch and roll of the heli-
copter as well as by incor-
porating readings from 
air-pressure and gyro-
scopic sensors [1], [12]–
[16]. Although laser scan-
ners are very reliable and 
robust, they are still too 
heavy and consume too 
much power for light-

weight MAVs. Therefore, vision sensors are very appealing; 
however, they require external illumination and a certain com-
puting power to extract meaningful information for navigation.

Most of the research on vision-based control of MAVs has 
focused on optical flow [17]–[19]. But since optical flow can 
only measure the relative velocity of features, the position esti-
mate of the MAV will inevitably drift over time. To avoid drift 
over long periods of time, the system should be able to relo-
calize whenever it comes back to a previously visited location. 
One possibility is offered by SLAM approaches.

Preliminary experiments for MAV localization using a 
visual extended Kalman filter (EKF)-based SLAM technique 
were described in [20]. However, the first use of visual SLAM 
to enable autonomous basic maneuvers, such as takeoff and 
landing, point-to-point navigation, and drift-free hovering on 
the spot, was done right within the framework of the SFLY 
project [21], [22]. Due to the use of a single camera, the abso-
lute scale was initially determined manually or using a 
known-size object [23]. Later, the system was extended [24] 
to incorporate data from an IMU and, thus, estimate the 
absolute scale automatically while self-calibrating all the sen-
sors (this approach will be outlined in the “Inertial-Aided 
Visual Navigation” section).

Optimal Coverage
Optimal coverage is the problem of computing the poses of a 
team of robots, which guarantee the optimal visibility of an 
area under the constraints that

 ●  the part of terrain monitored by each robot is maximized 
[25], [26]

 ●  for every point in the terrain, the closest robot is as close as 
possible to that point.
The second objective is necessary for two practical rea-

sons: 1) the closer the robot is to a point in the terrain, the 
better its sensing ability to monitor this point, and 2) in many 
multirobot coverage applications, there is the necessity of 
being able to intervene as fast as possible in any of the points 
of the terrain with at least one robot. The optimal visibility 
problem is also related to the art-gallery problem, where the 
goal is to find the optimum number of guards in a nonconvex 
environment such that each point of the environment is visi-
ble by at least one guard [27], [28]. An incremental algorithm, 
which also considers a maximum monitoring distance, was 
presented in [29], while the optimal coverage of a 2-D region 
with a team of flying robots was studied in [30].

Most approaches for multirobot surveillance coverage 
concentrate on the second objective and tackle 2-D surfaces 
[31]–[35]. A method for nonplanar surfaces embedded in 
3-D was presented in [36], while a study for multiple flying 
robots equipped with downward-looking cameras observing 
a planar 2-D environment was proposed in [30]. Multirobot 
optimal-coverage algorithms for convex environments were 
proposed in [31] and [32] using Voronoi partition, while in 
[33] the classical Voronoi coverage was combined with the 
Lloyd algorithm and the local path-planning TangentBug 
algorithm. In [32], a function indicating the relative impor-
tance of different areas in the environment using information 
from onboard sensors was used. An approach for nonconvex 
environments was proposed in [34] using Voronoi partition 
and in [35] using the potential-field method. Partition was 
obtained using the geodesic distance instead of the Euclidean 
one, considering the particular topology of the problem. In 
[35], the same problem was approached using the potential-
field method. Another possible solution for convex environ-
ments with obstacles was proposed in [33]: the classical Vor-
onoi coverage was combined with the Lloyd algorithm and 
the local path-planning TangentBug algorithm.

In all of the aforementioned approaches, the regions to 
monitor are considered in two dimensions. An approach for 
3-D spaces was proposed in [36]. Conversely, the approach 
described in this paper is based on a new stochastic optimiza-
tion method, called cognitive-based adaptive optimization 
(CAO). This method addresses 3-D environments and tackles 
the two aforementioned objectives simultaneously.

Microhelicopter Platform

Design Concept
One goal of the SFLY project was to have a vehicle as small, 
lightweight (fewer than 1.5 kg), and safe as possible, while 
being capable of carrying and powering an onboard computer 
and cameras. Since the SFLY helicopter was envisaged to oper-
ate in urban environments, the impact energy had to be 
reduced to a minimum. To limit the risk of injuries, studies 

To avoid drift over long 

periods of time, the system 

should be able to relocalize 

whenever it comes back 

to a previously visited 

location.
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were made to evaluate the effects of having more than four 
(but smaller and safer) rotors on efficiency achievable dynam-
ics and redundancy. These studies are presented in detail in 
[37]. In brief, it was found that the smaller the number of 
rotors, the better the efficiency of the vehicle. On the other 
hand, the achievable dynamics and, therefore, the maneuver-
ability of the vehicle can be enhanced by a larger number of 
propellers and a smaller ratio between rotor surface and total 
weight. However, for safe operation, the most important aspect 
is redundancy against at least a single-rotor failure. In [37], it 
was shown that the minimum number of rotors with redun-
dancy against a single failure could be reduced to six due to a 
new redundancy concept. To do so, different shapes of redun-
dant multirotor vehicles were analyzed, and the maximum 
thrust in a redundancy situation was calculated. The results are 
shown in Table 1 (neglecting the additional margin needed to 
control the other axes). The hexagon-shaped six-rotor design 
was chosen as the best tradeoff. By deriving a control scheme 
for such a configuration, it can be concluded that, if all work-
ing motors are to spin at least at idle speed, a six rotor helicop-
ter in hexagon shape cannot compensate for a single-motor 
failure. Undesired momentum around the yaw axis will be the 
result if pitch and roll are to be controlled (see [37] for more 
details). To overcome this disadvantage, a new and very simple 
control scheme was developed, which is shown in Figure 2.

The selected configuration can be built with propellers 
as small as the known safe propellers of the AscTec  
Hummingbird [10]. In addition, it can carry the demanded 
payload and is redundant against single-rotor failures, thus 
enabling safe operations in urban areas. Compared with an 
octocopter design, the thrust in a redundancy situation is 
smaller but the overall effi-
ciency is higher due to the use 
of six rotors instead of eight.

Electronic Architecture
Except for the two additional 
motors, the electronic compo-
nents and the software architec-
ture are about the same as the 
AscTec Pelican described in [10].

To handle motor-failure situa-
tions, the communication proto-
cols were extended for six 
motors, and the algorithms for 
failure detection and redundancy 
handling added. The control 
scheme for these failure situa-
tions is prescripted for each one 
of the possible six failure cases to 
be activated automatically if a 
failure is detected.

A distribution of the flight-
control units (FCUs) main task 
between two microprocessors is 
shown in Figure 3. The so-called 
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Figure 2. This illustration shows the redundancy against single-rotor 
failure. Assuming that motor 1 is failing, motors 2, 3, 5, and 6 are 
controlled by the thrust command and the roll and pitch controllers’ 
output. Motor 4—on the opposite side of the failing motor—
compensates and controls the yaw momentum by repeatedly 
changing its direction.
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Figure 3. The electronic architecture: all sensors, except the GPS, are connected to the LLP, which 
communicates via I2C with the motor controllers and via the serial peripheral interface with the HLP. 
For this article, position control and state estimation for local navigation are implemented in the “user-
defined programs” section of the HLP (see Figure 8). The position (waypoint) controller on the LLP is 
not used here since we work in GPS-denied environments.

Table 1. The theoretical maximum thrust in  
redundancy situations for different configurations.

System Configuration Thrust in Failure Situation

Triangle hex 50%

Hexagon hex 66% 

V-shape octo 62% 

Octagon octo 70–73%
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low-level processor (LLP) handles all hardware interfaces; it is 
connected to the sensors and computes the attitude-data-
fusion and flight-control algorithms at an update rate of 1 
kHz. The high-level processor (HLP) is open for customized 
or experimental code. In the SFLY project, the HLP is used 

for state estimation and 
control. It has proven to 
be helpful to have the 
LLP as a safety backup 
while performing experi-
ments in flight.

Onboard Computer
To integrate all computa-
tionally intense parts on 
board the vehicle, the ini-

tial Atom computer board of the Pelican platform was not 
sufficient. Therefore, the ongoing development of a new 
motherboard supporting the COM Express standard was 
pushed forward to support the integration of a Dual Core 
Atom, a Core 2 Duo, or a Core i7 central processing unit. 
These computer boards provide enough computational 
power to run all onboard software. Furthermore, additional 
interfaces like Firewire and hardware serial ports are sup-
ported. Specifically, the hardware serial ports are another 
step toward precise and fast state estimation on the onboard 
computer, as the latency is reduced to a minimum.

Mechanical Concept and Vibration Decoupling
One important requirement, raised from test flights of the 
previous vehicles, is a vibration decoupling. Just decoupling 
the IMU has proven to be insufficient. Instead, payloads such 
as cameras should be decoupled as well and, ideally, fixed to 
the IMU. Vibration damping is necessary to improve state 
estimation for position control as well as image quality. The 
damping system has to be designed so that there is a rigid 
connection between the cameras and IMU to avoid any 
dynamic misalignment. These requirements led us to a com-
pletely new concept. A so-called frame-in-frame concept was 

built: the outer frame holds the motors, the landing gear, the 
canopy, and the propeller protection, while the inner frame 
carries the IMU, the battery, and the payload. As shown in 
Figure 4, both frames are connected using special silicon 
dampers, distributed in a pattern to intentionally influence 
the dynamics between both frames. This is necessary 
because the frame-in-frame concept leads to additional 
dynamics between both parts. The eigenmodes of this new 
dynamic system had to be adjusted so that no resonance 
oscillations between both frames occurred for a variety of 
payload configurations. Flight tests show an improvement of 
image and state-estimation quality, and all resonance oscilla-
tions are eliminated. Due to this new damping concept, the 
whole mechanical structure had to be redesigned.

To reduce the overall height and to concentrate the mass 
closer to the center of gravity, the battery was moved to the 
center of the frame. Furthermore, a landing gear was added to 
protect the payload, which is connected to the dampened 
frame. A rollover bar protecting the electronic components 
and supporting the cover was added as well.

In addition to these additional features, another require-
ment was to enable fast component changes in case of a 
crash or modification during integration and testing. To put 
all these requirements and features together, a new combi-
nation of carbon fiber, carbon fiber sandwich, and alumi-
num was chosen.

Details of this concept can also be observed in Figure 4, and 
a complete computer-aided design (CAD) model, including a 
camera mount, is shown in Figure 5. Note that only one cam-
era (downward looking) is used for navigation, while the other 
two, in stereo configuration, are used for obstacle avoidance 
(not described here) and dense matching (see the “3-D Map-
ping” section). Table 2 summarizes the main technical data.

Figure 5. The complete CAD model, including three cameras on the 
SFLY hexacopter. 

Vibration Damping for the IMU, Battery, Cameras, and Payload

Figure 4. The computer-aided design (CAD) model illustrating the 
vibration damping between the two parts of the frame: the motors 
and the landing gear are connected to the outer frame, and the inner 
frame to the IMU, battery, and payload. The silicon dampers are 
highlighted in red. 

Table 2. The main technical data.

Empty weight without battery 640 g

I Ixx yy. 0.013 kg·m2

I zz 0.021 kg·m2

Total thrust (at 10.5 V) 24 N

Maximum takeoff weight 1,090 g

Maximum payload 45O g

Maximum flight time Up to 30 min

The SFLY MAVs do not rely 

on remote control, radio 

beacons, or motion-capture 

systems.
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Flight-Time Estimation and Payloads
Based on test-bench data of the consequently improved 
motors and propellers as well as a final empty weight of 640 g, 
the flight time can be calculated for different payloads and 
batteries (Figure 6). The weight of the different batteries is 
considered, and the plots are limited to the maximum takeoff 
weight. The flight time is calculated for 85% of the battery 
capacity because lithium-polymer batteries must not be com-
pletely discharged. For the SFLY requirements, a 4,900-mAh 
battery was selected, resulting in an approximately 16-min 
flight time at a 400-g payload (neglecting the onboard-com-
puter power consumption).

Inertial-Aided Visual Navigation
The navigation of the MAVs is handled by two different mod-
ules that are named local navigation and global navigation. 
The local-navigation module is responsible for flight stabiliza-
tion, state estimation (including absolute-scale estimation), 
and waypoint-based navigation of each MAV. It runs on 

board each platform and estimates the pose of each MAV 
with respect to its starting position and, hence, does not rely 
on a persistent connection to the ground station. The state 
estimator and position controller are spread over the different 
computation platforms, according to the processing power 
and to reduce delay. The relative positions of the MAVs at 
start are unknown. The task of the global-navigation module 
(running off board the MAVs, on a ground-station computer) 
is to express the poses of all MAVs in a common, global coor-
dinate frame and, possibly, to reduce both motion and map 
drifts. This is done by identifying both loop closures by the 
same MAV and path intersections between multiple MAVs 
(Figure 7). The interaction between these modules can be 
observed in Figure 8. 

Local Navigation
In recent years, 5-DoF single-camera-based visual odometry 
(VO) has made significant progress. (a tutorial on monocular 
and stereo VO can be found in [38] and [39]). (Here, we refer to 
5 DoF instead of 6 DoF because the absolute scale is not observ-
able with a single camera. 
However, the scale factor 
can be estimated by adding 
an IMU, as explained in 
this section.) Filter-based 
and key-frame-based off-
the-shelf algorithms are 
publicly available. Because 
of its robustness, real-time 
performance, and position 
accuracy, the key-frame-
based solution proposed in 
[40] was selected and tai-
lored to the general needs 
of our computationally 
limited platform. However, nowadays, more recent VO algo-
rithms, such as Semidirect Visual Odometry [41], represent a 
more robust, more accurate, and faster option for MAVs.

Our framework uses the Robot Operating System 
(ROS) middleware (www.ros.org) and runs on a standard 
Ubuntu operating system, facilitating the development of 
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Figure 6. The calculated flight time is plotted versus (a) takeoff 
weight and (b) payload. The estimated flight time for a given 
payload with different batteries is shown. Thunder Power (TP) and 
LiPolice are LiPo battery manufacturers.

(a) (b)

Figure 7. (a) The local-navigation module (running on board) 
estimates the pose of each MAV independently for each platform. 
(b) The global-navigation module (offboard) recognizes path 
intersections and uses them to express the MAVs’ poses in the same, 
global coordinate frame and to reduce drift. 

The local-navigation 

module is responsible for 

flight stabilization, state 

estimation, and waypoint-

based navigation of  

each MAV.
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new algorithms. The current implementation uses only 
60% of one core of the Core 2 Duo processor at 30 Hz, 
leaving enough resources for future higher-level tasks. As a 
reference, the same implementation on an Atom 1.6-GHz 
single-core computer runs at 20 Hz using 100% of the pro-
cessing power.

The 5-DoF pose of the MAV camera output by the visual-
odometry algorithm was fused with the inertial measurements 
of an IMU using an EKF. More details are given in [42]. An 

EKF framework consists 
of a prediction and an 
update step. The compu-
tational load required by 
these two steps is distrib-
uted among the different 
units of the MAV, as 
described in [43]. The 
state of the filter is com-
posed of the position ,pw

i  
the attitude quaternion 

,qw
i  and the velocity vw

i  of the IMU in the world frame. The 
gyroscope and accelerometer biases b~  and ba  as well as the 
missing scale factor m are also included in the state vector. For 

completeness, the extrinsic 
calibration parameters 
describing the relative rota-
tion qi

s  and position pi
s  

between the IMU and the 
camera frames were also 
added. Note that the calibra-
tion parameters could be 
omitted from the state vector 
and be set to a premeasured 
constant to increase robust-
ness and faster state conver-
gence. Having pi

s  as a con-
stant and not as a filter state 
would increase the conver-
gence performance of the 
visual scale. We did not 
notice significant perfor-
mance improvement when 
removing qi

s  from the state 
vector. We assume that this is 
because the attitude is directly 
measured by the visual pipe-
line whereas the scale ambi-
guity occurs in both pi

s  and 
the MAV position .pw

i  In this 
article, we show that even 
with continuously estimating 
both parameters pi

s  and ,qi
s  

we can achieve good and 
robust results. This yields a 
24-element state vector :X

 { }.X p v q b b p qw
i

w
i

w
i T

a
T

i
s

i
sT T T

m= ~  (1)

Figure 9 shows the setup with the IMU and camera coordi-
nate frames and the state variables introduced above.

The equations of the EKF prediction step for the consid-
ered IMU-camera fusion are given in [42]. The equations of 
the update step are derived by computing the transformation 
from the world reference frame to the camera frame as fol-
lows. For the position ,z p  we can write:

 ( ) ,z p p C p n( )p w
s

w
i

q
T

i
s

pw
i m= = + +  (2)

where ( )C SO 3( )qw
i !  is the rotation matrix associated with 

the IMU attitude quaternion qw
i  in the world frame, z p  

denotes the observed position (the output of the visual odom-
etry), m  is the scale factor, and n p  the measurement noise. For 
the rotation measurement ,zq  we apply the notion of error 
quaternion. Since the visual-odometry algorithm yields the 
rotation qw

s  from the world frame to the camera frame, we 
can write:

 .z q q qq w
s

i
s

w
i7= =  (3)
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Figure 8. An overview of the different processing tasks and how these are distributed and interact with 
each other in our navigation framework. Waypoint commands are sent from the ground station to the 
onboard computer, which forward them to the position controller. The ground station and onboard 
computer communicate over a Wi-Fi connection. Note that all critical parts necessary to keep the 
helicopter airborne run entirely on board and do not rely on the Wi-Fi link. The parts on the HLP refer to 
the “user-defined programs” section in Figure 3.

For safe operation, the 

most important aspect is 

redundancy against at least 

a single-rotor failure.
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A nonlinear observability analysis [44] reveals that all 
state variables are observable, including the intersensor cali-
bration parameters pi

s  and .qi
s  Note that the visual pose esti-

mates are prone to drift in position, attitude, and scale with 
respect to the world-fixed reference frame. Since these quan-
tities are observable (and, notably, roll, pitch, and scale), 
gravity-aligned metric navigation becomes possible even in 
long-term missions. This is true as long as the robot excites 
the IMU accelerometer and gyroscopes sufficiently, as dis-
cussed in [45]. Note that the estimated attitude and position 
of the MAV in the world frame is subject to drift over time. 
However, since the gravity vector measured by the IMU is 
always vertically aligned during hovering, this prevents the 
MAV from crashing due to gravity misalignment even dur-
ing long-term operations.

Global Navigation
The task of the global-navigation module (running on the 
ground station) is to express the poses of all MAVs in a com-
mon, global coordinate frame and, possibly, to reduce both 
motion and map drifts. This is done by matching the current 
camera image to a 3-D environment map. The 3-D map con-
sists of landmarks (3-D points and corresponding descriptors 
in each image) and the corresponding camera poses. The 3-D 
map is computed offline, as described in the “3-D Mapping” 
section and combines the maps of the individual MAVs into a 
single merged map. Map merging works by identifying both 
loop closures by the same MAV and path intersections 
between multiple MAVs (Figure 7). To reduce the computa-
tional load of the onboard computer, the global-navigation 
module runs on a ground station that constantly receives the 
images of the MAVs via Wi-Fi and sends back the updated 
global poses. To save bandwidth, a valid alternative to sending 
full camera frames is to have each MAV stream only features 
of selected key frames and relative-pose estimates, as recently 
proposed in [46].

Matching the current camera view to the 3-D map is 
done by vocabulary-tree-based image search, as described 
in [47]and [48]. For every frame, speeded-up robust Fea-
tures [49] are extracted and then quantized into visual 
words using a vocabulary tree that was pretrained on a gen-
eral image data set. The image IDs and the corresponding 
visual words are stored in a database that is organized as an 
inverted file for efficient data access. Additional metadata 
(pose estimates from the local-navigation module and IMU 
data) are stored with each image in the database. Whenever 
a new image is processed, it is ranked with all images in the 
database according to the similarity of the visual words. 
Geometric verification is performed on the top N-  most 
similar frames using perspective three-point algorithm-
based random sample consensus (RANSAC) [50]. A match 
is accepted if the inlier count exceeds a certain threshold. 
The initial pose from RANSAC is refined using nonlinear 
optimization and is sent back as global pose update. This 
approach allows for efficient localization and also scales to 
large maps.

3-D Mapping
For the 3-D mapping of the environment, an offboard ground 
station takes images from all MAVs and fuses them offline 
into a detailed map. The mapper is based on the general 
framework for graph optimization (g2o) framework [51]; it 
uses a pose-graph optimizer for prealignment of the data and 
then runs a bundle adjustment to get optimal results.

The maximum-likelihood estimates of the poses are com-
puted by minimizing the Euclidean distances between the 
transformations in a pose graph. The nonlinear optimization 
is done by sparse Cholesky decomposition using the g2o 
framework. To improve the accuracy of the map, a bundle 
adjustment is run. The bundle adjustment optimizes the 
poses and the 3-D positions of all features at the same time 
by minimizing the image reprojection error. The corre-
sponding graph of this problem consists of the MAV poses 
and the 3-D feature points as nodes. They are connected by 
edges that represent the projection of the 3-D feature point to 
images where the feature was detected. During the loop-
detection phase, for every 
new frame, all image pro-
jections of the inlier fea-
tures are added to the 
bundle-adjustment graph.

A dense map is built 
offline using the poses of 
the MAV computed from 
the bundle adjustment 
process and the corre-
sponding stereo images. 
For each pose and corresponding stereo frame, a 3-D point 
cloud in global coordinates is computed via stereo triangula-
tion and used to update a 3-D occupancy map. After all the 
data have been processed, a terrain map is extracted from the 
3-D occupancy map by thresholding the occupancy value in 
each cell in the occupancy map. The terrain map is triangu-
lated to create a dense mesh. Furthermore, a dense textured 
map is created by projecting all triangular faces in the mesh 
onto the images, from which the faces are entirely visible, 
and texturing each face with the image that has the smallest 
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incident angle relative to the face normal. This image-selec-
tion heuristic helps to minimize perspective distortion. A 
textured visualization of a 3-D map is shown in Figure 10. 
More details can also be found in [52].

Optimal Surveillance Coverage
The problem of deploying a team of flying robots to perform 
surveillance coverage missions over an unknown terrain of 
complex and nonconvex morphology was tackled using a 
novel CAO algorithm. The CAO algorithm was originally de-
veloped and analyzed for the optimization of functions for 
which an explicit form is unknown but measurements are 

available as well as for the 
adaptive fine-tuning of 
large-scale nonlinear-
control systems [53]. The 
many advantages of using 
stochastic gradient de-
scent algorithms, like the 
simultaneous perturba-
tion stochastic approxi-
mation algorithm [54], to 

approach a sensor-based deployment problem have already 
been highlighted in [55].

Within SFLY, CAO was implemented for surveillance 
tasks in unknown 3-D terrains of complex and nonconvex 
morphology with obstacles using only onboard monocular 
vision. CAO possesses several advantages compared with the 
previous works described in the “Optimal Coverage” section: 
it is computationally simple to implement, scalable, and can 
easily embed any kind of physical constraints and limitations 
(e.g., obstacle avoidance, nonlinear sensor-noise models). 
CAO does not create an approximation or estimation of the 

obstacles’ location and geometry; conversely, it produces an 
online local approximation of the cost function to be opti-
mized. A detailed description of the CAO algorithm and its 
functionality for the case of a team of aerial robots can be 
found in [56] and [57].

In the context of the SFLY project, the CAO algorithm 
tackles two objectives simultaneously to assure that the robot 
team will perform optimal surveillance coverage:

 ● maximize the part of terrain monitored by each robot
 ●  for every point in the terrain, the closest robot has to be as 

close as possible to that point.
If only the first objective were considered, the robots would fly 
as high as their visibility threshold allows (which is defined as 
the maximum distance the robot’s sensor can measure). 
Therefore, the second objective ensures that, among all possi-
ble configurations that maximize the visible area ,V  the robot 
team converges to the one that keeps as small as possible the 
average distance between each robot and the part of the terrain 
for which that particular robot is responsible. (Note that in the 
ideal case, where there are no limits for the robot’s maximum 
height, and the robot has unlimited sensing capabilities, it suf-
fices to have a single robot at a very high position to monitor 
the whole terrain.) The second objective is also necessary for 
two practical reasons: first, the closer the robot is to a point in 
the terrain, the better, in general, its sensing ability to monitor 
this point; second, in many multirobot coverage applications, it 
is necessary to intervene as fast as possible in any of the points 
of the terrain with at least one robot.

The two aforementioned objectives are combined in an 
objective function that the robot team has to minimize 
[56], i.e.,

 ( ) ,minJ P x q dq K dq
{ ,..., }

( )
i M

i

q V q T V1

2
= - +

!! ! -
# #  (4)

where M  is the number of robots that are deployed to monitor 
a terrain ,T  x( )i  is the position of the ith robot, { }P x( )i

i
M

1= =  
denotes the configuration of the robot team, q is a point in the 
terrain ,T  V  consists of all points q T!  that are visible from 
the robots, and K  is a user-defined positive constant.

The first term in (4) addresses the second objective. The 
second term addresses the first objective and relates to the 
invisible area of the terrain (i.e., ,q T V8 ! -  which is the total 
part of the terrain that is not visible to any of the robots). The 
positive constant K  serves as a weight to give more or less pri-
ority to one or the other objective. A detailed analysis of the 
effect of K  is presented in [56].

The implementation of CAO within the SFLY framework 
ensures that the physical constraints are also met throughout 
the entire multirobot coverage application. Such physical con-
straints include, but are not limited to, the following:

 ● the robots remain within the terrain’s limits
 ●  the robots satisfy a maximum-height requirement while 

not hitting the terrain
 ●  the robots do not come closer to each other than a mini-

mum allowable safety distance.

(a)

(b)

Figure 10. The textured visualization of the 3-D map of the firefighter 
area: (a) top and (b) side views.

The mapper is based on 

the general framework 

for graph optimization 

framework.
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The above constraints can be easily formulated and incor-
porated in the optimization problem [56]. CAO uses function 
approximators for the estimation of the objective function at 
each time instant; therefore, a crucial factor for the successful 
implementation is the choice of the regressor vector, as 
described in [56]. Once the regressor vector has been set and 
the values of the cost function are available for measurement, it 
is possible to find at each time step the vector of parameter 
estimates and, thus, the approximation of the cost function.

Experimental Results 

Flying Platform
The achievable dynamics and maneuverability are demon-
strated by the accurate trajectory following and position con-
trol shown in Figure 11. To evaluate the redundancy capabili-
ties, a switch disabling one motor was implemented to 
simulate a motor failure. There was no measurable deviation 
in the roll and pitch axes, but the maximum thrust is obvi-
ously limited during this failure situation.

Figure 12 shows the motor commands input to the four 
propellers during such a redundancy test. The motor com-
mands are in the range [–100, 200]. As observed, at about 14 s, 
one motor is deactivated (the yellow plot drops to zero), and 
one motor command starts compensating for the yaw moment 
by slowly oscillating around zero (red plot). The other four 
motors are set feedforward to a higher thrust to compensate for 
the loss caused by the other two motors. Figure 12(b) shows the 
pilot’s stick inputs. This plot looks absolutely normal for a man-
ual flight, like Figure 12(c), which shows the attitude measure.

Vision-Based Navigation
Figures 13 and 14 show the evolution of the position and atti-
tude of one MAV estimated by the EKF framework 
described in the “Local Navigation” section. The position 
plot (Figure 13) shows that the visual scale has been esti-
mated correctly by the filter throughout the whole flight; as 
can be observed, the position and attitude drifts of the vision 
system are very low. For a rapidly drifting vision system, one 
would observe an increased difference between the GPS data 
and filter estimates. Note that GPS measurements were used 
during the initialization phase to align all states for a simpler 
comparison with ground truth. After this alignment phase 
(at about t 80=  s in Figures 13 and 14), GPS was no longer 
used as additional input in the EKF framework.

A 350-m trajectory estimated using this framework, 
resulting in an overall position drift of only 1.5 m, is shown in 
Figure 15. The presented framework was tested under a vari-
ety of challenging conditions, exhibiting robustness in the 
presence of wind gusts, strong light conditions causing satu-
rated images, and large-scale changes in flight altitude. More 
details are given in [58].

3-D Mapping and Optimal Coverage
The platforms and the algorithms described in the previous 
sections were used to implement an autonomous-navigation 
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scenario that was publicly demonstrated at the firefighters’ 
training area in Zürich, Switzerland (Figure 16). As 
described in the “Inertial-Aided Visual Navigation” section, a 
visual odometry algorithm ran on board each MAV and 
served for local stabilization as well as for trajectory estima-
tion. At the same time, each MAV built a sparse 3-D map 
that was incrementally transmitted, together with images and 
pose estimates, over a Wi-Fi network to a ground-station 
computer. The ground station, a quad-core Lenovo W520 
laptop, was in charge of combining all the received data to 
compute global position estimates of the three MAVs as well 
as a dense 3-D map.

Figure 17 shows the pose graphs built by the three MAVs 
during a flight over the area. These graphs are generated after 
visual odometry. Drift is visible, especially in the blue trajec-
tory. There, the start and end points are marked with red 
arrows. The start and end points should overlap in this case, 
but they do not due to drift. Loop detection, however, recog-
nized the loop closure.

Finally, the three individual submaps are merged into a 
single global map: first, loop closures are detected between 
the submaps; then, global bundle adjustment is run over the 

(a) (b)

(c)

Figure 17. (a)–(c) The pose graphs of three flight trajectories that 
were used for 3-D mapping. The camera poses are plotted after 
visual odometry and windowed bundle adjustment. The connecting 
lines between the cameras show loop closures. As no global 
optimization is run, pose drift is visible. In (c) the blue trajectory, 
start and end points are marked with red arrows. The start and end 
points should overlap in this case, but they do not due to drift. Loop 
detection, however, recognized the loop closure, and pose-graph 
optimization will remove the drift (Figure 18).

(a)

(b) (c)

Figure 16. (a) The SFLY helicopters during a demonstration of 
autonomous exploration at the firefighters’ training area in Zürich, 
(b) feature tracks, and (c) the online-built 3-D sparse map used for 
local navigation. 
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Figure 15. After a short initialization phase at the start, vision-
based navigation (blue) was switched on for successful completion 
of a more than 350-m-long trajectory, until battery limitations 
necessitated landing. The comparison of the estimated trajectory 
with the GPS ground truth (red) indicates a very low position and 
yaw drift of the real-time onboard visual odometry. 
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whole map. Figure 18 shows the pose 
graph of the final map. The black lines 
between the cameras of different sub-
maps show the detected loop closures. 
The global bundle adjustment is able to 
remove the drift in the individual sub-
maps; and thus, the resulting global map 
is drift free and in the correct absolute 
(metric) scale.

A 3-D occupancy map was built, as 
described in the “3-D Mapping” section. 
Out of the 3-D occupancy grid, a height 
map was generated (Figure 19) and fed 
to the CAO algorithm to compute the 
optimal-coverage poses. The produced 
map covers a 42 m # 32 m area with a 
maximum height of 8.3 m. The final poses for the optimal 
surveillance coverage of the area by the three MAVs are 
shown in Figure 20. 

Figure 10 shows a textured visualization of the 3-D envi-
ronment map of the firefighter area created from three MAVs.

Lessons Learned 

Visual–Inertial Sensor Fusion
The flight of more than 350 m outdoors in an unprepared 
environment (Figure 15) revealed important insights about the 
system running under real-world conditions. First, the observ-
ability analysis of the system, described in the “Local Naviga-
tion” section, shows that the system requires excitation to ren-
der all states, and, in particular, the visual scale factor, 
observable. Our tests showed that, under real conditions, this 
requirement is generally fulfilled. We observed that initializing 
the visual scale factor correctly (up to about 10% of the true 
value) is crucial for proper state convergence. In our experi-
ments, we initialized the scale factor either by GPS or by pres-

sure-sensor height measurements. Second, recent work on 
visual–inertial sensor fusion proposes online calibration of the 
time offset between the two sensors [44], [45]. While such 
approaches have high theoretical value, in our experiments, we 
did not see noticeable differences when increasing or decreas-
ing this offset of maximum 5 ms. This change is significantly 
larger than the accuracy of common time synchronization 
protocols like NTP, including jitter on universal serial bus 
(USB) connections. We estimated once a fixed delay in USB 
transmissions but did not adapt this estimate during flights or 
between missions. Third, in the beginning of the project, we 
experienced significant issues of the visual pipeline [original 
parallel tracking and mapping algorithm (PTAM)] in self-sim-
ilar outdoor scenes. Map failures occurred often and marked 
the end of the mission. Our improvements, described in detail 
in [59], were key to ensuring continuous operation of the 
MAV. The most important adaptations include modifying 
PTAM to a visual odometry framework with constant compu-
tational complexity as well as improved feature handling, dras-
tically reducing false positives in the map-building process and 

(a)

(b)

Figure 18. The (a) top and (b) front views of the pose graphs of the 
three flight trajectories in Figure 17 after map merging and global 
bundle adjustment. The black lines show the loop closures between 
the three submaps.

Figure 20. The final configuration of a robot team performing 
surveillance coverage: the red squares represent the final positions 
of the MAVs, while the red areas represent the invisible part of  
the map.
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Figure 19. The height map of the Zürich firefighters’ training area.
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reducing the computational demand at the same time. How-
ever, today, more recent VO algorithms, such as SVO [41], 
represent a more robust, accurate, and faster option for MAVs.

Optimal Coverage
The implementation of the CAO algorithm within the SFLY 
framework proved the feasibility of an approach relying on 
an optimization procedure, where the explicit form of the 
function to be optimized is unknown. A key issue to the suc-
cessful implementation is the fast and reliable generation of 
the appropriate inputs to the algorithm. In the case of the 
SFLY system, the lack of the online map generation resulted 
in the necessity of offline calculation. The implementation of 
CAO does not create an approximation or estimation of 
obstacle location and geometry; instead, it produces on line a 
local approximation of the unknown cost function that the 
robots are called to optimize. For this reason, it requires sim-
ple and, thus, scalable approximation schemes to be 
employed, which proved to be ideal for the real-time imple-
mentation of CAO.

3-D Mapping
The use of a stereo camera system for 3-D mapping proved 
to be beneficial. Having a fixed baseline eliminates scale 

drift in camera pose esti-
mation and makes the 
dense 3-D reconstruc-
tion problem a depth-
map fusion problem. 
Leveraging the IMU 
measurements for the 
3-D reconstruction task 
proved to be beneficial 

as well. For feature matching, the relative rotations between 
two frames is used to predict feature locations and eliminate 
most of the outliers immediately. This leads to an efficient 
feature matching and motion estimation step. Our map-
merging system is based solely on visual information. Our 
experiments demonstrated successfully that visual map 
merging works across multiple platforms even with different 
camera systems. Performing map merging by pose-graph 
optimization followed afterward by full bundle adjustment 
showed to be an efficient way. For dense 3-D reconstruction, 
we chose to fuse the 3-D measurements into a 3-D grid map 
prior to digital elevation map generation and triangulation. 
This avoided problems in 3-D mesh fusion present in other 
works [60]. Overall, we could successfully demonstrate that 
it is possible to create large-scale dense 3-D reconstructions 
using low-weight, low-quality, and low-resolution cameras 
by fusing a high number of small-scale 3-D reconstructions.

Conclusions
This article described a framework that allows small-size heli-
copters to navigate all by themselves using only a single 
onboard camera and an IMU, without the aid of GPS or active 
range finders. This framework allows unprecedented MAV 

navigation autonomy, with flights of more than 350-m length, 
in previously unexplored environments.

This article shared the experience earned during the three-
year European project SFLY about visual–inertial real-time 
onboard MAV navigation, multirobot 3-D mapping, and 
optimal surveillance coverage of unknown 3-D terrains. Par-
ticular focus was devoted to the technical challenges that have 
been faced and the results achieved, with detailed insights of 
how all the modules work and how they have been integrated 
into the final system. Code, data sets, and videos were made 
publicly available to the robotics community.

This article highlighted four major contributions of SFLY. 
The first one is the development of a new six-rotor-based 
platform robust to single-rotor failures, equipped with 
enough processing power for onboard computer vision. The 
second contribution is the development of a local-navigation 
module based on monocular SLAM that runs in real time on 
board the MAV. The output of the monocular SLAM is fused 
with inertial measurements and is used to stabilize and con-
trol the MAV locally without any link to a ground station. The 
third contribution is an offline and offboard dense-mapping 
process that merges the individual maps of each MAV into a 
single, global map that serves as input to the global navigation 
module. Finally, the fourth contribution is a cognitive, adap-
tive optimization algorithm to compute the positions of the 
MAVs, which allows the optimal surveillance coverage of the 
explored area.

To the best of our knowledge, this article describes the first 
working visual–inertial system of multiple MAVs in real-
world scenarios able to autonomously navigate while collab-
oratively building a rich 3-D map of the environment and 
performing optimal surveillance coverage. It is believed that 
the presented system constitutes a milestone for vision-based 
MAV navigation in large, unknown, and GPS-denied envi-
ronments, providing a reliable basis for further research 
toward complete missions of search-and-rescue or inspection 
scenarios with multiple MAVs.
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